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Abstract

Foreshock analysis promises new insights into the earthquake nucleation process and could potentially improve earthquake

forecasting. Well-performing clustering models like the Epidemic-Type Aftershock Sequence (ETAS) model assume that fore-

shocks and general seismicity are generated by the same physical process, implying that foreshocks can be identified only in

retrospect. However, several studies have recently found higher foreshock activity than predicted by ETAS. Here, we revisit

the foreshock activity in southern California using different statistical methods and find anomalous foreshock sequences, i.e.,

those unexplained by ETAS, mostly for mainshock magnitudes below 5.5. The spatial distribution of these anomalies reveals

a preferential occurrence in zones of high heat flow, which are known to host swarm-like seismicity. Outside these regions,

the foreshocks generally behave as expected by ETAS. These findings show that anomalous foreshock sequences in southern

California do not indicate a pre-slip nucleation process, but swarm-like behavior driven by heat flow.
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Key Points: 8 

• We compare the foreshock activity in southern California with the prediction of the best-9 
performing earthquake clustering model. 10 

• Sequences with an anomalous excess of foreshocks are associated mostly with moderate 11 
mainshocks and preferentially with high heat flow. 12 

• The prevalence of anomalous foreshock sequences in zones of high heat flow does not 13 
support the pre-slip nucleation model.  14 
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Abstract 15 
Foreshock analysis promises new insights into the earthquake nucleation process and could 16 
potentially improve earthquake forecasting. Well-performing clustering models like the 17 
Epidemic-Type Aftershock Sequence (ETAS) model assume that foreshocks and general 18 
seismicity are generated by the same physical process, implying that foreshocks can be identified 19 
only in retrospect. However, several studies have recently found higher foreshock activity than 20 
predicted by ETAS. Here, we revisit the foreshock activity in southern California using different 21 
statistical methods and find anomalous foreshock sequences, i.e., those unexplained by ETAS, 22 
mostly for mainshock magnitudes below 5.5. The spatial distribution of these anomalies reveals 23 
a preferential occurrence in zones of high heat flow, which are known to host swarm-like 24 
seismicity. Outside these regions, the foreshocks generally behave as expected by ETAS. These 25 
findings show that anomalous foreshock sequences in southern California do not indicate a pre-26 
slip nucleation process, but swarm-like behavior driven by heat flow.  27 

Plain Language Summary 28 
Many studies have observed that large earthquakes are preceded by smaller events, called 29 
foreshocks. If they have distinctive characteristics that make them recognizable in an ongoing 30 
sequence in real time, they can significantly improve the forecasting capability of large 31 
earthquakes. To investigate the nature of foreshocks, we compare real seismicity with the 32 
expectation of the most skilled earthquake clustering model, which assumes that foreshocks do 33 
not have any distinctive characteristics with respect to general seismicity. We find that 34 
discrepancies between reality and expectation mostly affect foreshock sequences that anticipate 35 
moderate mainshocks with magnitudes below 5.5. We show that those anomalous foreshock 36 
sequences tend to occur where the heat flow is high, which are already known for the occurrence 37 
of swarm-like sequences. Outside these regions, the observed foreshock activity is explained 38 
well by the clustering model. These findings indicate that anomalous foreshock sequences are 39 
not diagnostic of impending large earthquakes but are influenced by the heat flow.   40 

1 Introduction 41 
It is well known that many large earthquakes are preceded by smaller events (e.g., 1999 M7.6 42 
Izmit, Turkey (Bouchon et al., 2011; Ellsworth & Bulut, 2018), 2009 M6.1 L’Aquila, Italy 43 
(Chiaraluce et al., 2011), 2011 M9.0 Tohoku, Japan (Kato et al., 2012), 2019 M7.1 Ridgecrest, 44 
USA (Meng & Fan, 2021)), which are (a posteriori) called foreshocks. The role of foreshocks in 45 
earthquake predictability can be epitomized by two still debated conceptual hypotheses about 46 
earthquake nucleation: the “pre-slip model” versus the “cascade model” (Ellsworth & Beroza, 47 
1995; Gomberg, 2018). According to the former, foreshocks are diagnostic precursors, because 48 
they are triggered by an aseismic slip that precedes large earthquakes; in the latter model, 49 
foreshocks are like any other earthquake, which trigger one another, with one of them eventually 50 
becoming exceedingly larger (the mainshock). 51 
Notwithstanding the still active debate on these hypotheses, seismologists are not yet able to 52 
recognize foreshocks in real-time, tacitly implying that foreshocks are not different from the rest 53 
of seismicity, indirectly supporting the cascade model. This view is further supported by the fact 54 
that the current best performing short-term earthquake forecasting model (Taroni et al., 2018)—55 
the Epidemic-Type Aftershock Sequences (ETAS; Ogata, 1988) model—assumes that 56 
foreshocks, mainshocks, and aftershocks are undistinguishable and governed by the same 57 
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process. ETAS belongs to the class of branching point process models known in the statistical 58 
literature as Hawkes or self-exciting point processes: every earthquake can trigger other 59 
earthquakes according to established empirical relations, with their magnitudes being 60 
independent from past seismicity. In essence, ETAS implicitly acknowledges the cascade model 61 
and its good forecasting performance makes ETAS an appropriate null hypothesis.  62 
Instead, if foreshocks are dominated by mechanisms other than earthquake triggering, as the pre-63 
slip model expects, they could be distinguished from general seismicity and potentially increase 64 
the probability for a larger earthquake to follow. Several studies recently investigated foreshock 65 
sequences of southern California and found that they deviate from expectations of the classical 66 
ETAS model with spatially invariant parameters. For example, Seif et al. (2019), Petrillo and 67 
Lippiello (2021), and Moutote et al. (2021) find, albeit at varying degrees, a higher foreshock 68 
activity in real seismicity than in synthetic catalogs simulated with ETAS. Hence, ETAS appears 69 
to be unable to predict all the observed seismicity, which may suggest that foreshocks are distinct 70 
from general seismicity and governed by different mechanisms. These findings provide hope that 71 
foreshocks are distinguishable and could pave the way to significantly improved earthquake 72 
predictability.  73 

Here we reexamine foreshock activity in southern California and investigate the existence and 74 
main characteristics of foreshock sequences that cannot be explained by ETAS, i.e., anomalous 75 
foreshock sequences. In other words, we look for evidence against the cascade model. To make 76 
the results comparable to previous analyses, we use an ETAS model with spatially invariant 77 
triggering parameters. We perform two different statistical tests and consider the potential 78 
influence of subjective choices, such as the method to identify mainshocks and their foreshocks. 79 
To fathom the main characteristics of possible anomalous foreshock sequences, we investigate 80 
different magnitude classes and analyze the spatial correlation with heat flow as a physical 81 
parameter. With our findings, we aim to contribute to improving earthquake forecasting and the 82 
understanding of earthquake nucleation processes.  83 

2 Data and Methods 84 
We use the relocated earthquake catalog for southern California catalog (Hauksson et al., 2012, 85 
see Data Availability Statement), selecting all earthquakes with 𝑀 ≥ 2.5	from 1-1-1981 to 31-86 
12-2019 except nuclear events (i.e., at the Nevada Test site) from the catalog, totaling 47’574 87 
events.  88 
Because there is no absolute and precise procedure to identify mainshocks, foreshocks, and 89 
aftershocks, the way of analyzing a catalog and distinguishing these events is unavoidably 90 
subjective (Molchan & Dmitrieva, 1992; Zaliapin et al., 2008). To mitigate this subjective 91 
choice, we analyze the catalog using two quite different techniques: the Nearest-Neighbor (NN) 92 
clustering analysis proposed by Baiesi and Paczuski (2004) and elaborated by Zaliapin et al. 93 
(2008), and the spatiotemporal windows (STW) method (Agnew and Jones, 1991; Marzocchi 94 
and Zhuang, 2011; Seif et al., 2019). 95 

The NN method operates in a space-time-magnitude domain based on the NN distance ηj, i.e., 96 
the space-time-magnitude distance between event j and all earlier events i that is minimal. The 97 
event i with the shortest distance to event j is called NN, or parent, event. By assigning a parent 98 
event to each event j, all events become associated with another. To identify individual families 99 
(i.e., sequences) or single events, we use the same threshold 𝜂! 	= 	10"# as Zaliapin et al. 100 
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(2008), which effectively removes event associations with too large ηj. For each sequence, we 101 
refer to the event with the largest magnitude as the mainshock and all associated events that 102 
occur before it as its foreshocks. We only consider sequences with foreshocks and ignore those 103 
that have no foreshocks. 104 
 105 

For the STW method, we initially consider all events with magnitude 𝑀 ≥ 4 as possible 106 
mainshocks. Then, we exclude events that are (i) preceded by a larger event within a 107 
spatiotemporal window of 10 km and 3 days; (ii) preceded by an event with 𝑀 > 5 within 100 108 
km and 180 days; and (iii) not preceded by at least one event within 10 km and 3 days. For the 109 
remaining mainshocks, all preceding events within a window of 10 km and 3 days are considered 110 
foreshocks. 111 

To simulate synthetic catalogs, we use the ETAS model of K. Felzer (Felzer et al., 2002, see 112 
Data Availability Statement and supporting information Text S1 and Table S1) with spatially 113 
invariant triggering parameters given by Hardebeck et al. (2008, see Table S2). Using an 114 
available ETAS model reduces potential influences from subjective parameter choices. We 115 
verify its overall reliability by comparing the number of events in the real catalog with the 116 
distribution of simulated events in the synthetic catalogs (see Text S2 and Figures S1 and S2), 117 
finding that the ETAS model is consistent with the observation. 118 
Once the mainshocks and their foreshocks have been identified in both the real and 1000 119 
synthetic catalogs, we compare their foreshock statistics using two approaches named TEST1 120 
and TEST2. The two tests are described in detail below; both use the cascade model, which is 121 
implied by ETAS, as null hypothesis but emphasize different aspects of the problem. TEST1 122 
involves the average number of observed foreshocks per sequence, whereas TEST2, which has 123 
been inspired by the work of Seif et al. (2019), involves the frequency of observing a certain 124 
number of foreshocks per sequence. We apply both tests to various mainshock magnitude classes 125 
𝐶$ = {4.0 ≤ 𝑚$ < 4.5, 4.5 ≤ 𝑚$ < 5.0, 5.0 ≤ 𝑚$ < 5.5, 5.5 ≤ 𝑚$ < 6.0, 𝑚$ ≥ 6.0} and 126 
foreshock magnitude thresholds 𝑇% = {𝑚% ≥ 2.5, 𝑚% ≥ 3.0, 𝑚% ≥ 3.5, 𝑚% ≥ 4.0}; these choices 127 
are based on Seif et al. (2019), but we add the class 4.0 ≤ 𝑚$ < 4.5 to 𝐶$. Although we report 128 
statistical test results, we do not formally account for applying the tests multiple times; the 129 
results are therefore meant to indicate possible patterns of (apparently) anomalous foreshock 130 
activity. 131 

In TEST1, the null hypothesis under test 𝐻!
(') is that the average number of foreshocks in the real 132 

catalog is not larger than the corresponding quantity in the synthetic catalogs. For each 133 
mainshock magnitude class c ∈ 𝐶$ and each foreshock magnitude threshold t ∈ 𝑇%, we count the 134 
number of mainshocks (with foreshocks), 𝑁$real, and the number of foreshocks 𝑁Freal in the real 135 
catalog; 𝑁Freal is normalized by 𝑁$real to obtain 𝑁9F./01. We calculate the same quantity for each  136 
synthetic catalog and build its empirical cumulative distribution function (eCDF); if 𝑁9Freal	is 137 
above the 99th percentile of the eCDF, we reject 𝐻!

(') at a significance level of 0.01.  138 

In TEST2, the null hypothesis under test 𝐻!
(2) is that for each number of foreshocks, 𝑁% > 0,  the 139 

frequency of observed cases is not larger than the frequency in synthetic catalogs. For each 𝑐 ∈140 
𝐶$ and each 𝑡 ∈ 𝑇%, we count the number of mainshocks that have a certain 𝑁% and normalize it 141 
by 𝑁$./01. In this way, we obtain the probability mass function (PMF) for the real catalog as a 142 
function of 𝑁%. Then, we apply the same procedure to each synthetic catalog and obtain 1000 143 
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synthetic PMFs, for which we calculate the 99th percentile at each 𝑁%. Finally, at each 𝑁%, we 144 
reject 𝐻!

(2) at a significance level of 0.01 if the corresponding PMF value of the real catalog is 145 
larger than the 99th percentile (i.e., when the real catalog contains more foreshock sequences with 146 
this specific 𝑁% than expected by ETAS). In essence, TEST2 seeks anomalies at every 𝑁%, 147 
whereas TEST1 could be seen as a cumulative version of TEST2.  148 
Based on the results of the tests, we can label each foreshock sequence as ‘anomalous’ or 149 
‘normal’ using an intuitive approach: for TEST1, if the null hypothesis is rejected for a certain 150 
class, all foreshock sequences with a 𝑁% larger than the 99th percentile of the eCDF in that class 151 
are labeled as ‘anomalous’ (and ‘normal’ otherwise); for TEST2, if the null hypothesis is 152 
rejected for a specific 𝑁%, all sequences with this	𝑁% are labeled as ‘anomalous’ (and ‘normal’ 153 
otherwise). Effectively, a foreshock sequence in 𝑐 ∈ 𝐶$	is labeled ‘anomalous’ if it is 154 
‘anomalous’ in at least one class 𝑡 ∈ 𝑇%. For TEST1, we argue that the approach is conservative, 155 
because comparing a single sequence against the average behavior of foreshock sequences may 156 
lead to wrongly label more actual normal foreshock sequences as ‘anomalous’ (i.e., false 157 
positives) than wrongly labeling anomalous foreshock sequences as ‘normal’ (i.e., false 158 
negatives). To investigate this aspect, we perform an alternative analysis by building two eCDFs 159 
of 𝑁% (i.e., without normalizing by 𝑁$): one for the real catalog (eCDFreal) and one for all 160 
synthetic catalogs combined (eCDFETAS). If the 99th percentile of eCDFreal is larger than the 161 
corresponding percentile of eCDFETAS in a certain class, we label each foreshock sequence as 162 
‘anomalous’ whose 𝑁% is above the 99th percentile of eCDFETAS. 163 
To investigate the physical interpretation of possible anomalous foreshock sequences in the real 164 
catalog, we analyze their spatial distribution. Specifically, taking inspiration from Zaliapin and 165 
Ben-Zion (2013), we create a map by interpolating heat flow measurements (see Data 166 
Availability Statement) with a radial smoothing approach (𝑟 = 20	km) to acknowledge areas 167 
without data. For each foreshock sequence, we extract the interpolated heat flow value closest to 168 
the mainshock location if it is within r, otherwise we discard the sequence. Then we test if the 169 
distribution of extracted heat flow values is significantly different for normal and anomalous 170 
foreshock sequences. If pre-slip is responsible for anomalous foreshock sequences, we should 171 
not find any difference, i.e., a spatial pattern. We employ two statistical tests: the two-sample 172 
Kolmogorov-Smirnov test (null hypothesis: the two distributions have the same parent 173 
distribution), and the paired Wilcoxon test (null hypothesis: the two distributions have the same 174 
median). In essence, the Kolmogorov-Smirnov test is sensitive to any kind of difference between 175 
both distributions, whereas the Wilcoxon test is sensitive to one distribution having higher values 176 
than the other. 177 

3 Results 178 

3.1 Testing for anomalous foreshock activity  179 
Figure 1 shows the results of TEST1 using NN to identify mainshocks and their foreshocks; the 180 
results using STW are reported in supporting information Figure S3. Each subplot shows a 181 
comparison of the eCDF based on synthetic catalogs with the observed value from the real 182 
catalog for each class in 𝐶$ and 𝑇%. As shown in Figure 1 and Figure S3, TEST1 rejects 𝐻!

('), 183 
i.e., identifies anomalous foreshock sequences, exclusively for mainshock magnitudes 𝑚$ <184 
5.5. Of a total of 152 foreshock sequences, we find 61 (40%) to be anomalous; with the STW 185 
method we find 143 foreshock sequences of which 34 (23%) are anomalous (all with 𝑚$ <186 
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5.5.). Using instead the alternative analysis without normalizing by 𝑁$	(Figure S4), we find 19 187 
(12.5%) to be anomalous, which suggests that TEST1 overestimated the number of anomalies 188 
due to using averages, as anticipated in Data and Methods. 189 

Figure 2 shows the results of TEST2 for each class in 𝐶$ and 𝑇% using the NN method; the 190 
results using the STW method are reported in supporting information Figure S5. Most PMF 191 
values of the real catalog are not anomalous because they are below the 99th percentile of 192 
synthetic PMF values. We find 21 of 152 (14%) foreshock sequences to be anomalous, most of 193 
which are again associated with 𝑚$ < 5.5 (only three have larger 𝑚$) . Using the STW method 194 
we find 10 of 143 (7%) foreshock sequences to be anomalous.  195 
For comparison, Figure 2 also reports the results obtained by applying the approach of Seif et al. 196 
(2019), which tests a similar yet different null hypothesis than TEST2. Specifically, they treat all 197 
synthetic catalogs as one single compound catalog. In this way, the PMF is normalized with a 198 
much larger number of mainshocks than a single catalog (e.g., like the real catalog); for an 199 
increasing number of synthetic catalogs, the PMF decreases progressively observation (i.e., 200 
lowering the detectable minimum frequency) and moves further away from the real. In other 201 
words, our TEST2 honors the fact that a finite earthquake catalog must have a lower detectable 202 
frequency of foreshocks in the PMF; this lower frequency depends on the number of mainshocks 203 
that have foreshocks, which in turn depends on the length of the earthquake catalog (the lowest 204 
frequency is 1 out of the number of mainshocks that have foreshocks). In addition, the approach 205 
of Seif et al. (2019) normalizes the PMF by the total number of mainshocks that have foreshocks 206 
(𝑁$, as we do in TEST2) and no foreshocks, which further reduces the PMF by another 0.5–1 207 
order of magnitude depending on 𝑐 ∈ 𝐶$. 208 
We repeated TEST1 and TEST2 at a 0.05 significance level (i.e., 95th percentile), which was 209 
originally used by Seif et al. (2019), see supporting information (Text S3 and Figures S6 and 210 
S7).  211 

3.2 Correlating foreshock sequences with the heat flow 212 
To investigate the physical cause of anomalous foreshock sequences we inspect the correlation 213 
of their locations with the local heat flow. We choose this property because previous papers 214 
suggested that the heat flow relates to statistical properties of seismic sequences (e.g., Enescu et 215 
al., 2009, Chen & Shearer, 2016; Ross et al., 2021; Zaliapin & Ben-Zion, 2013).  216 
Figures 3a and 4a overlay the locations of normal and anomalous foreshock sequences identified 217 
by TEST1 and TEST2, respectively, on a heat flow map. Figures 3b and 4b show the 218 
corresponding eCDFs of the interpolated heat flow observed at the locations of normal and 219 
anomalous foreshock sequences. In both cases, anomalous foreshock sequences tend to occur 220 
more frequently at locations of higher heat flow than normal sequences. This trend is confirmed 221 
by the p-values of the two-sample Kolmogorov-Smirnov and paired Wilcoxon tests (see 222 
annotations in Figures 3b and 4b), which are below 0.05, indicating that the two samples come 223 
from different parent distributions with different means. Figures 3 and 4 are based on the NN 224 
method to identify mainshocks and their foreshocks; the results based on the STW method 225 
confirm our findings (see supporting information Figures S8 and S9), as do the results based on a 226 
0.05 significance level (Figures S10 and S11). Moreover, TEST1-based results are stable even if 227 
we use the alternative procedure to identify anomalous foreshock sequences using eCDFs 228 
without normalizing by 𝑁$ (see Figure S12).  229 
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We verify the stability of our results using foreshock anomalies identified by Petrillo and 230 
Lippiello (2021). The authors provided us locations of their identified normal and anomalous 231 
foreshock sequences (G. Petrillo, pers. comm., 2022), letting us apply our analysis on a dataset 232 
that is completely independent from our assumptions and modeling choices. The results shown in 233 
Figure S13 confirm our findings of a preferential occurrence of foreshock anomalies in zones of 234 
high heat flow.  235 

Finally, we add a word of caution on the interpretation of the results, that is, the spatial coverage 236 
of heat flow data compared to the earthquake activity is rather incomplete in northern Mexico. 237 
For instance, several anomalous foreshock sequences occur in this area but cannot be included in 238 
the heat flow analysis due to the lack of heat flow measurements. In addition, the available heat 239 
flow measurements in northern Mexico are not consistent with the Geothermal map of North 240 
America (Blackwell & Richards, 2004), which indicates a generally high heat flow (> 100 241 
µW/m2) in this area along the San Andreas Fault. 242 

4 Discussion & Conclusion 243 
We have found that foreshocks have the same characteristics of general seismicity as expected 244 
by ETAS, except for some cases. Our finding is in general agreement with previous studies of 245 
foreshock activity, all of which found (with some important differences not discussed here) 246 
higher foreshock activity than expected (Chen & Shearer, 2016; Moutote et al., 2021; Petrillo & 247 
Lippiello, 2021; Seif et al., 2019). However, our results additionally show that foreshock 248 
anomalies are mostly associated with mainshock magnitudes below 5.5—independently from the 249 
two tests and the two procedures to identify mainshocks and their foreshocks. Moreover, these 250 
anomalies are located preferentially (and statistically significant) in zones of high heat flow. The 251 
combination of these two findings suggests that sequences with anomalous foreshock activity 252 
behave more like seismic swarms. In fact, independent studies (e.g., Enescu et al., 2009, Chen & 253 
Shearer, 2016; Ross et al., 2021; Zaliapin & Ben-Zion, 2013) have shown that swarm-like 254 
activity is common in those areas where we have found anomalous foreshock sequences.  255 

Our results do not allow us to further elucidate why foreshock anomalies correlate with high heat 256 
flow. The anomalies may be driven by specific physical mechanisms (e.g., actual seismic 257 
swarms mostly driven by fluids) or still relate to a cascade model that is not spatially uniform. 258 
The latter may be better described by an ETAS model with spatially varying triggering 259 
parameters. In fact, Enescu et al. (2009) and Nandan et al. (2017) show that some parameters of 260 
a spatially varying ETAS model (which mostly depend on the more abundant aftershocks) 261 
correlate with the heat flow in southern California. Such a more elaborated clustering model 262 
implies more active foreshock sequences where the heat flow is high, which agrees with our 263 
empirical findings based on the analysis of (less abundant) foreshocks. 264 
Conversely, foreshock sequences located in zones of lower heat flow predominantly behave as 265 
expected, i.e., in agreement with the null hypothesis given by the ETAS model. Since it is 266 
reasonable to assume that a pre-slip model should not be severely affected by heat flow, our 267 
results do not indicate the pre-slip model as a major candidate to explain the anomalous 268 
foreshock behavior in southern California. It goes without saying that our results do not prove 269 
the cascade model as the truth, but that they do not bring any evidence against it and in favor of 270 
the pre-slip model.  271 
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Our results also highlight the importance of analyzing seismic sequences in zones of high heat 272 
flow in more detail, especially to understand the physical reasons of anomalous foreshock 273 
sequences: Are they related to seismic swarms with an implicit limitation to the mainshock 274 
magnitude? Or are they related to different clustering processes than those driving tectonic 275 
sequences? The difference is crucial, in particular regarding the forecasting of large earthquakes.  276 
Our findings raise an urgent need to find (quasi-)real-time methods to discriminate swarm-like 277 
from ETAS-like sequences. Such a discrimination method could lead to significant 278 
improvements in earthquake forecasting, because being able to identify a swarm-like sequence as 279 
such could markedly reduce the forecast probability for a large earthquake. We note that an 280 
interesting attempt in this direction has been made by Zaliapin and Ben-Zion (2013), who found 281 
that swarm-like sequences have a different topologic tree structure (i.e., an internal clustering 282 
hierarchy, which connects background and triggered earthquakes). Unfortunately, this method 283 
can currently only be used retrospectively, limiting its applicability in earthquake forecasting. 284 
We envision other possible parameterizations of the topologic tree structure that may facilitate its 285 
use from a forecasting perspective. 286 
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 308 
Figure 1. Results of TEST1 for various classes of the mainshock magnitude 𝑚$ (rows) and 309 
thresholds for the foreshock magnitude 𝑚% (columns). Each subplot displays the number of 310 
normalized foreshocks 𝑁9F for the real catalog (vertical lines; red if anomalous, black otherwise) 311 
and the empirical Cumulative Distribution Functions (eCDFs, dashed curves) with its 99th 312 
percentile (dashed vertical lines) for 1000 synthetic catalogs. Each subplot also reports the 313 
number of anomalous foreshock sequences, 𝑁3%4, the p-value for TEST1, and the number of 314 
mainshocks, 𝑁$. The results are based on the NN method; supporting information Figure S3 315 
shows results based on the STW method. Note that each subplot uses a different 𝑁%-axis range to 316 
account for the varying data range. 317 
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 318 
Figure 2. Results of TEST2 showing probability mass functions (PMFs) of the number of 319 
foreshocks 𝑁% for various classes of 𝑚$ (rows) and 𝑚% (columns). The PMFs are shown for (i) 320 
the real catalog (triangles), (ii) all synthetic catalogs (small gray dots as swarm distributions) 321 
with their 99th percentile (gray horizontal bars), and (iii) when considering all synthetic catalogs 322 
as a single compound catalog (blue open circles, using the approach of Seif et al., 2019). 323 
Triangles become red when they are located above the 99th percentile of (ii). The results are 324 
based on the NN method to identify mainshocks and their foreshocks; supporting information 325 
Figure S5 shows results based on the STW method. Note that each subplot uses a different 𝑁%-326 
axis range. 327 
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 328 
Figure 3. Correlating foreshock sequences with the heat flow. (a) Locations of normal (empty 329 
circles) and anomalous foreshock sequences (filled circles) identified with TEST1 overlayed on a 330 
heat flow map. The circles sizes scales with 𝑚$ (see legend). The interpolated heat flow map is 331 
based on sampled heat flow measurements (small gray dots, see Data and Methods section); (b) 332 
eCDFs of heat flow values at locations of normal (dashed curve) and anomalous foreshock 333 
sequences (solid curve); both eCDFs are compared using two statistical tests (see annotation with 334 
corresponding p-values). The results are based on the NN method; supporting information Figure 335 
S8 shows results based on the STW method. 336 

 337 
Figure 4. Like Figure 3 but with foreshock sequences labeled as ‘anomalous’ or ‘normal’ using 338 
TEST2. Supporting information Figure S9 shows results based on the STW method. 339 
  340 
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Introduction  

The supporting information contains additional information about the ETAS model used for the 
analyses and its verification.  
It also reports the results using alternative methods to infer and select anomalous foreshock 
sequences (e.g., the spatiotemporal windows (STW) method to identify mainshocks and their 
foreshocks, using a significance level of 95%, using an alternative analysis of TEST1, and using an 
independent dataset). 

Text S1. ETAS model 
We used the stochastic ETAS aftershock simulator program developed by K. Felzer (see Felzer et 
al., 2002, Data Availability Statement, and Table S1) with parameters provided by Hardebeck et 
al., 2008, see Table S2). The program simulates background events, and triggered earthquakes 
in time and space. It makes use of Monte Carlo methods and empirical aftershock relationships 
following the ETAS model of Ogata (1988).  
 

Text S2. Verifying the reliability of ETAS model 
To verify the reliability of ETAS model, we adopt a Turing-style test (Page & van der Elst, 2018), 
comparing the number of earthquakes in the real catalog with the number of simulated events 
in the synthetic catalogs (Figure S1). We also apply the same kind of analysis to different 



earthquake magnitude classes  𝐶!  = {3.0 ≤ M < 4.0, 4.0 ≤ M < 5.0, 5.0 ≤ M < 6.0, M ≥ 6.0} (Figure 
S2). In all cases, the real observation (solid vertical line) is within the 95% confidence interval 
(vertical dashed lines), indicating that the ETAS model is reliable and the synthetic catalogs 
consistent with the observation. 
 

Text S3. Results for a significance level of 95% 
Figures S6 shows the results of TEST1 using a significance level of 95%. Of a total of 152 
foreshock sequences, we found 65 (43%) anomalous foreshock sequences using the NN method. 
Figure S7 shows the results for TEST2: we found 51 of 152 (36%) foreshock sequences to be 
anomalous using the NN method. 
 
Table S1. Parameters used in K. Felzer’s ETAS simulator. 

Start date of simulation 1-1-1981 
Start date of synthetic catalogs  1-1-1983 
End date of synthetic catalogs  31-12-2019 
Lower magnitude limit of active earthquakes, M0 2.5 
Lower magnitude limit in synthetic catalog 2.5 
Lower magnitude limit for modelling planar sources  6.5 
Upper magnitude limit 7.9 
Minimum aftershock distance from parent event  0.001 (km) 
Maximum aftershock distance from parent event 500 (km) 

 

Table S2. Used ETAS parameters as given by Hardebeck et al., 2008 for M0 = 2.5. µ is the 
background rate; K, c, and p are parameters of Omori’s law; n is the aftershock decay with 
distance (exponent in r-n); α is the productivity law exponent (productivity scaling with 
magnitude); and b is the scaled b-value, b = b * ln(10), of the Gutenberg-Richter relation 
(describing the magnitude distribution). 

µ K c p n α, b 

spatially 
variable 

0.008 0.095 1.34 1.37 ln(10) ≈ 2.30 
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Figure S1. Total number of events in the synthetic catalogs (distribution) and the real catalog 
(solid vertical line). The dashed vertical lines refer to the 95% confidence interval (i.e., the 2.5th – 
97.5th percentile range of the distribution). For more information, see Text S2. 
 
 

 
Figure S2. Like Figure S1 but for different magnitude classes. 



 
Figure S3. Like Figure 1 in the main paper (TEST1) but using the STW method. 



 
Figure S4 Like Figure 1 in the main paper (TEST1, NN method) but using the individual number of foreshocks, 
NF. In this way, the empirical Cumulative Distribution Function (eCDF) of NF can be constructed for both the 
real catalog (solid curve) and all 1000 synthetic catalogs combined (dashed curve); vertical lines show their 
corresponding 99th percentile (real catalog: solid; synthetic catalogs: dashed). If the former is above the latter, 
the solid vertical line becomes red, indicating more anomalous foreshock sequences than expected. Each 
subplot also reports the number of anomalous foreshock sequences, NAFS, and the number of mainshocks, NM. 
 
 



 
Figure S5. Like Figure 2 in the main paper (TEST2) but using the STW method. 



 
Figure S6. Like Figure 1 in the main paper (TEST1, NN method) but using a significance level of 95%. 
 



 
Figure S7. Like Figure 2 in the main paper (TEST2, NN method) but using a significance level of 95%. 
 
 



 
Figure S8.  Like Figure 3 in the main paper (TEST1) but using the STW method. 
 
 

 
Figure S9. Like Figure 4 in the main paper (TEST2) but using the STW method. 



 
Figure S10. Like Figure 3 in the main paper (TEST1, NN method) but using a significance level of 95%. 
 
 

 
Figure S11. Like Figure 4 in the main paper (TEST2, NN method) but using a significance level of 95%. 
 
 



 
Figure S12. Like Figure 3 in the main paper (TEST1, NN method, 99th percentile) but with anomalous 
sequences identified using an alternative analysis that uses the distributions of the individual number of 
foreshocks (not the average, see Figure S4). 
 

 
Figure S13. Like Figure 3 in the main paper but with the locations of normal and anomalous 
foreshock sequences identified by Petrillo & Lippiello (2021). 


