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Key Points

1. Adopt machine learning techniques to detect Spread-F in ionograms

2. Makes publicly available an annotated dataset with more than
28,000 ionograms

Abstract

Spread-F (SF) is a feature that can be visually observed on ionograms when
the ionosonde signals are significantly impacted by plasma irregularities in the
ionosphere. Depending on the scale of the plasma irregularities, radio waves
of different frequencies are impacted differently when the signals pass through
the ionosphere. An automated method for detecting SF in ionograms is pre-
sented in this study. Through detecting the existence of SF in ionograms we
can help identify instances of plasma irregularities that are potentially affecting
the high-frequency radio wave systems. The ionogram images from Jicamarca
observatory in Peru, during the years 2008 to 2019, are used in this study. Three
machine learning approaches have been carried out: supervised learning using
Support Vector Machines, and two neural network-based learning methods: au-
toencoder and transfer learning. Of these three methods, the transfer learning
approach, which uses convolutional neural network architectures demonstrates
the best performance. The best existing architecture that is suitable for this prob-
lem appears to be the ResNet50. On a test set of 2050 ionograms the ResNet50
model provides an accuracy of 89 percent, recall of 87 percent, precision of 95
percent as well as Area Under the Curve (AUC) of 96 percent. In addition to
the model, this work also provides a labelled dataset of over 28,000 ionograms,
which is extremely useful for the community for future machine learning studies.

INTRODUCTION
The ionosphere is a region in the upper atmosphere consisting of charged par-
ticles, e.g., ions and electrons. These particles are created when the neutral
atmosphere is ionized by solar radiations and through collisions with other high
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energy charged particles coming from the Sun. The number density of the
charged particles exhibits strong diurnal variations as well as significant day-
to-day variability (Fang et al., 2018). Typically, the ionosphere can be divided
into several layers in altitude based on the profile of electron density (e.g., Bora,
2017). They are D (50-95 km ), E (90-150 km), F1 (140-200 km), F2 (>200 km)
layers. D, E, and F1 layers mostly disappear after sunset due to lack of photo
ionization sources and strong recombination in the nighttime. In the D- and
E-region altitude, the ionization is mostly caused by the solar X-ray. For the
F-region ionosphere, extreme ultra-violet (EUV) dominates the process. The
ionospheric density variations can significantly impact the radio wave commu-
nications that rely on reflection of radio waves or the higher frequency radio
waves that transmit through the ionosphere. The gradients in the plasma den-
sity can also diffract radio signals and cause amplitude or phase fluctuation in
the Global Navigation Satellite System (GNSS) signals.

In the ionosphere, plasma instability conditions often occur during the post-
sunset period and lead to the formation of plasma bubbles or plasma irregulari-
ties. These bubbles and irregularities show strong density fluctuation and their
movements are aligned with the background magnetic field structure (Li et al.,
2021). When a wave traverses the ionosphere in the presence of such plasma
irregularities, the wave experiences interference different to those when there
is no plasma bubble (Sahai et al., 2004). The resulting impact on the signal
amplitude and phase can be so significant that the information carried by the
wave may be distorted or lost. Studying the ionosphere irregularities helps us
to determine the spatial and temporal variations of these changes, estimate the
impact of these fluctuations on radio signals, and mitigate their influence on
technologies that we rely on..

Ionosonde is one important ground-based instrument that is used to determine
ionospheric properties. The ionosonde consists of a suite of antennas coupled
with analog and digital circuitry to generate and record signals of frequencies
between 0.1 MHz and 30 MHz. The signal is sent primarily vertically into the
ionosphere. Depending on the plasma density in the ionosphere, the signal with
different frequencies get reflected back to the ionosonde (Kalita et al., 2019) at
different points. When an ionosonde sends a radio wave of frequency 𝜔 the wave
encounters a plasma of increasing density, and thus increasing plasma oscillation
frequency (𝜔𝑝) because plasma frequency is proportional to plasma density, up
to a point where 𝜔 = 𝜔𝑝; at this point the wave from the ionosonde is reflected
(Floer, 2020). On the other hand, when the incident wave frequency 𝜔 is higher
than the plasma frequency 𝜔𝑝 the wave would penetrate through the ionosphere.
Additionally, the presence of the Earth’s magnetic field makes the ionosphere
birefringent such that when one incident wave is reflected it is split into two
waves, one of which is “Ordinary” or O, and the other is “eXtraordinary” or X.
The O-mode is said to be “ordinary” since it behaves as though there were no
magnetic field and reflects at the point in the ionospheric plasma where 𝜔 = 𝜔𝑝.
The X-mode waves do not reflect at 𝜔 = 𝜔𝑝. Rather the X-mode reflects at
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𝜔 = 𝜔𝑝 + 𝜔𝑔
2 , where 𝜔𝑔 is the electron-gyrofrequency (Floer, 2020). Because the

two reflected X-mode waves now have different wavelengths, their propagation
through the rest of the ionosphere will differ (similar to how white light splits
in a prism due to dispersion) and will emerge at the receiving ionosonde as two
separate waves (Maruyama, 2002)

The reflected wave amplitude is recorded by the ionosonde. The raw data can
then be processed and is often presented in terms of a visual map called iono-
gram. Some examples of ionograms are shown in Figure 1. On a typical iono-
gram, the distance (virtual height) that the radio wave travels is shown on the
y-axis whereas the frequency of the wave sent by the ionosonde is shown on the
x-axis. The distance is calculated by multiplying the speed of light by the dura-
tion between the sending of the signal and its reception by the ionosonde. The
distance is “virtual” because the light wave does not actually travel through the
ionosphere at the speed that it does in vacuum; the speed of light in the plasma
(which the ionosphere is) is less than in vacuum, therefore the actual distance
is less than the virtual height.

The colors in the ionogram represent various information of the signal, such as
the direction where the echo comes from, the Doppler shift, and the type of the
echo (i.e., O-mode or X-mode). For example, in Figure 1, the red points are
for a vertical echo of the ordinary mode and the deep blue is for the ordinary
echo from the North-North West direction. The size (geometric area) of each
rectangular point encodes the magnitude of the amplitude of the echo (Reinisch,
2009). The black curve is for the ion density profile derived from the automatic
tracing algorithm called ARTIST version 4. ARTIST (Automatic Real Time
Ionogram Scaler with True Height) is a software system for “scaling” ionospheric
parameters—where “scaling” entails calculating or estimating the values for the
parameters.. ARTIST provides the values for peak frequency in the F2 layer,
foF2, the virtual height of the F layer, h’F, as well as other useful derivative
information such as the Maximum Useable Frequency (MUF) to communicate
with someone at a distance of 3000 km away, shown as MUF(3000). These
parameters and values are shown in tabular form on the ionograms. The density
profile above the ionospheric peak density is estimated by the ARTIST tool since
the ionosonde can only detect echoes below the density peak.

Figure 1 shows a sample ionogram without SF (Normal) and one with SF,
both from the Jicamarca radio observatory (JRO). The sample on the left is
observed on 25 August 2013 (day number 237 in 2013) at 01:30 am Universal
Time (UT). The one on the right was observed on 02 September 2013 (day
number 245) at 01:30 am UT.
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Figure 1: Ionogram without SF on the left and ionogram with SF on the right.
The colors encode the following parameters: the direction from which the echo
comes, the Doppler, and the mode of the echo—that is, whether it is an extraor-
dinary mode or ordinary mode.

Multiple reflections commonly appear in an ionogram, which shows multiple
echoes at multiple heights and can be easily identified. They are caused by
multiple reflections of a signal bouncing between the ground and ionosphere
(Maruyama, 2002). Another feature that is frequently shown in the nighttime
ionogram is called Spread-F (SF). When a signal from an ionosonde is sent
upwards, ideally it is expected that only one main echo is received. This echo
provides the information about the height of the layer from which it was reflected.
There are cases where different frequencies are reflected at the same height,
rather than at different heights as is normally expected. These behaviors are
associated with plasma irregularities in the ionosphere after the post-sunset
period. When these cases arise, they show up on an ionogram as a spread in
frequency or virtual height (range). The anomalies are thus called SF, owing
to their spread appearance on ionograms—the echo is literally spread across
many more pixels than those in normal cases. When many frequencies are
reflected at the same height, this is called Frequency SF (FSF). When the same
frequency is reflected at multiple heights, this is called Range Spread-F (RSF)
(Bhaneja et al., 2009). Sometimes it is useful to divide SF into further categories:
Strong Range Spread-F (SSF) and Mixed Spread-F (MSF) are two more ways to
categorize SF. The type of Spread observed can aid in determining where in the
ionosphere the irregularities are. For example, observing FSF is a sign that the
density irregularities are close to the F peak region. RSFs are observed when the
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irregularities (bubbles) are below the F peak height. When the irregularities are
distributed randomly across the F region, MSFs are most likely to be observed.
Finally, SSFs appear when the density depletion below the F peak manages to
move beyond the F peak region and on to the top side (Alfonsi et al., 2013). In
this study, the ionograms are divided into two groups: those without and those
with SF, irrespective of the type of SF.

Another phenomenon associated with plasma bubbles and irregularities is iono-
sphere scintillation, which typically refers to signals from GNSS measurements.
Scintillation represents the random fluctuation in the phase and amplitude of
received GNSS signal (Cander, 2019). The signals propagate through the ir-
regular plasma density structures and the diffraction and/or refraction leads to
signal intensity drops and phase shifts. The returned signals then appear to be
scintillated. Imagine a planar wave incident on two ionosphere patches of dif-
ferent densities, one patch of normal background density and another of much
lower density. They emerge at different times because the speed of a wave in
a given medium is a function of the refractive index of that medium; and the
refractive index is a function of plasma density (Wiesemann, 2013). Therefore,
the wave will move at different speeds in the low-density plasma bubble than
in the normal density region. The difference in duration of travel (and thus
phase at exit) will result in the vector sum of the two emerging waves being
different than the amplitude of the original waves (e.g., Kintner et al., 2009;
Maruyama, 2002). An instrument receiving the signals will see fluctuations in
amplitude that are not initiated by the sender. The result is that a receiver
may be unable to accurately extract the information that was sent. The GNSS
satellites transmit the L-band signals (~1.575 GHz) at a height of about 20,200
km to receivers on the ground. The L-band signal has to cross the ionosphere,
and is therefore affected by the conditions in the ionosphere. The scintillation
in GNSS signal can lead to position errors with the severity of impact of these
errors depending on the application (Kintner et al., 2009).

The identification of SF from ionogram is important because SF is a sign of
a large-scale ionospheric irregularities (100s km). The evolution of plasma ir-
regularities largely depends on the background ionosphere and thermosphere
conditions and can potentially lead to a small-scale (10s km) irregularities that
may affect communication and navigation systems. Several studies have shown
that strong correlation between scintillation and spread F can be observed. Shi
et al. (2011) showed that the occurrence rate of scintillation of the GPS L-
band signal was high during times when SSF occurrence rate was also high at
a low‐latitude station of Hainan (109.1°E, 19.5°N; dip latitude 9°N). Liang et
al. (2015) also showed similar conclusions using data from another low-latitude
station at Vanimo (2.7°S, 141.3°E; dip latitude 11°S). Therefore, by identifying
instances of Spread F it is possible to estimate the occurrence rate of scintillation
events.

Identifying SF has been typically a manual process. Existing flags based pro-
vided by autoscaling software such as the ARTIST program do not provide
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reliable results. Labelling all instances of SF remains challenging since it is a
rather time-consuming process; therefore, establishing an automated method
based on machine learning (ML) algorithm is the main goal of this study. A few
generally data-driven and specifically machine learning methodologies have been
carried out on SF identification. Scotto et al. (2018) developed a module for
automatically detecting SF from the equatorial region. Their software module
complements Autoscala, which is software developed for scaling the ionosonde
data in order to get parameters of interest such as critical frequencies, heights,
and maximum useable frequencies.. However, in the presence of SF, one can no
longer trust the data collected. Scotto et al. (2013) therefore built a numerical
model that identifies which data Autoscala must exclude. That is, once a SF has
been detected the ionosonde data are no longer used for calculating ionospheric
parameters. They used 198 samples from Tucuman station (26.9°S, 294.6°E) to
determine a threshold for splitting between SF and no SF. After obtaining the
appropriate threshold, they tested using 7,649 manually scaled ionograms for
every hour of the year 2016. They obtained a true positive ratio of 81.55%.

Another model has been built with data from a low latitude station at São José
dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S) and an equatorial station at
Palmas (10.2°S, 48.2°W, dip latitude 5.5°S). This model was based on fuzzy
relation. The experimenters used 4320 ionograms collected over a period of
30 days between 6 pm and 6 am local time. The months studied are January
and February 2004 which is summer for Brazil. The module was able to detect
the presence of SF in about 92% of the cases that had been labelled as having
SF (Pillat, Fagundes, & Guimarães, 2015). Another study has utilized the ML
technique called decision trees to establish a model to identify Spread F (Lan
et al., 2018). The inputs for the decision tree model are 47,711 ionograms
recorded at Puer station (22.7°N, 101.5°E; Geomagnetic latitude: 12.8°N) in
Yunnan province of China. The year 2015 was chosen in this study.

Data from the first half of every month—January to December—to build their
decision tree, and then the data from the latter half of each was used for valida-
tion. In order to test their model, 41,471 ionograms from 2015 are used — the
test ionograms were different from the training set. Then they also used 7,367
ionograms from July 2016 because this was a month with significant amount
(1,428) of SF. This study obtained 89% accuracy on correctly identifying cases
with SF.

These results show some success. However, the models have only been tested
for the same location from which the data for training the model were obtained;
the models thus may not work for other locations, such as Jicamarca, Peru.
While Lan et al. (2018) attempted testing with data from a different year, only
one month was tested. Machine learning models can be very dependent on
the data used for training. This means that one can have an extremely good
model based on carefully selected data. It is thus important to include data
that is as temporally diverse as possible so that the model does not simply
learn the features that apply for one particular year or season. In this work,
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a large dataset with over 28,000 ionograms near equinoxes spanning multiple
years (2008 to 2019) are utilized to provide a more comprehensive coverage for
SF events.

It is worth emphasizing that the Jicamarca Radio Observatory (JRO, 12°S,
76.8°W, and dip latitude 1°N)) in Peru sits close to the magnetic equator and
is the premier scientific facility in the world to study the equatorial ionosphere.
JRO hosts multiple radars and ground-based instruments that are used to detect
ionosphere properties. It has a collection of scatter radars consisting of three
1.5 megawatt transmitters and incoherent scatter radar (Milla, 2017). There
are also many magnetometers distributed around Peru with which scientists
can study changes in the magnetic field associated with ionospheric currents.
Some of these measurements are extremely useful and can be combined with
ionosonde data to facilitate extensive studies on ionosphere irregularities and
the background conditions that lead to the irregularities. As mentioned before,
none of the existing machine learning models were built or tested with ionograms
from JRO. Therefore, establishing a machine learning algorithm that works with
the long-term JRO data and making the labelled dataset publicly available are
important objectives of this study. Following the steps described in this paper
will also allow other researchers to easily build upon this work.

We describe the data used in this work in Section 2. Section 3 discusses the
machine learning methods used in the study, namely Support Vector Machines
(SVM) and the Convolutional Neural Networks (CNNs). The CNNs include an
autoencoder architecture and other architectures based on ResNet50, VGG16,
and InceptionV3 architecture from the public domain. The experiments and
results are then shown in Section 4, together with a discussion of the results. In
Section 5, key findings of the work and potential future work are summarized.

DATA
Various long-term observations from multiple instruments from JRO has pro-
vided tremendous information and novel insight for understanding the equato-
rial ionosphere. The ionosonde at JRO (station ID: JI91J) has a virtual height
range of 80 km to 1320 km and a probe frequency range between 0.5 MHz and
20 MHz. There are two temporal data collection modes: one mode is to collect
every 15 minutes, and the other is every 5 minutes. Data from both cadences are
used in this study. However, note that in one of the experiments, the 5-minute
cadence data were excluded in order to assess the impact that data temporal
resolution has on the ML model.

The ionograms are obtained from a NOAA data repository (https://data.ngdc.
noaa.gov/instruments/remote-sensing/active/profilers-sounders/ionosonde/).
SF occurs more often during the chosen months of March, April, August, and
September (Chapagain et al., 2009). All the ionograms used in this study are
from the years 2008-2019 (for 2019 only March). The period between 2008 to
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2019 corresponds to the solar cycle 24. The reason for choosing a season where
SF is expected the most is to have sufficient data for both the Normal and SF
classes. If the data were not so carefully chosen, there would be a bias since
normally there are far more normal ionograms than there are those with SF.

SF is a primarily nighttime phenomenon (Chapagain et al., 2009), though it
has also been shown to occur, in some rare cases, on the dayside at low-latitude
regions (Jiang et al., 2016). Therefore, the ionograms from 19:00 local time (LT)
of present day to 05:00 LT the following day are chosen in this study.

The ionograms were then manually classified and placed into three categories:
Spread-F (SF), Normal (that is, no SF) and unsure. The unsure samples were
those where it was not clear whether the sample contained SF or not. There
are three distinct features of the unsure samples. The largest group is of those
where there was too little information for even a human to make sense of it; there
were either no echoes at all or just a very small number. The second group of
unsure samples had a lot of other noisy echoes that made it hard for the human
labeller to confidently determine whether it could be due to SF or not. Finally,
a smaller group had echoes all over the place with no clear patterns. Since the
unsure samples were hard to place into either Normal or SF class, they were not
used for training, validation or testing. There were about 4236 unsure samples,
compared to around 28 thousand used in training, validation and testing.
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Figure 2: Number of ionograms from the SF class and Normal class as function
of year. The set of ionograms of 15-minute cadence excludes ionograms collected
every five minutes, while the 15-min and 5-min cadence set includes both the
ionograms collected every 5 minutes as well as those collected every 15 minutes.
The F10.7 index depicts the phases in the 24th solar cycle.

Figure 2 demonstrates the numbers of samples in each year used in this study.
Ionogram samples collected with 15-minute and 5-minute cadences are also
shown in the figure. It shows that in some years, such as 2017 and 2018, there
are more SF samples than normal. It should be noted that the months chosen
are deliberately those with greater likelihood of SF; for example, the months
of May and June have been shown to not have a lot of SF so they are omitted
from the dataset. The dataset is also chosen to coincide with the 24th solar
cycle which was from 2008 to 2019, as illustrated by the F10.7 solar flux index.
The F10.7 index results from calculating hourly average of the flux of radiation,
whose wavelength is 10.7 cm, issuing from the sun (Petrova et al., 2021). F10.7
has a long historical record and has been a good proxy for Ultra-Violet radiation
while also correlating with sunspot number. The F10.7 annual mean is shown
in Figure 2 to show the different phases of the solar cycle 24 from which come
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the ionograms used in this work.

Figure 3: Monthly distribution of samples in year 2015 as divided into Normal
(purple), SF (green) and Unsure (black). Unsure are not used in creating the
models.

Monthly distribution of samples for the year 2015 is also shown in Figure 3.
The month of March for 2015 has significantly larger number of SF samples
(668) than Normal (283). In total, there are 1292 normal samples and 1901 SF
samples. Such skewness in the data distribution, though mild in this case, is
important to notice because it restricts what kinds of models one can use. As
an example to show how data skewness can affect models, consider the case
of a training dataset where 900 out 1000 ionograms are normal and the other
100 are SF. A simple classification ML model that always predicts that a given
ionogram is in the normal class will have a 90% accuracy, which is largely due
to the unbalanced training dataset. Thus, a well-balanced dataset is critical to
establish a reliable ML model in this study.

The number of SF events as a function of time for day 94 of 2008, 2014 and
2018 are shown in Figure 4. For 2018 there was 1 SF between 8 and 9 PM and
2 SFs between 12 am and 1 am. Similarly, for 2014 the largest number of SF
occurred between 2 am and 3 am—the maximum number of SF events is 4 when
the ionosonde is collecting data every 15 minutes. For 2008 there was at least
one SF during each hour between 8 PM and 5 AM of the selected day.
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Figure 4: Number of SF events as function of time for same day (94) in the
years 2008 (gray), 2014(orange) and 2018(blue) between 7 pm and 5 am local
time in JRO.

MACHINE LEARNING METHODS
There are two key categories in terms of algorithms used for establishing the
models: SVMs and CNNs. The algorithms within the CNNs approach can
be further split into three subcategories, namely autoencoder, simple baseline
neural network, and transfer learning. The following sections describe each
algorithm, the data used for the algorithms, and the software programs used to
implement the algorithms. Two key variables, the mathematical algorithms and
the data, are carefully tested in the experiments described.

1. Support Vector Machines (SVM)

SVM refers to models that are defined by selecting a special set of vectors from
the input space; the selected vectors are called support vectors. Let each input
sample or pattern, such as an ionogram, be encoded as a n-dimensional vector X,
where n corresponds to the number of features or attributes of the sample—in
this case, number of pixels times number of color channels (red, blue, and green).
For the classification task between SF and no SF, each sample is assigned a label.
The samples with SF may be in Class A, and those without SF are in Class B.
For SVM the class labels are 1 and -1, as this helps with the mathematical
formulation of the problem.

The goal of SVM is to find a hyperplane (a hyperplane is a subspace with dimen-
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sion = n-1, for example a line is a hyperplane of two-dimensional (n=2) space
(Bridgelall, 2010) that separates the samples into distinct classes. Each sample
can be thought of as a point in the input vector space. Samples that are in one
class would then be points on one side of the hyperplane, and samples in the
other class are points on the other side of the hyperplane. In SVM the goal is to
find not just any hyperplane, but one that maximizes the minimum (perpendic-
ular) distance from the hyperplane to a set of special points (which are actually
samples) that are called support vectors (Shiri, 2004). These support vectors,
a small subset of the input dataset, define how wide the margin of separation
between the two classes is.
In order to define the optimal hyperplane the problem is framed as an opti-
mization problem where the goal is to find the optimal value (in this case the
maximizing coefficients) for the function 𝐿𝑑:

𝐿𝑑 = ∑𝑖=𝑚
𝑖=1 𝑎𝑖 – 1

2 ∑𝑖=𝑚
𝑖=1 ∑𝑗=𝑚

𝑗=1 𝑎𝑖 𝑎𝑗𝑦𝑖𝑦𝑗 (𝑥𝑖 • 𝑥𝑗) (1)

in the original input space. In this equation, 𝑎𝑖 is the coefficient associated with
the 𝑖th sample, and 𝑥𝑖 • 𝑥𝑗 is the dot product between two input samples 𝑥𝑖 and
𝑥𝑗 with their respective labels 𝑦𝑖 and 𝑦𝑗. The indices of summations are from 1
to the total number of samples, denoted as m.

When the input patterns are not linearly separable, as is the case for a complex
problem such as the one developed here, a mapping Φ(𝑥𝑖) to a higher dimen-
sional space is required. In that high dimensional space, called feature space,
the patterns can then be separated linearly. The goal thus becomes to optimize
the following function, 𝐿𝑑,:

𝐿𝑑 = ∑𝑚
𝑖=1 𝑎𝑖 – 1

2 ∑𝑖=𝑚
𝑖=1 ∑𝑗=𝑚

𝑗=1 𝑎𝑖 𝑎𝑗𝑦𝑖𝑦𝑗 (Φ(𝑥𝑖) • Φ(𝑥𝑗)) (2)

where Φ(𝑥𝑖) is the vector corresponding to sample 𝑖 in the (often much higher
dimensional) feature space. Performing the dot product Φ(𝑥𝑖)•Φ(𝑥𝑗) in the fea-
ture space is computationally expensive. The idea of kernel functions was intro-
duced to minimize this computational overhead. The kernel function 𝐾 (𝑥𝑖, 𝑥𝑗)
uses the low dimensional (original) input space vectors to obtain the same value
that is obtained when doing the dot product in the higher dimensional space
(Hearst, 1998). The optimization goal then becomes to find the optimizing
coefficients for:
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𝐿𝑑 = ∑𝑚
𝑖=1 𝑎𝑖 – 1

2 ∑𝑖=𝑚
𝑖=1 ∑𝑗=𝑚

𝑗=1 𝑎𝑖 𝑎𝑗𝑦𝑖𝑦𝑗 K (𝑥𝑖 • 𝑥𝑗) (3)

In both cases the optimization problem is subject to the constraint that:

∑𝑚
𝑖=1 𝑎𝑖𝑦𝑖 = 0, 𝑎𝑖 > 0 (4)

Different kernel functions exist, and the trained classifier may perform better or
worse depending on the choice of the kernel (Berwick, 2003). The coefficients
associated with the support vectors are nonzero and determine the location of
the optimal hyperplane. The rest of the coefficients do not contribute toward
determining the location of the hyperplane. Which class a sample 𝑥new belongs
to depends on the sign of the value from the following sign function:

𝑠𝑖𝑔𝑛(𝑤𝑇 𝑥new + 𝑏) (5)

where 𝑤 = ∑𝑚
𝑖=1 𝑎𝑖𝑦𝑖𝑥𝑖 and 𝑤𝑇 is the transpose, noting that 𝑥𝑖 is vector of

features that define a sample. If the output of the sign function is negative the
sample is said to be in one class (e.g., SF), and when the output is positive the
sample is said to be in another class (e.g., Normal).

The implementation was done in MATLAB using the Support Vector Machine
classification module. The module has a function fitcsvm that takes in the
training samples which are represented as one large matrix X. A row of X is
one training sample; and, each row has the number of columns corresponding to
the number of features in the data. For the case discussed here the number of
features is 1,260,000 because each ionogram image is 700 by 600 pixels by 3 color
channels. (Pixels here refers to the logical pixels rather than physical pixels on
some specific screen). Y is a column vector of labels. So, Y(137) is the label for
the 137th training sample. Y is either 1, to mean that the corresponding training
sample has characteristics of SF; or Y can be 0, to mean that the corresponding
training sample does not show sufficient signs of SF. The module has hyper-
parameters that are useful for the training. These hyperparementers include
the different kernels, which in MATLAB include ‘BoxConstraint’, ‘KernelScale’,
‘KernelFunction’, ‘PolynomialOrder’, or ‘Standardize’. When implementing, a
specific portion of the total training set is held back for testing. Suppose Hold-
out = 0.15 then at each run MATLAB chooses, randomly, 15% of the data and
excludes this portion in the training stage. Because the choice of which 15% is
to be held back is random, the accuracy of the trained classifier varies.

Only the data from the year 2013 was used for creating the SVM model, since
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this was primarily done to check the feasibility of the model. Several runs were
performed while varying the hyperparameters for the model itself as well as for
the training process. The accuracy was consistently not good, ranging between
50 % and 77 %. This method was thus abandoned. SVMs are known for being
mathematically intuitive and are thus a good point of entry for this kind of
classification problems. But given their poor performance, the next attempt
explores convolutional neural networks, which, though harder to explain why
they work, work, and in this particular case worked very well.

1. Convolutional Neural Networks

Convolutional neural networks (CNN) are a special neural network configura-
tion that have demonstrated good learning ability when presented with input
signals where neighboring elements form some semantic unit or feature; this is
the case for images, and CNNs have thus been extensively used for image clas-
sification and detection tasks (Simonyan and Zisserman, 2015). Convolution is
a mathematical operation between two matrices that outputs another matrix.
To perform the convolution, a kernel (also called mask), which is a matrix of
weights, operates on the input signal. The input signal in this case is the iono-
gram. The ionogram is represented as a 3-dimensional tensor of dimensions
height (600 pixels), width (700 pixels), and depth (3 color channels: Red, Blue,
Green). To perform the convolution the kernel slides across the input image
linearly combining the elements of the ionogram that are under the kernel; each
element in the ionogram is multiplied by the corresponding element in the kernel
and then the products are summed (Choi, Coyner, Kalpathy-Cramer, Chiang,
& Peter Campbell, 2020), giving an output matrix. Properties of the kernel
that need to be decided by the network designer include padding, stride, and
kernel size. Padding is used to deal with two issues: to handle the pixels on the
edge of the input signal and to make up for the fact that the size of the output
matrix from the convolution operation is smaller than the original input matrix.
A padding of 2 means that two new rows (often with zeros as the values) are
added to the top and bottom of the input and two new columns are added to
left and right of the input signal (ionogram). The values of the added pixels can
be zero. Stride refers to the number of rows and columns to skip when moving
the kernel across the image. Finally, kernel size (k pixels by r pixels) refers to
the size of the kernel matrix. A small kernel looks at more local features, while
a larger kernel looks at more global features. The actual values of the kernel
matrix (these are called weights) are what the neural network learns during the
training phase; this is the unique feature of CNNs in that one does not need to
manually define the kernel weights.

A filter can be thought of as a collection of many kernels—a kernel is the 2D
matrix that acts on data from one channel (which need not necessarily be color
channel), whereas a filter combines these kernels into one 2D matrix via the
element-wise addition. One also adds the bias to the output from the convolu-
tion filter. Finally, there is an activation function that maps the convolution
output to a desirable range. A frequently used activation function is the recti-
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fied unit function 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥), where x would be the value at each pixel of
the convolution map obtained after the convolution operation (Stuchi, Boccato,
& Attux, 2020).

CNNs require far fewer parameters than a regular fully-connected neural net-
work. Therefore, training a CNN can be faster than a regular neural network.
Even more interestingly is that the kernel weights are learned so that one does
not need to manually determine what features to look for in an image—the
CNN determines the abstract features that are important (Choi et al., 2020).

There are three key configurations within the CNN approach that have been
explored in this work: an autoencoder architecture that enables learning with
little supervision, a simple handcrafted CNN model, and the transfer learning
approach which uses a more sophisticated network architecture that had been
trained on public data in which there were no ionograms.

1. Autoencoder Architecture: An unsupervised approach
to classifying SF

The autoencoder is a network architecture that uses CNN layers of different sizes
and arranged in such a way that the output of the network has the same dimen-
sions (or shape) as the input. Given an input X, the model must encode the
input, and subsequently decode it in order to produce a reconstructed sample
𝑋est. Then a comparison is done between the input and output to quantify the
difference (error) between the input and the reconstructed. This reconstruction
error is a measure of how well the model is able to encode the high-dimensional
input samples into a low-dimensional space, with smaller error signifying better
ability at encoding.
When the autoencoder concept is applied to this two-class problem of SF and
normal, the key idea is to use a training dataset with a lot more normal samples
than SF samples. When the autoencoder model is taught to learn to reconstruct
ionograms in this dataset, the model will learn very well how to reconstruct iono-
grams from the class that has more samples, which in this case is the normal
class. However, when provided with a sample from the less frequently seen class
the autoencoder makes a greater error in reconstruction (Borghesi, Bartolini,
Lombardi, Milano, & Benini, 2019). A threshold on the reconstruction error is
set; if the error is above the chosen threshold the sample is classified as SF. The
advantage of this approach is that only those samples used for testing purposes
are required to be labeled. The approach is therefore classified as unsupervised
learning since there is no need to provide the labels for training.
The actual implementation was carried out using the Keras Application Pro-
gramming Interface (API) (Francois, 2015) within the Tensorflow framework.
The model consisted of the layers shown in Table 1.

Table 1: Layers of the autoencoder, showing an architecture where the input
shape is the same as the output shape.
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Layer (type) Output Shape Number of Parameters
Input_1 (InputLayer) [(None, 400,300,3) 0
Encoder (Functional) (None, 380) 45601868
Decoder(Functional) (None, 400,300,3) 45723795

In the autoencoder structure shown in Table 1 the input of shape 400 pixels by
300 pixels by 3 channels is mapped to a low-dimensional space (of dimension only
380). This process encodes the input. The latter part of the neural structure
is the decoder; it decodes the encoded sample and attempts to recreate the
original image. When the model has learnt the key features of the input space
well enough, it recreates the original image with greater accuracy (Borghesi et
al., 2019). By setting a threshold on the amount of error made in recreating the
original image, one can classify the test input as either Spread F or not.

In this architecture, the original ionograms are rescaled from 700 pixels wide by
600 pixels high down to 400 pixels high by 300 pixels wide. The scaled-down
input then goes through several layers (not shown in table) until it is encoded
in a 380-dimension space. This is the end of the encoder section of the auto-
encoder. From the encoder layer, the goal is to reconstruct the input. The final
layer has the dimension of 400 pixels by 300 pixels by 3 channels just as the
input. Thus, the mathematical comparison can be done between the input and
the decoded ionogram.

Data from all years described in Section 2 are used for this algorithm. In total,
there are 40232 ionograms used as the training set. Another 9896 ionograms
were reserved for testing and thus were manually classified into either the Normal
or the SF class. The threshold for error set is on the test set, where the error
is the mean of the squares of the difference between the original input and the
reconstructed input. The error threshold of 0.11 was ultimately chosen after
the training; when the reconstruction error is above 0.11 then the sample is
classified as SF. If the error is less than 0.11 then the sample is classified as
Normal. It was expected that samples without SF would result in less error
since the dataset was established with more Normal samples.

Metrics used to evaluate the ML model results are defined in the Section 4.
From this autoencoder method the following results were obtained: precision of
63 percent, recall of 69 percent and accuracy of 63 percent. These results show
that the method not provide much success compared with previous studies.

Thus, we further developed other ML model architectures as explained in the
following sections. A key difference of the following approaches from the Au-
toencoder is the use of labelled data. Therefore, they fall under the paradigm
of supervised learning.

1. Simple Model Architecture

This is a supervised learning approach, where the images are labelled prior to
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their use in the model. The model is given the ionograms and the associated
label of SF or Normal. The initial model is architecturally quite simple with
few layers as well as few neurons per layer; this model is much faster to train
(than the models used in transfer learning models explained below). This simple
model has the structure shown in Figure 5.

Figure 5: Simple neural network architecture used for training SF classifier show-
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ing the different layers. Conv2d means 2D convolutional layers, max_pooling2
is a maxpooling layer, dropout deactivates some connections between the two
layers, and flatten converts multidimensional input to a vector. The metrics are
used to define the goodness of the model while the loss is the function that the
one tries to optimize.

Figure 5 shows the simple base model with only 7 kernel layers (excluding pool-
ing layers and dropout layers). Note that the weights of the kernels are what the
model learns. Thus, if there are many kernel layers there would be a larger num-
ber of weights that need to be calculated. The Conv2d layers are convolutional
layers and max_pooling are max pooling layers which perform downsampling.
The flatten layer is used to unwrap the matrices from earlier layers into a vector
whose elements can then be connected to a dense layer. Finally, the metrics and
loss function values are calculated. The goal in training the model (machine) is
to reduce the loss as the training progresses. An overview of the shape at each
layer is shown in the Table 2 below.

Table 2: The different layers of the simple architecture that is the baseline for
comparison with transfer learning models

Layer (type) Output Shape Number of parameters
Con2d (Conv2D) (None, 296,296,10) 760
Conv2d_1(Conv2D) (None, 292,292,20) 5020
max_pooling2d (MaxPooling2D) (None, 36, 36, 20)
conv2d_2 (Conv2D) (None, 32, 32, 40) 20040
conv2d_3 (Conv2D) (None, 28, 28, 80) 80080
max_pooling2d_1 (MaxPooling2D) (None, 3, 3, 80) Not applicable
dropout (Dropout) (None, 3, 3, 80) Not applicable
flatten (Flatten) (None, 720) Not applicable
dense (Dense) (None, 1) 721
Total parameters Sum of all parameters 106,621
Trainable parameters Parameters whose values are calculated during training 106,621

The goal of the training is to find the values for the 106,621 parameters which
minimize the cost function. The implementation was through Keras API. While
the model was easy to train, the model learning metrics did not improve with
respect to epoch number. It was therefore decided to look into transfer learning.
The primary reason for starting with the simple model was to have a basis for
comparison; this model is otherwise not discussed further.

1. Transfer Learning: Using Community Architectures

Transfer learning starts with existing architectures that were trained on data
that did not include ionograms and then the pretrained model is finetuned
with the ionogram images. This has been shown to be an effective way to
train a model based on a small dataset (Weiss, Khoshgoftaar, & Wang, 2016).
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The original model architectures are well-designed and subsequently trained on
very large datasets, they have features that can be useful in other classification
problems. This is so because the earlier layers of a neural network can act as
feature extractors (Stuchi et al., 2020) and can thus recognize patterns that exist
across many images, for example edges and contrasts. Edges exist in images of
human faces, cars, and ionograms. Thus, the same model can detect this feature
in the many possible scenarios.

The following architectures were tested in this study: VGG16, InceptionV3, and
ResNet50. These community models were slightly modified and finetuned for the
task of classifying SF. The training was carried out using Graphics Processing
Units through the Google Colaboratory Platform and those provided in-house
at Machine Learning and Data Analytics at Nanyang Technological University
Singapore under the Electrical and Electronic Engineering Department.

VGG16

The VGG16 network architecture was introduced in year 2014. The 16 in VGG
stands for 16 weight layers. It was trained on over one million images divided
across 1000 classes. In 2014 it achieved 92.7% top-5 test accuracy on the Ima-
geNet dataset (Jia Deng et al., 2009). This architecture has convolutional layers
that use the rectified linear unit function for introducing nonlinearity. At the
top it has two fully connected layers with each of the two layers having 4096
neurons. Then the output is wired to another fully connected with 1000 neu-
rons (Simonyan & Zisserman, 2015). The 1000 is because VGG19 was being
trained to classify inputs into the 1000 classes which are part of the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC). Finally, this fully con-
nected layer connects to a softmax layer. At the softmax layer, each node or
neuron i applies the following function to its input z:

𝜎(𝑧)𝑖 = 𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒𝑧𝑗 (6)

The result is that only one of the 1000 neurons will have the highest output; in
fact, the sum of all the outputs has to be equal to 1. Since each node represents
one class, then when node 𝑘 has the highest value (that is, 𝜎(𝑧)𝑘 is max) the
interpretation is that the network has predicted the input as belonging to class
k. For a more concrete example, suppose there is fully connected layer with 7
neurons, representing 7 classes, then when softmax function is applied the result
may be:

𝑜𝑢𝑡𝐹𝐶𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑓𝑡𝑚𝑎𝑥 = [0.00, 0.00, 0.63, 0.19, 0.14, 0.025, 0.012] (7)

This identifies the third output as highest. One of the reasons for this softmax
layer mapping is to allow interpretation as probability. It can be said that there
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is a 63 percent chance that the input belongs to class number 3, and only a 1.2
percent chance of the input belonging to class 7. Similarly, if there were only 2
classes (that is, the softmax layer would have 2 neurons) then the output might
be:

𝑜𝑢𝑡𝐹𝐶𝐴𝑓𝑡𝑒𝑟𝑆𝑜𝑓𝑡𝑚𝑎𝑥 = [0.90, 0.10] (8)

This indicates that the sample belongs to class 1 because, in equation (8) 0.90
is bigger than 0.10.

Specifically for the two-class problem, the softmax layer can instead be replaced
by a sigmoid layer with just one neuron, but with similar functionality. With
only two classes—SF and normal—as opposed to the 1000 classes for which
VGG19 was designed, the top layer (softmax) with the 1000 neurons can be
replaced with a sigmoid-based layer. The sigmoid function, specifically the
logistic function, is:

𝜎(𝑧)𝑖 = 𝑒𝑧𝑖
1+𝑒𝑧𝑖 (9)

This function is at the very last layer. When the output is greater than 0.5, the
input is said to belong to class A, which is SF. When the output of the sigmoid
function is less than 0.5 then the sample ionogram is said to belong to the class
of Normal ionograms.

InceptionV3

First presented in year 2015, InceptionV3 is designed to have inception modules.
Each module in the series may consist of applying the following operations to
the input of the module (Szegedy et al., 2015):

1. 1x1 convolution filters

2. 3x3 filter for the medium features spread across few pixels

3. 5x5 filter for detecting slightly more global features. A large
filter size is computationally more expensive. One of the tricks
used is to do the same operation—that is, convolution with a 5
by 5 filter—but using a block that is made up of two layers. The
two are a 3 by 3 pixel convolution layer, followed by another 3 by
3 layer that takes the output from the previous 3 by 3 (directly
without applying an activation function).

4. Maxpooling, an operation that extracts the maximum value
from an input region

This module can then be used as one structural unit. For ease of computation
the modules use dimension reduction so that 3x3 and 5x5 filters are computed
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after applying 1x1 filters (Szegedy et al., 2015); this design allows for a deep
model but with computational efficiency. The same minor architectural modifi-
cations, as for VGG16, were made to InceptionV3: remove top layer, add new
layer with 1024 units, dropout layer with 0.05 ratio and a sigmoid layer. The
training is also done on GPUs.

ResNet50

It had been recognized that deeper networks are better able to do classification.
However, it was also seen that when the network depth crosses some threshold
it is no longer beneficial to make it deeper; in fact, the network’s performance
degrades. ResNet was created to aim for a deep network architecture that does
not sacrifice performance (He, Zhang, Ren, & Sun, 2016). A key feature of the
ResNet50 architecture is that of skipping some layers in a proper way.

Figure 6: A residual module for the ResNet50 architecture. Many such modules
are connected together to form the full model.

In the schematic shown in Figure 6, the input (256-d) is going into the module
that consists of three layers. The first layer has 64 different kernels of size 1 by
1. This layer operates directly on the input. The output from this layer goes
through a nonlinear function rectified linear unit (relu). The output from the
relu operation then is the input to the next layer. The next layer consists of
kernels of size 3 pixels by 3 pixels; as in the first layer, there are also 64 such
kernels. The output is again nonlinearly mapped using relu whose output is the
input to the next layer. This next layer has 256 kernels each of size 1 pixel by
1 pixel. Note that all kernel sizes are implicitly of shape n by m by d where d
is the number of channels—where the term channel as used here does not refer
to the red, blue and green color channels. So, if the input is an image of 224 by
224 by 3 (i.e., 224 pixels wide by 224 pixels high by 3 channels) then a 3 by 3
pixel kernel that operates on this image implies that its kernel size is actually 3
by 3 by 3.
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For the ResNet50 architecture, the input goes through this module made of
three layers. But instead of simply passing the output of the three layers to
the following set of layers, ResNet adds the original, unmodified input to the
output of the three layers (He et al., 2016). This is a distinguishing feature
of ResNet and its variants. Once the output from the three layers is summed
with the original input, the relu function can be applied. The output from
this relu operation is passed to the next set of layers and so on. In this case
the output is passed to another residual block, consisting of three layers with
similar architecture. This led to three residual blocks of the same kind being
concatenated. The output from the three residual blocks are then passed to
another type of residual block and so on. In the end the ResNet50 architecture
has 50 kernel layers, with four types of residual blocks.

In order to train the models the Keras API was also used. The pretrained model
had been trained for 1000 classes. The modification made was to remove the
top layer which is used for 1000-class classification and replace it with a sigmoid
layer. However, before the sigmoid layer, two new layers were added: one fully-
connected layer of 1024 units/neurons and a dropout layer. The dropout layer
has a ratio of 0.05; this means that during the training process this dropout
layer deactivates (that is, sets to 0), at random, 0.05 or 5 percent of the weights
connecting this layer to the previous layer. Table 3 shows the overall changes
made for this model.

Table 3: Changes made to the ResNet50 architecture to customize for the task
of identifying SF.

Parameter Value
Pretrained Model ResNet50
Optimizer tf.keras.optimizers.Adam(

learning_rate=0.001,
beta_1=0.9, beta_2=0.999,
epsilon=1e-07,
amsgrad=False)

Neurons at first added dense layer
Retrained layers from original
Dropout fraction for dropout layer
Input shape by 300
Datasets Training:

Y2008,09,10,11,12,13,14,16,19 (20611)
Validation: 2017, 2015 (5716 samples)
Testing: 2018 (2050 samples)

The parameters in Table 3 are defined for the training phase, for this archi-
tecture and similarly for the other architectures. The value for the Pretrained
Model can be “ResNet50”, “InceptionV3” or “VGG16”. The optimizer is the
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algorithm that is used for actually finding the weights that minimize the loss.
The concept of optimizer algorithm is similar to how the Newton-Raphson al-
gorithm can be used to find zeros/roots of a polynomial, but instead of finding
zeros the optimizer algorithm helps in finding approximate weight values that
minimize the loss or cost function. The cost function quantifies the difference
between desired output and the output predicted by the model at each training
step. The API comes with several options for the optimizing algorithm including
“Adagrad”, “RMSProp”, and “SGD”. One also can choose to tune the optimizing
algorithm itself—for example in the third row of Table 3, the hyperparameters
learning_rate, beta_1, beta_2, epsilon, and amsgrad are specifically for config-
uring this Adam optimizer. It has been shown that the choice of the optimizing
algorithm can affect the final model, but this variable was kept constant in this
work.

4. RESULTS AND SUMMARY
The dataset for training and validation ionograms has 26327 samples of which
15770 have SF and 10557 are normal. To get the validation dataset the ionogram
samples were randomly split: 24 percent for validation and the rest for training.
This resulted in 20010 samples for training and 6317 for validation. All three
transfer learning methods (VGG16, InceptionV3, and ResNet50) are adopted
with the same ionogram data to create three different ML models.

When training and later comparing models, the parameters in Table 3 are kept
the same across models. Several data augment techniques are implemented in
ionograms prior to ingesting them in the neural network. First, the original im-
age size of is rescaled before feeding into these ML methods. The original input
images are 700 pixels wide and 600 pixels high. However, most algorithms for
use in Transfer Learning require smaller input shape. The transfer learning base
models used here are VGG19, InceptionV3, and ResNet50, which respectively
have input tensor shapes of 224 by 224, 299 by 299 and 224 by 224. However,
rather than scaling each ionogram dataset to its own input shape, all ionograms
were scaled to the same shape of 300 pixels by 300 pixels irrespective of the base
model. A sample ionogram that has been scaled down and used as an input to
the neutral network is shown in Figure 7. The key information about the iono-
gram is still being captured despite the rescaling. The advantage in rescaling is
that the number of parameters whose values need to be learned are significantly
reduced, which results in faster training and better learning.
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Figure 7: The full ionogram of 700 pixels wide by 600 pixels wide is rescaled
to 300 pixels by 300 pixels as shown in the blurred ionogram on the left, prior
to sending as input into the network. This blurred version is what the neural
networks “sees”. The image on the right shows a cropped ionogram, to exclude
information that is not expected to be relevant for identifying SF; a collection
of such cropped images is used in one of the experiments.

The other modification to the input that was tested was to crop out the ex-
tra information that is on ionograms that is auto-scaled by a software such as
ARTIST and useful for the human but does not seem necessarily relevant for
the SF detection. A set consisting of the same number of samples as the original
dataset but with the ionograms cropped was created; a sample is shown at the
right of Figure 7. Then a model was trained with these cropped ionograms to
check whether the model that results is better at detecting SF.

The metrics used in this work are defined as follows, where positive refers to an
ionogram with SF:

1. Accuracy of the model with respect to the training and vali-
dation set. Accuracy is a measure of how many samples are
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correctly put into their expected class.

2. False Negatives—This is the number of samples that are incor-
rectly identified as not having SF when they in fact do have
SF.

3. False Positives—This is the number of samples that are incor-
rectly identified as having SF when they do not have SF.

4. True Positives—This is the number of samples that are correctly
identified as having SF.

5. True Negative—This is the number of samples that are correctly
identified as not having SF.

6. Area Under the Curve (AUC), where the curve is a plot of False
Positive Rate (x) vs. True Positive Rate (y). True Positive Rate
= True Positives / (True Positives + False Negatives) while
False Positive Rate = False Positives / (False Positives + True
Negatives) (Brownlee, 2020)

7. Precision—This is a measure of how many of those identified
as SF are indeed SF. Precision = True Positive/(True Positive
+ False Positive). Suppose the model identifies 11 samples as
having SF. Upon inspection it turns out that only 7 of those 11
are actually SF. Then the precision is 7/11 = 0.63

8. Recall—This is a measure of how many of the actual SF’s are
identified. Recall=True Positive/(True Positive + False Nega-
tive) For example, if it is known that there are 10 SF’s and the
algorithm is able to identify 6 of them then the model recall is
6/10 = 0.6.

9. Loss—the loss (also called cost) function for which the training
procedure seeks the minimum. The one used here is the binary
cross entropy. Ideally the loss function should be decreasing as
the training proceeds. This is because in training a model the
goal is to find the set of parameters/weights that minimizes the
value of the cost function.

During the training and validation phases, these nine metrics were tracked and
used as the basis for deciding which is the better model (Brownlee, 2020). Figure
8 demonstrate the Precision throughout the training based on three different
ML models. Values of Precision suggest that the model based on the ResNet50
architecture does the most learning, improving its precision from 0.6 at the
beginning of training (first epoch) to 0.87 at the 120th epoch. An epoch is one
round of training in which all samples will have been seen by the model.
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Figure 8: Precision for the three models, VGG16 (blue), InceptionV3(orange)
and ResNet50(gray), with respect to epoch number.

Figure 9 also shows the AUC metric, which combines precision and recall. The
ResNet50 architecture again shows the greatest amount of learning, from 58
percent at epoch 0 to about 90 percent by the 120th epoch. Across other metrics,
ResNet50 performed well, too. It was thus chosen for further experimentation.

Figure 9: Area Under the Curve (AUC) for the three models, VGG16 (blue),
InceptionV3 (orange) and ResNet50 (gray), with respect to epoch number.

Since the metric values showed that the best model is the one based on the
ResNet50 architecture, two more experiments, namely cropping and removal of
5-minute cadence data, are further implemented to investigate if these changes
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in the input images impact the model performance. The ionograms normally
contain extra information that are irrelevant to the echoes, such as 𝑓𝑜𝐹2 and
𝑓𝑜𝐹1 on the left side of an ionogram; such information is automatically gener-
ated by the autoscaling software (e.g., ARTIST). Since this information is not
useful for the training, cropped ionograms are tested and one example is demon-
strated in Figure 8. To evaluate impact of different time-cadence of ionograms
on the ML models, removing the 5-minute cadence data is also conducted.

Figure 10 shows that the model based on cropped data starts out with a higher
precision (0.75) than the model based on the full size (non-cropped) ionograms,
which starts with a precision of 0.60. The model based on the full ionograms
shows much more significant learning such that at the 120th epoch its precision
is 0.86 while that from the cropped data is around 0.86. Based on this, using
cropped ionograms does not offer much advantage. Results from the case with
images with 15-minute cadence show that the precision starts from 0.74 and
increases to around 0.88 at the 120th epoch. While this is slightly better than
the model based on the full ionograms, it does not seem like a significant enough
difference to justify the preprocessing necessary to isolate 5-min cadence from
15-minute ones. However, from a physics point of view it may be worth further
exploring the cause for the difference.

[CHART]

Figure 10: The precision of the ResNet50-based model using the fullsize dataset
(blue), cropped data (orange), and dataset that excludes 5-minute cadence iono-
grams (gray).

Before these experiments, it is expected that a much more complex model such
as ResNet50 would perform better than a simpler model—though this is not
always guaranteed. This study also demonstrates that VGG16 and InsepctionV3
did not perform well on identifying the SF event. Since all these models had
been established with images that did not contain ionograms it may be that
their great skill at distinguishing features among the images they had seen
comes at some cost; they may lack the ability to generalize. There were no
ionograms in the ImageNet dataset which had been used to train the ResNet50,
VGG16 and InceptionV3 models. Transfer learning works best when there are
similarities between the original dataset and the new smaller dataset—that is,
the smaller the distance of samples from the source images, the more effective
the transfer learning (Azizpour, Razavian, Sullivan, Maki, & Carlsson, 2015).
Additionally, network parameters such as width and depth as well as the choice
of the optimization algorithm seem to affect the efficacy of the transfer learning
(Azizpour et al., 2015). These factors may explain why some of the models used
here did not perform well on the task of SF prediction.

The test set used for this work consists of ionograms from 2018 with 2050 iono-
grams. There are 1342 SF samples and 708 Normal samples. Using the full
ionograms and the ResNet50 architecture, without retraining pretrained layers,
the values for the metrics are listed in Table 4. Out of the 1342 SF samples the
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trained model can correctly identify 1170 samples (true positives). Similarly,
out of 708 Normal samples the algorithm can correctly classify 649 samples
(true negatives). There are only 59 samples which are incorrectly classified as
having Spread F when they do not show SF (false positive).

Table 4: Metric results based on the test set of 2050 samples for the ResNet50-
based model only.

Metric Description Value
True Positives (TP) Correctly identified SF case 1170
False Positives (FP) SF case identified as Normal 59
True Negatives (TN) Normal case identified correctly 649
False Negatives (FN) SF case identified as Normal 172
Accuracy 0.89
Precision TP/(TP+FP) 0.95
Recall TP/(TP+FN) 0.87
Area Under the Curve Area under the precision-recall curve 0.96

Assuming that the metrics are normally (Gaussian) distributed, confidence in-
tervals can be obtained (Hazra, 2017)

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑧 ∗ ( 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦∗(1−𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
𝑛 )

1
2 (10)

Where n is the number of samples and z is the value from the standard normal
distribution corresponding to the desired confidence interval. There are n=2050
samples in the test set.

For a 95% significance level 𝑧 = 1.96

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 1.96 ∗ ( 0.89∗(1−0.89)
2050 )

1
2 = 0.014 (11)

This can be interpreted as saying that at 95% significance level the “true” ac-
curacy of the model is 0.89±0.014 (uncertainty = 0.014), or between 0.88 and
0.90.

To summarize our results, several approaches of ML techniques were carried out
in this study. One approach used SVM while the other is based on CNNs. The
accuracy of the SVM model was between 55% and 77%. The first attempt of
CNNs based on autoencoder the accuracy hovered around 63%. Finally with
transfer learning an existing well-designed architecture was used as the starting
point. The model was then modified by removing the top layer then adding
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a new fully-connected layer, a dropout layer and a sigmoid layer. Performing
these same modifications across ResNet50, InceptionV3, and VGG16 showed
that ResNet50 is the best based on Area Under the Curve, Precision and Recall
metrics.

CONCLUSION AND FUTURE WORK
In this study, a total of 28377 ionograms primarily around equinoxes are labelled.
There were 17112 samples with SF events and 11265 normal samples from 2008-
2019. The filenames and the corresponding label for each ionogram are available
to the community and can be accessed at this link: https://doi.org/10.21979
/N9/BHGVGH.

Two types of ML approaches are adopted to create an automatic algorithm for
identifying the SF event from these ionograms: SVM and CNN. For the CNN
architectures, three methods are further explored: autoencoder, a simple archi-
tecture, and transfer learning. While the autoencoder model required very little
labelling, it turned out to not be as effective, with accuracy less than 63 percent.
Similarly, while the simpler model architecture is much faster to train, it did
not show sufficient learning skill and the accuracy remains around 88 percent
from the first epoch to the 120th. Through experiments from this study, the
transfer learning with multiple community architectures has demonstrated suc-
cess in solving this problem. The model based on the ResNet50 architecture
appears to be the most effective model with the AUC improving from 0.64 to
0.86 in 120 epochs. Our study further investigates the impact of various infor-
mation in these images on the results. Results show that the model trained
with the cropped images do not show much improvements based on these eval-
uation metrics. The model with only 15-minute cadence images also has no
significant impact on the overall performance. Therefore, one can simply use
the full ionograms with the ResNet50 base architecture and with the architec-
tural modifications made in this study (i.e., remove top layer and replace with
a dense layer of 1024 neurons, add a dropout layer with rate of 0.05, and a
sigmoid classification layer) to achieve the same results.

The next steps of this study will include creating a web app that streams real-
time ionograms from JRO in order to automatically label the real-time images
and to establish a catalog of SF event for future use. This ML technique sig-
nificantly reduce the need for manual process in identifying the onset of an
event and is an extremely important step for exploring SF forecasting based on
time-series ionograms in the near future.
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Figures and Captions

Figure 1: Ionogram without SF on the left and ionogram with SF on the right.
The colors encode the following parameters: the direction from which the echo
comes, the Doppler, and the mode of the echo—that is, whether it is an extraor-
dinary mode or ordinary mode.
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Figure 2: Number of ionograms from the SF class and Normal class as function
of year. The set of ionograms of 15-minute cadence excludes ionograms collected
every five minutes, while the 15-min and 5-min cadence set includes both the
ionograms collected every 5 minutes as well as those collected every 15 minutes.
The F10.7 index shows the phase of the solar cycle.
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Figure 3: Monthly distribution of samples in year 2015 as divided into Normal
(purple), SF (green) and Unsure (black). Unsure are not used in creating the
models.

Figure 4: Number of SF events as function of time for same day (94) in the
years 2008 (gray), 2014(orange) and 2018(blue) between 7 pm and 5 am local
time in Jicamarca.
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Figure 5: Simple neural network architecture used for training SF classifier show-
ing the different layers. Conv2d means 2D convolutional layers, max_pooling2
is a maxpooling layer, dropout deactivates some connections between the two
layers, and flatten converts multidimensional input to a vector. The metrics are
used to define the goodness of the model while the loss is the function that the
one tries to optimize.
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Figure 6: A residual module for the ResNet50 architecture. Many such modules
are connected together to form the full model.

Figure 7: The full ionogram of 700 pixels wide by 600 pixels wide is rescaled
to 300 pixels by 300 pixels as shown in the blurred ionogram on the left, prior
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to sending as input into the network. This blurred version is what the neural
networks “sees”. The image on the right shows a cropped ionogram, to exclude
information that is not expected to be relevant for identifying SF; a collection
of such cropped images is used in one of the experiments.

Figure 8: Precision for the three models, VGG16 (blue), InceptionV3(orange)
and ResNet50(gray), with respect to epoch number.

Figure 9: Area Under the Curve (AUC) for the three models, VGG16 (blue),
InceptionV3 (orange) and ResNet50 (gray), with respect to epoch number.
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Figure 10: The precision of the ResNet50-based model using the fullsize dataset
(blue), cropped data (orange), and dataset that excludes 5-minute cadence iono-
grams (gray).

Tables and captions
Table 1: Layers of the autoencoder, showing an architecture where the input
shape is the same as the output shape.

Layer (type) Output Shape Number of Parameters
Input_1 (InputLayer) [(None, 400,300,3) 0
Encoder (Functional) (None, 380) 45601868
Decoder(Functional) (None, 400,300,3) 45723795

Table 2: The different layers of the simple architecture that is the baseline for
comparison with transfer learning models

Layer (type) Output Shape Number of parameters
Con2d (Conv2D) (None, 296,296,10) 760
Conv2d_1(Conv2D) (None, 292,292,20) 5020
max_pooling2d (MaxPooling2D) (None, 36, 36, 20)
conv2d_2 (Conv2D) (None, 32, 32, 40) 20040
conv2d_3 (Conv2D) (None, 28, 28, 80) 80080
max_pooling2d_1 (MaxPooling2D) (None, 3, 3, 80) Not applicable
dropout (Dropout) (None, 3, 3, 80) Not applicable

38



Layer (type) Output Shape Number of parameters
flatten (Flatten) (None, 720) Not applicable
dense (Dense) (None, 1) 721
Total parameters Sum of all parameters 106,621
Trainable parameters Parameters whose values are calculated during training 106,621

Table 3: Changes made to the ResNet50 architecture to customize for the task
of identifying SF.

Parameter Value
Pretrained Model ResNet50
Optimizer tf.keras.optimizers.Adam(

learning_rate=0.001,
beta_1=0.9, beta_2=0.999,
epsilon=1e-07,
amsgrad=False)

Neurons at first added dense layer
Retrained layers from original
Dropout fraction for dropout layer
Input shape by 300
Datasets Training:

Y2008,09,10,11,12,13,14,16,19 (20611)
Validation: 2017, 2015 (5716 samples)
Testing: 2018 (2050 samples)

Table 4: Metric results based on the test set of 2050 samples for the ResNet50-
based model only.

Metric Description Value
True Positives (TP) Correctly identified SF case 1170
False Positives (FP) SF case identified as Normal 59
True Negatives (TN) Normal case identified correctly 649
False Negatives (FN) SF case identified as Normal 172
Accuracy 0.89
Precision TP/(TP+FP) 0.95
Recall TP/(TP+FN) 0.87
Area Under the Curve Area under the precision-recall curve 0.96
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