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Abstract

Abiotic and biotic releases of nitrous acid (HONO) from soils contribute substantially to the missing source of tropospheric

HONO and hydroxyl radicals (OH). However, global and regional patterns of soil HONO emissions are rarely quantified, and

the contributions of such emissions to atmospheric oxidization capacity are unclear. Here, we present that the best estimate

of global soil HONO emissions in 2017 is 9.67 with a range of 7.36-11.99 Tg N yr-1, where cropland soils accounted for ˜

79%. The analyses also indicate that regional soil HONO emissions enhanced ground OH concentrations by 10-60% and ozone

concentrations by 0.5-1.5 ppb at daytime in the ambient area of Shanghai, China. The impact of soil HONO emissions on OH

budgets were more important in rural than urban areas. These findings suggest that the global soil HONO emissions, especially

from cropland, could quicken photochemical reactions and aggravate air pollution in rural areas.
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Key Points: 35 

 The best estimate of global soil HONO emissions in 2017 is 9.67 with a range of 7.36-36 

11.99 Tg N yr⁻1, where cropland soils accounted for ~ 79%. 37 

 Soil HONO emissions enhanced ground OH concentrations by 10-60% and ozone 38 

concentrations by 0.5-1.5 ppb at daytime. 39 

 The impact of soil HONO emissions on OH budgets were more important in rural than 40 

urban areas. 41 
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Abstract 43 

Abiotic and biotic releases of nitrous acid (HONO) from soils contribute substantially to the 44 

missing source of tropospheric HONO and hydroxyl radicals (OH). However, global and 45 

regional patterns of soil HONO emissions are rarely quantified, and the contributions of such 46 

emissions to atmospheric oxidization capacity are unclear. Here, we present that the best 47 

estimate of global soil HONO emissions in 2017 is 9.67 with a range of 7.36-11.99 Tg N yr⁻1, 48 

where cropland soils accounted for ~ 79%. The analyses also indicate that regional soil HONO 49 

emissions enhanced ground OH concentrations by 10-60% and ozone concentrations by 0.5-1.5 50 

ppb at daytime in the ambient area of Shanghai, China. The impact of soil HONO emissions on 51 

OH budgets were more important in rural than urban areas. These findings suggest that the 52 

global soil HONO emissions, especially from cropland, could quicken photochemical reactions 53 

and aggravate air pollution in rural areas. 54 

 55 

1 Introduction 56 

Reactive nitrogen (Nr) gases released from the land surface strongly affect the Earth’s 57 

atmosphere through atmospheric cycling of hydroxyl radicals (OH) and ozone (O3) (Crutzen, 58 

1970; Elshorbany et al., 2012; Liang et al., 1998; Pinder et al., 2012). While soil emissions of 59 

nitrous acid (HONO) have been recently reported (Oswald et al., 2013; Su et al., 2011; Wu et al., 60 

2019), the associated global patterns and impacts on air quality are poorly defined. Lacking data 61 

on global and regional soil HONO emissions and accurate assessments of atmospheric oxidation 62 

capacity limit our understanding of atmospheric HONO sources and sinks, OH recycling, the 63 

formation of secondary aerosols and O3, and biogeochemical N cycling. 64 

Soil HONO emissions were studied to explain the unknown daytime atmospheric HONO 65 

sources in many regions, such as Meusel et al. (2018) and Sörgel et al. (2015). The proposed 66 

underlying mechanisms include chemical equilibrium with soil nitrite (NO2
-) (Su et al., 2011), 67 

microbiological nitrification or denitrification pathways (Oswald et al., 2013; Wu et al., 2019), 68 

soil mineral surface acidification caused by amphoteric metal oxides or nitrate accumulation 69 

(Donaldson et al., 2014; Kim & Or, 2019), and acid displacement (VandenBoer et al., 2015). 70 

Moreover, the emission rates of soil HONO are comparable to those of nitric oxide (NO) 71 

measured in laboratory (Oswald et al., 2013; Weber et al., 2015). Soil NO emissions have been 72 

widely studied globally and regionally by both bottom-up and top-down models (Bertram et al., 73 

2005; Ganzeveld et al., 2002; Yienger & Levy II, 1995). The IPCC (Ciais et al., 2013) and other 74 

studies (Hudman et al., 2012; Miyazaki et al., 2017; Steinkamp & Lawrence, 2011; Vinken et al., 75 

2014; Yan et al., 2005; Yienger & Levy II, 1995) reported a broad range of global soil nitrogen 76 

oxide [NOx = NO + nitrogen dioxide (NO2)] emissions of 4.7-16.8 Tg yr-1 (in terms of nitrogen, 77 

hereinafter referred to as Tg N yr-1). The large uncertainties might be caused by specific 78 

parameters, including emissions factors, land cover maps, the impact of precipitation on NOx 79 

emissions assumed in semi-empirical models, and the uncertain relationship between observed 80 

NO2 concentrations and soil NOx emissions using the Ozone Monitoring Instrument (OMI) 81 

model (Rasool et al., 2019; Steinkamp & Lawrence, 2011). 82 

However, the estimation of soil HONO emissions is rare either at the global or regional 83 

scale due to a lack of data and appropriate method. Wu et al. (2019) estimated that global soil 84 

HONO emissions at high moisture ranged from 0.03-0.20 Tg N yr-1, while the estimated global 85 
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HONO emissions from biological soil crusts in drylands were approximately 0.6 ± 0.1 Tg N yr-1 86 

(Weber et al., 2015). A process-oriented representation of soil N emissions in the Community 87 

Multiscale Air Quality model (CMAQ) was developed to simulate soil HONO emissions based 88 

on the proportions of HONO relative to total NOx in the United States (Rasool et al., 2019). The 89 

monthly average emission rates of soil NO and HONO were highest in fertilized agricultural 90 

regions with large spatial and temporal heterogeneity (Rasool et al., 2019). An estimation of 91 

global natural and cropland soil HONO emissions has not been reported. 92 

Atmospheric HONO sources are not well understood, and the default HONO formation 93 

mechanism (NO+OH→HONO) always severely underestimates HONO observations and 94 

atmospheric oxidation capacity as a result. Several potential HONO sources (traffic emissions, 95 

NO2 heterogeneous reactions, etc.) have been coupled into regional chemical transport models 96 

(e.g., the Weather Research and Forecasting model with Chemistry (WRF-Chem) and CMAQ). 97 

The results showed that potential HONO sources could significantly enhance atmospheric 98 

oxidation capacity and lead to increases in the concentrations of fine particulate matter (PM2.5), 99 

O3, and secondary organic aerosols (SOA) (Li et al., 2010; Zhang et al., 2019; Zhang et al., 100 

2016). Although soil HONO emissions have been included in the chemical transport model in 101 

recent years (Wang et al., 2021; Zhang et al., 2019; Zhang et al., 2016), large uncertainties in soil 102 

HONO emissions remain. 103 

Here, we compiled a dataset of global soil samples related to HONO emissions and 104 

estimated global soil HONO emissions with a resolution of 0.1° × 0.1° using an empirical 105 

“wetting-drying” model. Soil NO and NOx emissions were also calculated to verify the method 106 

accuracy by comparison with reported values. A statistical model was also used to calculate 107 

global soil HONO emissions. The simulations of global and regional chemical transport models 108 

are similar, but it is very difficult to evaluate the global model performance in terms of simulated 109 

HONO values due to extremely limited global HONO observations in the same period. Thus, we 110 

used the regional WRF-Chem model to quantify the impacts of local soil HONO emissions on 111 

the concentrations of atmospheric HONO, OH and O3 in Shanghai, China, and its surrounding 112 

areas. The model may perform well elsewhere too for future related studies. Comprehensive 113 

measurements of soil HONO flux were conducted in this study, and abundant 114 

environmental/meteorological observations were collected for model validation. 115 

2 Materials and Methods 116 

2.1 Soil samples 117 

We compiled a dataset of global soil sample data published in different studies related to 118 

soil HONO emissions (S11-S21, S33-S44, S55-S64, and S67-S78; see Figure S1 and Table S1). 119 

Parts of soil physicochemical properties were collected from cited references, while other soil 120 

properties were derived from different sources. Soil inorganic nitrogen (NH4
+, NO2

-, and NO3
-) 121 

contents were obtained from Xu-Ri & Prentice (2008), pH, TC, TOC, and TN values were 122 

downloaded from the Global Soil Dataset for use in Earth System Models (GSDE) (Shangguan 123 

et al., 2014), and soil texture data (clay, silt, and sand) were obtained from the Harmonized 124 

World Soil Database (HWSD) v 1.2. We used data from these soil samples together with soil 125 
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samples from Shanghai, China (see details in the following information), to estimate global and 126 

regional soil emissions of HONO. 127 

We took 35 soil samples (S1-S10, S22-S32, S45-S54, S65, S66, S77, and S78) from 128 

different land cover types of Shanghai during July 2018. The sampling sites are located in 129 

eastern China (120°52'E-122°12'E, 30°40'N-31°53'N) with a typical subtropical humid monsoon 130 

climate. The mean annual temperature, precipitation and sunshine hours were 17.7 ℃, 1388.8 131 

mm and 1809.2 h, respectively, in 2017. All of the samples were taken from the upper layer of 132 

the soil (0-5 cm). Each sample was separated into two parts: one part was stored at -20 ℃ and 133 

used to measure soil water content, particle size distribution and inorganic nitrogen; the other 134 

part was air-dried at room temperature (~ 25 ℃), sieved to 2 mm for measuring soil pH and soil 135 

HONO, NO, and NOx flux, and sieved to 0.15 mm for measuring soil TN and TC. Figure S1 and 136 

Table S1 provide more detailed information about the soils. 137 

Soil pH was measured using a glass electrode (FE28, Mettler-Toledo) after shaking a soil 138 

and water suspension at a ratio of 1:2.5 (weight/volume, w/v) for 30 min. Soil water content was 139 

calculated through the drying method (105 °C, 24 h). Inorganic nitrogen was extracted with 2 140 

mol L-1 potassium chloride (KCl, 1:2.5 w/v) and then determined by a continuous flow analyser 141 

(Skalar San++ System, Skalar). Soil TC, TOC and TN were measured by a TOC-L analyser 142 

(TOC-L, Shimadzu). Soil particle size was analysed using a laser diffraction particle size 143 

analyser (LA-960A, HORIBA). 144 

2.2 HONO, NO, and NOx flux measurements 145 

Soil Nr gas flux was measured with a dynamic chamber system, which has been 146 

described in detail elsewhere (Wu et al., 2019). Previous studies showed that this technique can 147 

well simulate reactive gas flux from field measurements (Plake et al., 2015; Rummel et al., 2002; 148 

van Dijk et al., 2002). Briefly, 40 grams of air-dried soil was put into a petri dish (inner diameter 149 

= 94 mm) and wetted with purified water to the water holding capacity (WHC, %). Then, the 150 

petri dish was placed into a Teflon chamber (volume ~ 10 L) with a fan coated with Teflon to 151 

mix the gases inside the chamber. Purified air without water and reactive gases (such as HONO, 152 

NOx, O3, and CxHy) were flushed into the chamber with a flow rate of 6 L min-1. Thus, the 153 

wetted soil in the chamber was dried during measurements, which was defined as a full wetting-154 

drying cycle when no water vapor was detected in the chamber. The mixing ratio of HONO in 155 

the headspace was determined by high-performance liquid chromatography (HPLC, Agilent 156 

1200, Agilent Technologies) based on the derivatization of nitrite with sulfanilamide (SA) and 157 

N-(1-naphthyl)-ethylenediamine dihydrochloride (NED) under acidic conditions (Huang et al., 158 

2002; Wu et al., 2020). The time resolution was ~ 6 min, and the lower detection limit was ~ 4 159 

ppt for HONO. The mixing ratios of NO and NO2, CO2, and H2O in the headspace were 160 

determined by a NOx chemiluminescence analyzer (Model 42iTL, Thermo Scientific), an ozone 161 

analyser (Model 49i, Thermo Scientific), and a LI-COR (Model 840A, LI-COR), respectively. 162 

Due to the overestimation by the chemiluminescence analyzer, NO2 data were corrected by 163 

multiplying by 0.6, which was from the relationship of measured NO2 concentrations between 164 

the chemiluminescence analyzer and an improved incoherent broadband cavity-enhanced 165 

absorption spectroscopy (IBBCEAS) system (Tang et al., 2020). All of the experiments were 166 
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conducted at a constant temperature of 25 ℃ in the dark. The fluxes of HONO, NO, and NOx 167 

were calculated using equation 1: 168 

𝐹 =
𝑄∗𝑀𝑁

𝐴∗𝑉𝑚
∗ 𝑋                                                        (1) 169 

where F is the flux of reactive nitrogen gas (ng N m-2 s-1). Q is the chamber air flow rate 170 

(m3 s-1). MN is the molar mass of nitrogen (g mol−1). A is the area of the soil surface (m2). Vm is 171 

the molar volume under standard reference atmospheric conditions (m3 mol-1). X is the headspace 172 

concentration of Nr gas (ppb). 173 

2.3 Integrated soil Nr gas emissions per wetting-drying cycle  174 

Integrated emissions of HONO, NO, and NOx from Shanghai soils during a full wetting-175 

drying cycle were calculated according to equation 2: 176 

𝐸𝑁,𝑖𝑛𝑡 =  ∑ 𝐹𝑖 ∗𝑖=𝑚𝑎𝑥
𝑖=0 (𝑡𝑖 − 𝑡𝑖−1) ∗ 10−6                                  (2) 177 

where EN,int is the integrated emission of Nr gas (mg N m-2). ti is the measurement time 178 

for i. Fi is the flux of Nr gas at ti (ng N m-2 s-1). Supplementary Text S1 and Figure S2 show more 179 

information about the results. 180 

We also collected data on integrated soil HONO, NO, and NOx emissions from various 181 

ecosystems (see Supplementary Text S1, Table S1 and Figure S2). Then, we calculated the 182 

integrated emissions of HONO, NO, and NOx from different land cover types per wetting-drying 183 

cycle (EN,int,LC, mg N m-2; average ± standard error) (for specific values, see Supplementary Text 184 

S1). The land cover types (LC), including cropland (CR), forest (FR), grassland (GL), shrubland 185 

(SL), wetland (WL), and bare land (BL), were classified according to Gong et al. (2019). Natural 186 

vegetation (NV) was defined as all of the land cover types except cropland. We adjusted the 187 

spatial resolution of the land cover map to 0.1° × 0.1° to be consistent with the precipitation data. 188 

2.4 Upscaling soil emissions of Nr gases to global scale  189 

We estimated global soil HONO, NO, and NOx emissions based on the empirical 190 

“wetting-drying method” as described by Weber et al. (2015), which showed consistent results 191 

with those estimated by a process-based modelling approach (Porada et al., 2019). 192 

First, the Nr emissions per grid cell containing different land cover types induced by 193 

precipitation and temperature (ELC,cell, kg N ha-1 yr-1) could be obtained according to equation 3: 194 

𝐸LC,cell = 𝐸N,int,LC ∗ 𝑃cell ∗ 𝑇cal ∗ 10−2                                    (3) 195 

where Pcell represents the number of precipitation events for each grid cell during one 196 

year; one precipitation event was defined by a daily rainfall at the central point > 0.1 mm. The 197 

one-day multi-satellite precipitation data were obtained from NASA and had a spatial resolution 198 

of 0.1° × 0.1° (Huffman et al., 2019). Tcal represents the calibration factor of temperature 199 

(Hudman et al., 2012), which can be calculated by the following equation 4: 200 

𝑇cal = 𝑒0.103∗𝑇/(𝑄10 ∗ 2.5)                                                       (4) 201 

where T is monthly averaged soil surface (0-7 cm) temperature (℃) from the datasets of 202 

ERA5-Land (Muñoz Sabater, 2019), Q10 is temperature coefficient (Winkler et al., 1996) and the 203 

value is calculated and averaged based on soil flux of HONO, NO, and NOx at different 204 
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temperature from the data of Wu et al. (2019) and Oswald et al. (2013). 2.5 is the calibrated 205 

constant of soil temperature.   206 

Then, the fertilizer-induced direct emissions from cropland per grid cell (Efer,cell, kg N ha-1 207 

yr-1) were added using the emission factor method according to equation 5: 208 

𝐸fer,cell = 𝐹cell ∗  𝐸𝐹 ∗ 10−2                                                  (5) 209 

where Fcell is the amount of fertilizer input in different grid cells (kg N ha-1 yr-1) and was 210 

obtained from the National Bureau of Statistics of China (2018) and the Food and Agriculture 211 

Organization of the United Nations (FAO, 2017). EF is the emission factor (%) induced by 212 

fertilization. The value of the EFs were described in details in Text S2. 213 

Soil HONO, NO, and NOx emissions from different land cover types caused by 214 

precipitation and fertilization (ELC,Nr and Efer,Nr, Tg N yr-1) were calculated according to 215 

equations 6 and 7: 216 

𝐸LC,Nr = ∑ 𝐸LC,cell
𝑛
𝑖=1 ∗  𝐴 ∗ 10−9                                          (6) 217 

𝐸fer,Nr = ∑ 𝐸fer,cell
𝑚
𝑗=1 ∗  𝐴 ∗ 10−9                                         (7) 218 

where i is the number of grid cells of different land cover types and j is the number of 219 

grid cells of cropland. A is a constant representing the area of each grid cell (~ 12,321 hectares). 220 

Finally, we calculated the global or regional soil HONO, NO, and NOx emissions (EGR, Nr, 221 

Tg N yr-1) above plant canopy using equation 8: 222 

𝐸GR,Nr = (𝐸CR,Nr + 𝐸FR,Nr + 𝐸GL,Nr + 𝐸SL,Nr + 𝐸WL,Nr + 𝐸BL,Nr + 𝐸fer,Nr) ∗ 𝐶𝑅𝐹  (8) 223 

where EGR,Nr represents the global soil Nr emissions Eglobal,Nr or different regional soil Nr 224 

emissions Eregional,Nr (see Table 1). CRF represents the canopy reduction factor, which can be 225 

calculated using equation 9: 226 

𝐶𝑅𝐹 = (
𝑒−(𝑘𝑠∗𝑆𝐴𝐼)+𝑒−(𝑘𝑐∗𝐿𝐴𝐼)

2
)                                                    (9) 227 

where ks and kc are absorptivity constants of plant leaves and set as 8.75 and 0.24 m2 m-2 228 

(Yienger & Levy II, 1995). LAI represents leaf area index, which is obtained from the database 229 

of NOAA Global Inventory Monitoring and Modeling System (GIMMS) (Zhu et al., 2013). SAI 230 

represents stomatal area index, which is calculated based on the value of LAI/SAI under different 231 

land cove types (Yienger & Levy II, 1995). The ranges of global and regional soil HONO, NO, 232 

and NOx emissions were calculated based on the minimum and maximum values of EN,int,LC (see 233 

Supplementary Text S1). 234 

2.5 Impacts of soil HONO emissions on air quality  235 

The soil HONO emissions of the 35 soil samples from Shanghai and the improved WRF-236 

Chem model 3.7.1 were used to evaluate the impact of soil HONO emissions on atmospheric 237 

HONO, OH and O3 concentrations. Two domains were adopted in this study: domain 1 covered 238 

eastern China and contained 71×71 grid cells with a horizontal resolution of 27 km, and domain 239 

2 covered Shanghai and its surrounding regions and contained 45×45 grid cells with a horizontal 240 

resolution of 9 km. Shanghai is located in the center of domain 2; the blue dot is the HONO 241 

observation site, the 8 black dots (urban) and 1 red dot (rural) are the O3 and NO2 observation 242 

sites, and the 26 purple dots are meteorological sites. Detailed locations of the 36 sites are given 243 
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in Table S2. The physical and chemical options in the WRF-Chem model used in this study are 244 

given in Table S3. 245 

A previous study showed a strong positive correlation (r = 0.93) between field soil 246 

HONO flux and solar radiation and found that the fluxes were quite small at nighttime and 247 

strongest at noontime (Xue et al., 2019). Thus, we revised the soil HONO flux measured by the 248 

dynamic chamber system based on this relationship (see equation 10) and inserted it into our 249 

model. 250 

𝐹(RHONO,LC) =
𝑆𝑅

𝐼𝐴
∗ 𝐸N,int ∗ 106 ∗

1

3600
                                    (10) 251 

where F(RHONO,LC) represents the revised soil HONO flux (ng N m-2 s-1) for a certain land 252 

cover type (including cropland, forest, grassland, and urban green land), SR denotes the direct 253 

solar radiation intensity (W m-2), IA represents the integrated energy per area during daytime (W 254 

h m-2), and EN,int is the integrated soil HONO emissions (mg N m-2) per wetting-drying process. 255 

Equation 10 was established under three assumptions: (1) the integrated soil HONO 256 

emissions during the wetting-drying period were the optimum amount; (2) a typical soil wetting-257 

drying period lasted for one day after rainfall; and (3) the optimum amount of soil HONO 258 

emissions was only reached on sunny days with the strongest solar radiation (noontime radiation 259 

intensity of ~ 900 W m-2, integrated energy of ~ 6000 W h m-2, and daytime radiant energy of ~ 260 

2.16×107 J m-2). For cloudy days with weaker solar radiation, the emissions were reduced 261 

according to the radiant energy ratio; i.e., a daytime radiant energy of 1.08×107 J m-2 262 

corresponded to 50% of the maximum amount for a cloudy day with a wetting-drying process. 263 

In total, 10 cases were conducted in this study, i.e., base, soil-A, soil-B, soil-C, 5S-A, 5S-264 

B, 5S-C, base-low, soil-low, and 5S-low cases. The base case only considered the gas-phase 265 

production of HONO (NO+OH→HONO). The soil-A case added averaged soil HONO 266 

emissions. The 5S-A case added 5 potential HONO sources (5S), including traffic HONO 267 

emissions, biomass burning emissions, NO2 heterogeneous reactions on aerosol and ground 268 

surfaces, and average soil HONO emissions. The other 7 cases were designed to evaluate the 269 

uncertainties of soil HONO emissions and the effects of anthropogenic NOx emissions on 270 

atmospheric oxidation capacity and O3 concentrations. A detailed description and 271 

parameterizations can be found in our previous work (Zhang et al., 2019) and Tables S4 and S5. 272 

Due to the lack of atmospheric HONO observations during the period of soil sampling in 273 

Shanghai, another set of field HONO observations in Shanghai reported by Bernard et al. (2016) 274 

was collected to evaluate the model performance in terms of HONO simulation. The HONO 275 

observations were collected from October 16-24, 2009. Thus, we conducted the base and 5S-A 276 

cases focusing on general HONO simulations in the period of October 16-24, 2009, and all 10 277 

cases focused on soil HONO emissions in the period of March 2016. Our results showed that the 278 

five potential HONO sources could significantly improve HONO simulations and reasonably 279 

reproduce observations (Figure S3). The simulated and observed meteorological factors and 280 

NO2/O3 concentrations were also comparable (see more details in Supplementary Text S3, 281 

Figures S4 and S5, and Table S6). 282 

Two anthropogenic emission inventories were adopted in this study. The MIX (2010) 283 

inventory from Li et al. (2017) was used for the simulations in 2009. The MEIC inventory from 284 

Li et al. (2017) and updated to 2016 was used for the simulations in 2016. The horizontal 285 
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resolutions of the two inventories were 0.5° and 0.25°, respectively. Detailed information on the 286 

inventories can be found in our previous work (Zhang et al., 2019). 287 

3 Results and Discussions 288 

3.1 Global and regional patterns of soil HONO emissions using an empirical “wetting-289 

drying” model 290 

The best estimate of global soil emissions of HONO above plant canopy in 2017 was 291 

9.67 (minimum-maximum estimates: 7.36-11.99) Tg N yr-1, consisting of 7.65 (6.30-9.01) and 292 

2.02 (1.06-2.97) Tg N yr-1 from cropland and natural vegetation, respectively (Table 1). Asia was 293 

the largest contributor (average estimate: 4.70 Tg N yr-1) among the continents, accounting for ~ 294 

49% of global soil HONO emissions, followed by Africa (2.02 Tg N yr-1), South America (1.32 295 

Tg N yr-1), North America (0.83 Tg N yr-1), Europe (0.52 Tg N yr-1), and Oceania (0.23 Tg N yr-
296 

1) (Table 1). Figure 1a shows the global spatial distribution of soil HONO emissions above 297 

canopy. The global average soil emissions of HONO were 0.64 (0.49-0.80) kg N ha-1 yr-1. The 298 

hotspot areas of soil emissions of HONO were mainly from croplands, including in the South and 299 

East Asia, the middle of North and South America and Africa, and Europe. 300 

Table 1. Global and regional soil emissions of HONO, NO, and NOx (EHONO, ENO, and ENOx) 301 

above plant canopy. 302 

Regions Sources 
Above canopy emissions (Tg N yr-1) 

EHONO ENO ENOx 

Global Cropland 7.65 (6.30-9.01)a 9.42 (7.68-12.18) 12.03 (10.42-13.64) 
 Natural vegetation 2.02 (1.06-2.97) 4.35 (2.32-6.39) 7.11 (2.86-11.36) 
 Total 9.67 (7.36-11.99) 13.78 (9.99-18.57) 19.14 (13.28-25.00) 

Africa Cropland 1.56 (1.28-1.83) 1.78 (1.47-2.09) 2.11 (1.79-2.44) 
 Natural vegetation 0.47 (0.27-0.67) 1.37 (0.88-1.86) 2.10 (1.07-3.13) 
 Total 2.02 (1.55-2.50) 3.15 (2.36-3.95) 4.22 (2.86-5.57) 

North America Cropland 0.60 (0.49-0.72) 0.78 (0.66-0.91) 1.01 (0.87-1.14) 
 Natural vegetation 0.23 (0.12-0.34) 0.43 (0.21-0.65) 0.71 (0.28-1.14) 
 Total 0.83 (0.61-1.06) 1.21 (0.87-1.55) 1.71 (1.15-2.28) 

South America Cropland 0.70 (0.57-0.83) 0.87 (0.73-1.02) 1.07 (0.92-1.23) 
 Natural vegetation 0.62 (0.31-0.94) 1.13 (0.55-1.70) 1.82 (0.67-2.96) 
 Total 1.32 (0.88-1.77) 2.00 (1.28-2.72) 2.89 (1.59-4.19) 

Asia Cropland 4.24 (3.50-4.98) 5.32 (4.26-7.39) 6.99 (6.11-7.87) 
 Natural vegetation 0.46 (0.23-0.68) 0.83 (0.33-1.33) 1.49 (0.41-2.58) 
 Total 4.70 (3.73-5.66) 6.15 (4.59-8.72) 8.48 (6.52-10.45) 

Europe Cropland 0.44 (0.36-0.52) 0.56 (0.47-0.65) 0.72 (0.62-0.81) 
 Natural vegetation 0.09 (0.04-0.13) 0.15 (0.07-0.23) 0.24 (0.09-0.40) 
 Total 0.52 (0.40-0.65) 0.71 (0.54-0.87) 0.96 (0.71-1.21) 

Oceania Cropland 0.08 (0.07-0.10) 0.10 (0.09-0.12) 0.13 (0.11-0.15) 

 Natural vegetation 0.15 (0.09-0.21) 0.45 (0.26-0.63)  0.74 (0.34-1.15） 

 Total 0.23 (0.16-0.31) 0.55 (0.35-0.75) 0.87 (0.45-1.30) 

China Cropland 0.52 (0.44-0.61) 0.64 (0.55-0.74) 0.88 (0.78-0.98) 
 Natural vegetation 0.06 (0.03-0.09) 0.09 (0.04-0.15) 0.16 (0.04-0.28) 



manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

 Total 0.58 (0.46-0.70) 0.74 (0.59-0.89) 1.04 (0.82-1.26) 

East China Cropland 0.44 (0.37-0.51) 0.54 (0.46-0.63) 0.75 (0.66-0.83) 
 Natural vegetation 0.04 (0.02-0.07) 0.07 (0.02-0.11) 0.11 (0.03-0.20) 
 Total 0.49 (0.39-0.58) 0.61 (0.49-0.73) 0.86 (0.68-1.03) 

aValues are averages with their ranges. 303 

 304 

Figure 1. Global spatial distribution of soil emissions of reactive nitrogen gases (HONO, NO, 305 

and NOx) above canopy. a, HONO. b, NO. c, NOx. The emissions induced by precipitation and 306 

fertilization were estimated by an empirical “wetting-drying” method. The figure was created by 307 

Kriging interpolation. 308 

 309 

Previous estimations based on the bottom-up (“wetting-drying”) approach used in this 310 

study showed global emissions of HONO and NO from biological soil crusts of 0.6 and 1.1 Tg N 311 

yr-1 (Weber et al., 2015), which was consistent with the estimations by a process-based model 312 

(0.69 and 1.04 Tg N yr-1) (Porada et al., 2019). We also compared our data with the reported 313 
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values in previous studies. In general, the estimated soil HONO flux was in the range of reported 314 

surface flux measured either in field or laboratory, and also might explain the unknown daytime 315 

HONO source (Table S7). Rasool et al. (2019) showed that soil NO+HONO emissions from the 316 

eastern United States were in the range of 0–30 ng N m-2 s-1, while our calculation was 0–53 ng 317 

N m-2 s-1 (Figure 1). Ren et al. (2011) reported an average HONO flux of -0.056 ± 3.36 ng N m-2 318 

s-1 above forest canopy by using the relaxed eddy accumulation method, while our calculation 319 

was 0.095 ng N m-2 s-1. Laufs et al. (2017) reported that daytime HONO flux above an 320 

agricultural crop field was in the range of 0.1 to 2.3 ng N m-2 s-1, while our estimated soil HONO 321 

flux was approximately 2.63 ng N m-2 s-1 in the same location. Ramsay et al. (2018) reported the 322 

HONO flux above an agricultural grassland was in the range of -2.46 to 4.92 ng N m-2 s-1, with 323 

the maximum achieved after fertilization, while our estimation was 0.92 ng N m-2 s-1. The 324 

maximum soil HONO flux can even be more than 1000 ng N m-2 s-1 after fertilization in 325 

agricultural field (Tang et al., 2019; Xue et al., 2019). The average agricultural soil HONO flux 326 

was in the range of -0.86 to 20.25 ng N m-2 s-1 measured by field dynamic chambers (Tang et al., 327 

2019), while our estimated value was approximately 8.53 ng N m-2 yr-1 in the same location. We 328 

also compared the soil emissions of NO and NOx with the reported values, and the results 329 

showed good agreement (see more details in Supplementary Text S4). 330 

 331 

3.2 Global soil emissions of HONO using a statistical model related to edaphic factors  332 

Soil HONO emissions are controlled by (de)nitrification and other nitrogen cycling 333 

processes and are thus affected by soil edaphic factors (Donaldson et al., 2014; Kim & Or, 2019; 334 

Maljanen et al., 2013; Oswald et al., 2013; Scharko et al., 2015; Su et al., 2011; Wu et al., 2019). 335 

Here, we found that the maximum soil HONO flux (FHONO,max) during a wetting-drying cycle 336 

was significantly correlated with soil pH, the ratio of total carbon (TC) to total nitrogen (TN), the 337 

ratio of nitrite nitrogen (NO2
--N) to ammonium nitrogen (NH4

+-N), NO2
--N, sand, and silt 338 

content at a global scale (Tables S1 and S8). For HONO emissions from local (Shanghai) soils 339 

measured in this study, the controlling factors were more related to soil nitrate nitrogen (NO3
--340 

N), NO2
--N, the ratio of total organic carbon (TOC) to NO3

--N, and NO3
--N/NH4

+-N (Tables S1 341 

and S8). Although Homyak et al. (2015) found unbuffered KCl extractions underestimated NO2
--342 

N concentration in acidic soil, most of the soil samples in our measurements were alkaline or 343 

neutral, and thus it should not affect our results. Furthermore, soil NO3
--N rather than NO2

--N 344 

content was used in the statistical model, indicating that our conclusions would not be affected.    345 

Thus, we established a statistical model to simulate soil HONO emissions (FHONO,model) 346 

using the above soil edaphic factors and water content (SWC), expressed as equations 11 and 12 347 

(see more details in Supplementary Text S5 and Figure S6). This model could accurately predict 348 

soil HONO emissions with changes in SWC (Figure S7) and might potentially be applied in the 349 

prediction of global seasonal changes in soil HONO emissions. The estimated global soil HONO 350 

emissions based on this statistical model were 13.37 (9.29-17.12) Tg N yr-1, with 5.79 (3.84-351 

7.74) Tg N yr-1 from cropland (Table 2). This method had much higher emissions from bare land 352 

5.23 (4.17-5.98) Tg N yr-1 than did the “wetting-drying” model 0.26 (0.17-0.35) Tg N yr-1. The 353 

reason could be due to higher HONO emissions at lower soil moisture for bare land (global 354 

average approximately 15% WHC) than other land cover soils (global average approximately 30-355 

50% WHC) (Figures S6 and S7). The statistical method also had higher emissions from 356 

grassland and wetland than did the “wetting-drying” model, while it had lower emissions from 357 

cropland and forest. Nevertheless, the estimated global soil HONO emissions were close to each 358 
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other, 8.14 and 9.41 Tg N yr-1 for the statistical and “wetting-drying” method, respectively, if 359 

bare land was not included. 360 

𝑭𝑯𝑶𝑵𝑶,𝒎𝒐𝒅𝒆𝒍 = (𝟎. 𝟎𝟐 + 𝟎. 𝟕𝟕 ∗ 𝟎. 𝟗𝟗(𝒇(𝑺𝑾𝑪)−𝒇(𝒔𝒘𝒄,𝒎𝒂𝒙))
𝟐

) ∗ 𝑭𝑳𝑪,𝑯𝑶𝑵𝑶,𝒎𝒂𝒙         (11) 361 

𝒇(𝑺𝑾𝑪, 𝒎𝒂𝒙) = −𝟓. 𝟗𝟕 ∗ 𝒙𝟏 + 𝟐. 𝟗𝟗 ∗ 𝒙𝟐 − 𝟎. 𝟎𝟐 ∗ 𝒙𝟑 + 𝟓𝟑. 𝟕𝟔                 (12) 362 

where f(SWC) (%) represents the SWC corresponding to the normalized soil HONO flux 363 

(the ratio of soil HONO flux to FHONO,max); f(SWC,max) (%) represents the simulated SWC 364 

corresponding to FHONO,max; FLC,HONO,max (ng N m-2 s-1) represents the average FHONO,max from 365 

different land cover types; and x1, x2, and x3 represent soil pH, TOC (%), and NO3
--N (mg kg-1) 366 

content, respectively. 367 

Table 2. Comparisons of global soil HONO emissions above canopy from cropland, forest, 368 

grassland, shrubland, wetland, and bare land calculated by the empirical “wetting-drying” 369 

method and statistical model. 370 

 371 

Land cover 
HONO (Tg N yr-1) 

Empirical “wetting-drying” method Statistical model 

Bare land 0.26 (0.17-0.35)a 5.23 (4.17-5.98) 

Cropland 7.65 (6.30-9.01) 5.79 (3.84-7.74) 

Forest 1.12 (0.48-1.76) 0.76 (0.43-1.08) 

Grassland 0.60 (0.39-0.81) 1.29 (0.70-1.87) 

Shrubland 0.01 b 0.11b 

Wetland 0.02 (0.01-0.04) 0.20 (0.05-0.34) 

Total 9.67 (7.36-11.99) 13.37 (9.29-17.12) 

aValues are averages with their ranges. 372 

bDue to lacking data, the ranges are not available in here. 373 

 374 

3.3 Soil HONO emissions enhanced atmospheric oxidation capacity  375 

Based on the WRF-Chem simulations, soil HONO emissions played a more important 376 

role in daytime atmospheric HONO concentrations in rural (~20–50%) than urban areas (< 10%, 377 

Figure 2). The reasons could be attributed to the larger soil HONO emission rates and smaller 378 

contributions from other potential HONO sources in rural areas, where traffic emissions and NO2 379 

heterogeneous reactions were both weaker with lower NOx concentrations (Finlayson-Pitts et al., 380 

2003). Soil HONO emissions mainly enhanced atmospheric HONO and OH concentrations near 381 

the ground, while the enhancements were limited above 500 m (Figure 3). For those four soil 382 

categories in the study region including cropland, forest, grassland and urban green land, the 383 

enhanced daytime HONO concentrations were 0.07 ± 0.02, 0.10 ± 0.06, 0.05 ± 0.03, and 0.03 ± 384 

0.01 ppb near the ground, respectively, while the corresponding OH concentrations were 385 

enhanced by 0.61 ± 0.18 × 106, 0.66 ± 0.44 × 106, 0.54 ± 0.32 × 106, and 0.15 ± 0.05 × 106 386 

molecules cm-3 near the ground, respectively. Due to the weaker termination by NO2 (NO2 + OH 387 

→ HNO3) with lower NO2 concentrations, the enhanced OH concentrations by soil HONO 388 

emissions (cropland, grassland, and forest) were much larger in rural (30–60%) than those in 389 

urban areas (10–20%) (Figures 2 and 3). Detailed information of the impact of soil HONO 390 
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emissions on OH sources and sinks could be found in Figures 3 and S11. The daily maximum 8-391 

h (DMA8) O3 enhancements were generally larger in rural (approximately 1.0 ppb) than those in 392 

urban areas (approximately 0.5 ppb), while the largest hourly O3 enhancements reached 1.0–3.0 393 

ppb in most part of the region (Figures 2 and 3). Zhang et al. (2016) reported a daily average 394 

HONO enhancement of > 1.5 ppb and an O3 enhancement of 2.4–3.6 ppb after coupling cropland 395 

soil HONO emissions (over 100 ng N m-2 s-1) into the regional chemical transport model in 396 

eastern China. Recently, Wang et al. (2021) reported an O3 enhancements of 5–6 ppb around 397 

noontime with implementing approximately 80 ng N m-2 s-1 of fertilized soil HONO flux into the 398 

CMAQ model. These enhancements were comparable with this study if adopting a smaller soil 399 

HONO flux. 400 

We also conducted sensitivity simulations by reducing 50% of anthropogenic NOx 401 

emissions, the lower NO2 concentrations caused less HONO formation via NO2 heterogeneous 402 

reactions and thus increased the contribution of soil HONO emissions to surface HONO 403 

concentrations (Figure 2). The spatial patterns of OH enhancements were similar with or without 404 

cutting off anthropogenic NOx emissions, while the DMA8 O3 enhancements (1.0–1.5 ppb) and 405 

the largest hourly O3 enhancements (2.0–4.0 ppb) were both larger after reducing 50% of 406 

anthropogenic NOx emissions (Figures 2 and 3). Considering the on-going NOx emission 407 

reduction strategy (Zheng et al., 2018) and the concurrent rising O3 concentrations in China (Li 408 

et al., 2019), soil HONO emissions would further increase atmospheric oxidation capacity and 409 

O3 concentrations and play a noticeable role in air quality degradation in the future.  410 

 411 

Figure 2. WRF-Chem domains used in this study and the impact of soil HONO emissions on air 412 

quality. The used observational sites (blue dot: HONO; black dots: urban NO2/O3; red dot: rural 413 

NO2/O3 at Lin’an; purple dots: meteorology) are shown in the upper panel. The lower panel 414 

shows daytime averaged relative contribution of soil HONO emissions to the five potential 415 
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HONO sources (a and f), the OH (b and g), the daily maximum 8-h (DMA8) O3 (c and h) and the 416 

largest hourly O3 (d and i) enhancements compared with the base case, and NO2 concentrations 417 

(e and j) under 100% and 50% NOx emissions (shown as default and 50% ENOx, respectively) for 418 

five typical wetting-drying days in March of 2016. 419 

 420 

 421 

Figure 3. Vertical profiles of simulated HONO and OH concentrations with (cases soil-A, soil-B 422 

and soil-C) or without (case base) adding soil HONO emissions (a-f), and the vertical profiles of 423 

daily maximum 8-h (DMA8) O3 enhancement and largest hourly O3 enhancement induced by 424 
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soil HONO emissions (i-p). The blue solid line corresponding to the mean soil HONO emissions, 425 

the error bar denotes the impacts of the minimum and maximum soil HONO emissions. 426 

 427 

4 Conclusions 428 

We report global soil HONO emissions estimated by two bottom-up methods, an 429 

empirical “wetting-drying” model and a statistical model. Both results were constrained by the 430 

limited and inconsistent observed data of soil HONO emissions. More field data on soil HONO 431 

emissions from different land cover types, especially from bare land and cropland, could 432 

improve the accuracy of the model. For the empirical “wetting-drying” method, global 433 

precipitation data were derived from multi-satellite rather than ground-observed data, and the 434 

fertilization rates of cropland in each country or province were set to the same value according to 435 

the FAO (2017), both of these databases had discrepancies with realistic values and could 436 

increase uncertainties. Fertilizer-induced soil HONO emissions from global cropland could 437 

increase by 1.75 and 0.1 Tg N yr-1, respectively, when applying gridded fertilizer data from 438 

Wang et al. (2019) (including synthetic N fertilizer, livestock manure and crop residues applied 439 

to cropland) and Lu & Tian (2017) (including synthetic N fertilizer). For the statistical model, 440 

global soil HONO emissions were strongly affected by the resolution and accuracy of soil 441 

moisture and physicochemical property (pH, TOC, and NO3
--N) data. If the maximum soil 442 

HONO flux corresponding to soil moisture were well constrained, the results of statistical model 443 

should be greatly improved.     444 

Soil HONO emissions are controlled by biogeochemical nitrogen cycling, which is 445 

affected by nitrogen deposition, temperature, land-use change, and atmospheric carbon dioxide 446 

(CO2) concentrations (Gruber & Galloway, 2008). With climate change and increasing human 447 

activities, the land-atmosphere interactions and surface exchange of Nr gases will play more 448 

important roles in atmospheric composition and air quality in the future. Based on our 449 

simulations, soil HONO emissions accelerated regional HOx (OH + HO2) cycling and increased 450 

daytime OH concentrations by approximately10–60% and O3 concentrations by approximately 451 

0.5–1.0 ppb. Considering the stronger soil HONO emissions after fertilization processes (Xue et 452 

al., 2021), the impact of soil HONO emissions would be even larger during fertilization periods 453 

(Wang et al., 2021). By providing global and regional soil emissions of HONO and the impacts 454 

on atmospheric chemistry, our work could potentially help biogeochemical and atmospheric 455 

chemistry models constrain global soil Nr emissions and the contribution of soil HONO 456 

emissions to atmospheric oxidation capacity. 457 
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