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Abstract

The modeling of physical phenomena oftentimes leads to partial differential equations (PDEs) that are usually nonlinear and

can also be subject to various uncertainties. Solutions of such equations typically involve multiple spatial and temporal scales,

which can be numerically expensive to fully resolve. On the other hand, for many applications, it is large-scale features of

the solutions that are of primary interest. The closure problem of a given PDE system seeks essentially for a smaller system

that governs to a certain degree the evolution of such large-scale features, in which the small-scale effects are modeled through

various parameterization schemes. We will present an approach to parameterize the unresolved small-scale dynamics using the

resolved large scales for forced dissipative systems. We will show that efficient parameterizations can be explicitly determined

as parametric deformations of geometric objects constructed from dynamically based analytical formulas. The minimizers are

intimately tied to the conditional expectation of the original system. We will highlight, within a variational framework, a simple

semi-analytic approach to determine such parameterizations based on backward-forward auxiliary systems and short solution

data. Concrete examples arising from geophysical considerations will also be presented to illustrate the effectiveness of the

approach.
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Contribution

An efficient way to construct low-dimensional closures for (stochastic) nonlinear dissipative systems is proposed.
The unobserved small-scale variables are parameterized through nonlinear functions of large-scale variables. Such
nonlinear functions are constructed from the constitutive terms of the governing equations, with a few scalar
parameters optimized via a variational framework based on solution data. For stochastic systems, the proposed

parameterization brings extrinsic memory into the closure, which can play an essential role for the closure to
capture rare tail events. At the same time, memory terms become secondary provided that a Markovian pa-
rameterization already provides a good approximation of the underlying conditional expectation and that the
associated residual dynamics is mainly orthogonal to it, as illustrated on the paradigmatic Lorenz 80 model.

A motivating example of E. Lorenz [1, 3]

While the Mori-Zwanzig formalism [6, 9, 10, 11] of statistical mechanics suggests that the optimal closure models
consist of a Markovian part, a part carrying memory effects, and a noise term that is uncorrelated with the re-
solved variables, it does not offer an explicit way of constructing such terms. We illustrate through the following
reduced primitive model of E. Lorenz (L80) that when high-quality parameterization of the unresolved variables
are available, it not only simplifies the construction of the memory and the noise terms, but also can render the
memory terms unnecessary when the parameterization residual is mainly orthogonal to the observed variables.

The L80 model is the nine-variable system of ODEs derived in [8] as a truncation of the shallow-water equations
onto three Fourier spatial basis functions (see [1] for the formulation adopted here):

ε2ai
dXi

dt
= ε3aibiXjXk − ε2c(ai − ak)XjYk + ε2c(ai − aj)YjXk − 2εc2YjYk − ε2N0a

2
iXi + ai(Yi − Zi),

ai
dYi
dt

= −εakbkXjYk − εajbjYjXk + c(ak − aj)YjYk − aiXi −N0a
2
iYi,

dZi
dt

= −εbkXj(Zk −Hk)− εbj(Zj −Hj)Xk + cYj(Zk −Hk)− c(Zj −Hj)Yk + g0aiXi −K0aiZi + Fi,

(1)

which are written for each cyclic permutation of the set of indices (1, 2, 3): (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.
The scaling parameter ε is related to the Rossby number, which helps reveal the relative importance of the

terms appearing in the “fast” variables X when ε is small. Such a consideration led the authors of [7] to consider
a Balance Equation (BE) parameterization of the fast variables X and Z in terms of the slow variables Y , which
takes the following functional form (see [1, Sec. 3.1]):

Zi = Gi(Y )
def
= Yi −

2εc2

ai
YiYk, and X = Φ(Y )

def
= [M(Y , G(Y ))]−1

d1,2,3(Y , G(Y ))
d2,3,1(Y , G(Y ))
d3,1,2(Y , G(Y ))

 , (2)

where M is a nonlinear matrix function of Y (and Z through the parameterization G(Y )), and di,j,k are scalar
functions of Y . All constituent terms of M and di,j,k are analytically constructed from the vector field of (1).
The BE closure for Y is then obtained by simply replacing X by Φ(Y ) in the Y -equations of the system (1):

ai
dYi
dt

= −εakbkΦj(Y )Yk − εajbjYjΦk(Y ) + c(ak − aj)YjYk − aiΦi(Y )−N0a
2
iYi. (3)

When ε is small, fast oscillations are either not visible or arise with small amplitudes; the BE parameterization
(Φ(Y ), G(Y )) approximates almost exactly the true dynamics of (X,Z). But when ε exceeds a critical threshold
ε∗, explosive fast oscillations can appear in X and Z as shown here for the time series of X2 in the right column.
The BE parameterization still captures the corresponding slow averaged motion extremely well. When ε is not

too far above ε∗, the BE closure is able to reproduce the coarse-grained topological features (corresponding to the
slow Rossby wave dynamics) of the projected attractors as shown below for ε at the critical value ε∗ ≈ 1.5522.
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However, when ε is further increased, the BE closure is no longer sufficient as shown below for the projected at-
tractor with ε ≈ 1.7398 (left panel, back vs blue). Careful analysis of the dynamical properties of the BE residual
reveals that such residuals can be effectively emulated by a network of Stuart-Landau oscillators (SLOs) [3]. This
SLO rectification of the BE is clearly successful as shown by comparing the projected attractors below (black vs
red). In the formulation of the SLOs, no conditioning of any sort on the slow variables Y is enforced.
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The success here relies heavily on the remarkable ability of BE to separate the averaged dynamics (conditional
expectation) from the fast dynamics. The latter turns out to be mostly orthogonal to the former as shown on the
right panel above, where the blue dots correspond to the BE manifold in a reduced phase space representation,
and the black curves are from the L80 dynamics. Thus, the SLOs provide essentially the noise terms in the
Mori-Zwanzig formalism while no memory terms were needed in this efficient BE-SLO closure.

A variational framework for small-scale parameterization [2, 5]
How can we extend the idea of the BE parameterization to general nonlinear models? Through the works
[2, 4, 5], we established a variational framework, called optimal parameterizing manifold (OPM), for such a
parameterization problem for both deterministic and stochastic dissipative systems without assuming a slow-fast
structure. We present below the key ideas in a deterministic, autonomous setting.

Motivated from fluid dynamics applications, we consider forced dissipative systems of the form

du

dt
= Lu+B(u, u) + F, (4)

where the state space E is either high- or infinite-dimensional, L is a linear differential operator, B a quadratic
nonlinearity and F an autonomous forcing. Assume u is decomposed into a large-scale resolved part uc and a
small-scale unresolved part us. Using insights from approximations of invariant manifolds in dynamical systems
theory, we seek optimal approximation of us in terms of a nonlinear function of uc within broad classes of
dynamically-based analytical formulas. The optimality is in the sense of minimizing certain cost function by
calibrating a few scalar parameters in the analytical formula based on short solution data.

One such class of parameterizations arises from a flow-interpretation of the leading-order approximation of
invariant manifolds ([2, Section 4.3]), which is based on the following auxiliary backward-forward system

du
(1)
c

ds
= ΠcLu

(1)
c (s) + ΠcF, s ∈ [−τn, 0], u

(1)
c (0) = X ∈ Ec, (5a)

du
(1)
n

ds
= βnu

(1)
n (s) + ΠnB

(
u
(1)
c (s), u

(1)
c (s)

)
+ ΠnF, s ∈ [−τn, 0], u(1)n (−τn) = 0, (5b)

where the decomposition of E is based on eigenfunctions of L, Πc (resp. Πn) denotes the orthogonal projector
onto the resolved subspace Ec associated with uc (resp. the unresolved eigenmode en), and τn > 0 is a free scalar

parameter. Eq. (5a) is first solved backward from s = 0 with u
(1)
c (0) = X; its solution u

(1)
c is then used in (5b)

to solve for u
(1)
n forward from s = −τ . The solution of u

(1)
n at s = 0 is taken as the parameterization of the

unobserved component un given the observed variable uc = X. Since Eq. (5a) and Eq. (5b) are only “one-way”
coupled and both are linear forced equations in the respective variables, the parameterization of un admits an
explicit formula given below assuming L is diagonal under the eigenbasis:

Ψn(τn, X) = u(1)n (s;X, τn)|s=0 =

m∑
i,j=1

(
Unij(τn,β)FiFj + V nij (τn,β)FiXj +Dn

ij(τn,β)XiXj

)
, (6)

where m = dim(Ec), U
n
ij , V

n
ij , and Dn

ij are coefficients involving the eigenvalues of L (collected into β) and
nonlinear interactions among the eigenfunctions of L through the nonlinearity B.

Collecting the above parameterization for each unresolved mode un and denoting τ = (τm+1, τm+2, . . .), we
obtain the following class of parameterizations of the unresolved dynamics us called the leading-interaction ap-
proximation (LIA(τ )) parameterization:

Ψτ (X) =
∑

n≥m+1

Ψn(τn, X)en, X ∈ Ec. (7)

Training for the optimal τ : Given numerical solution of (4), u(t) = uc(t) + us(t), over a training interval
[0, T ], we optimize τn for each n ≥ m+ 1 by minimizing the parameterization residual Qn(τn):

min
τn
Qn(τn), where Qn(τn)

def
=

∫ T

0

∣∣un(t)−Ψn(τn, uc(t))
∣∣2 dt with Ψn(τn, X) given by (6). (8)

The resulting minimizers τ∗n whose collection is denoted by τ ∗, allows us to define the following optimal parame-
terization within the LIA(τ )-class

Ψτ∗(X) =
∑

n≥m+1

Ψn(τ∗n, X)en. (9)

Then, the corresponding optimal LIA(τ ∗)-closure for the large-scale variable uc of (4) is given by:

dX

dt
= ΠcLX + ΠcB(X + Ψτ∗(X), X + Ψτ∗(X)) + ΠcF. (10)

Generalization: The above procedure for deriving the optimal LIA(τ ∗)-closure can be generalized in a few
ways. Different classes of dynamically-based parameterizations can be used in place of the LIA-class, as long as
they admit backward-forward flow interpretations in the spirit of (5); other cost function instead of Qn(τn) can
be used in the minimization problem (8) as well to determine the optimal τ ∗ ([2, Section 4.4 and Section 6]; see
also the KS application on the right column). The framework also covers broader classes of equations than (4) in
which the forcing can be time dependent [2, Section 7] or stochastic [5, Chapter 5-7]. If needed, further modeling
of the OPM residual can be added to the OPM closure (10), while the actual form of the additional model will
depend obviously on the dynamical properties of the residual; see again the L80 model above for an example.

Closures of KS equation resolving only unstable modes [2]
As an application of the variational reduction framework, we consider the Kuramoto-Sivashinsky (KS) equation
posed on the interval (0, 2π) under periodic boundary conditions:

∂tu = −4∂xxxxu− α
(
∂xxu+ u∂xu

)
. (11)

The KS equation is commonly considered as a basic case study for spatiotemporal chaos. Previous studies
concerning the closure/reduction problem of the KS equation usually focused on regimes with only a few pairs of
unstable modes. Here, we place the equation in a strongly chaotic regime with α = 33000, leading to 90 pairs of
unstable Fourier modes. We show below that the proposed approach is able to provide an efficient closure when
the resolved variables consist only of the unstable modes.

For the chosen regime, traditional parameterizations such as the quasi-stationary approximation (QSA) scheme
provide an over-parameterization of the neglected scales (blue curve in panel (e) below), leading to an incorrect
reproduction of the backscatter transfer of energy due to nonlinear interactions between the modes, especially
near the cutoff scale kc marked in panel (e). Such an inverse error cascade originated from the parameterized
small scales gradually contaminates the larger scale dynamics and spoils the corresponding closure skills.

This over-parameterization problem near the cutoff scales is fixed almost perfectly by using a parametric form
of the QSA within the proposed variational framework as shown by the red curve in panel (e) below. Indeed,
the flow interpretation of QSA leads to auxiliary systems analogous to (5b), which resulting in the corresponding
QSA(τ )-class parameterizations. To optimize τ , instead of using the parameterization defect Qn defined in (8),
a new cost function Jn is adopted that ensures closeness of the energy spectrum; see panel (c) for the actual
cost values at the optimal parameter τ∗n’s. The corresponding optimal QSA(τ ∗)-closure is able to reproduce
faithfully the spatiotemporal dynamics of the KS equation (panel (a) vs. panel (b)). As a comparison, when
the cost function Qn is used for determining the τ∗n’s, the corresponding optimal cost value (after normalized by
the energy of each mode un) is shown in panel (d). The energy spectrum near the cutoff scale is slightly less
well captured when τ ∗ is determined by minimizing Qn, while the skill of the corresponding closure is slightly
less good than that shown in panel (a); see [2, Section 6.3]. Comparable performance is also achieved when the
LIA(τ )-class (7) is used instead of the QSA(τ )-class as shown in [2, Section 6.3].
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