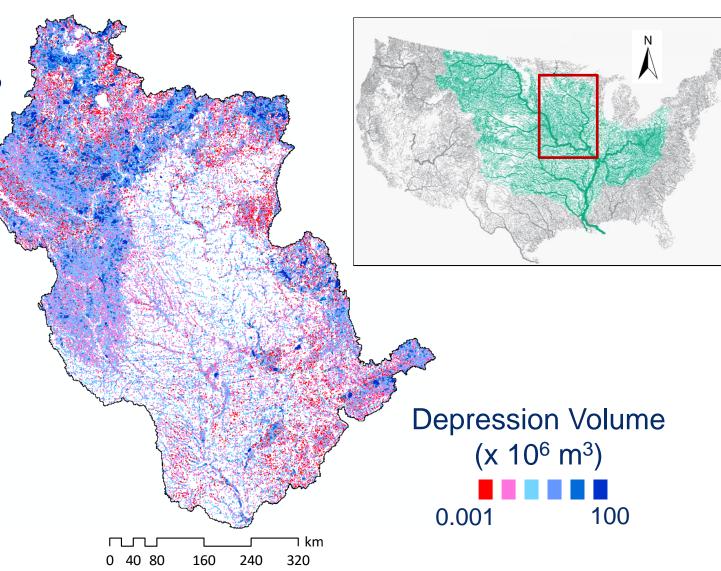
Integrating High-resolution Wetland and Depression Water Storage Data in Major Basin Hydrologic Modeling

Adnan Rajib¹, Qiusheng Wu², Charles Lane³, Heather Golden³, Jay Christensen³, Travis Dahl⁴, Jodi Ryder⁵, and Brian McFall⁴

¹Texas A&M University Kingsville
²University of Tennessee
³US Environmental Protection Agency, Office of Research & Development
⁴US Army Corps of Engineers
⁵US Army Corps of Engineers, Engineer Research and Development Center

November 21, 2022

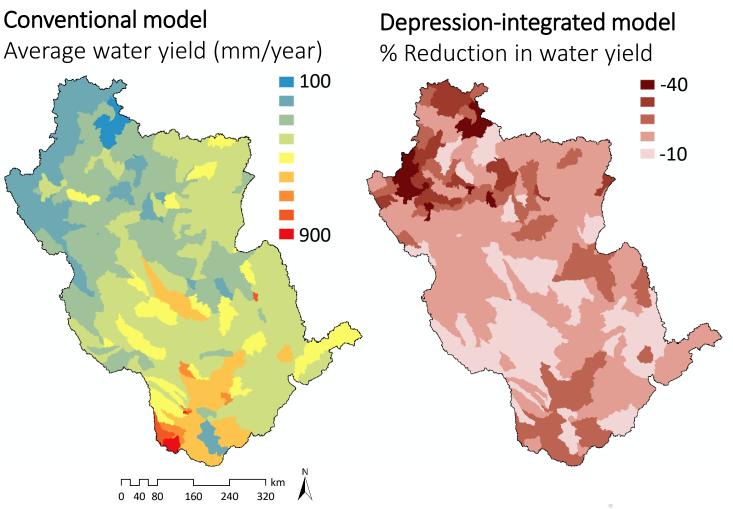
Abstract


The increasing availability of surface water inundation data has encouraged modelers and managers to include small yet abundant surface water storage systems (e.g., wetlands and other landscape depressions) in process-based models. Yet, these model applications have been largely limited to small- to meso- watershed scales, with drainage areas ranging from a few hectares to several thousand square kilometers. The conventional practice of overlooking these surface water storage systems in basin-scale (e.g., >10,000 m²) hydrologic modeling may be missing the total picture of flood and drought hazards. To fill this gap, we developed a 30-m resolution topography-based wetland and depression storage (maximum surface area and storage volume) database for the Upper Mississippi, Ohio, and Missouri River Basins [?] encompassing the 2.35 million km² upstream domain of the Mississippi River system. Further, we integrated this depression dataset into a process-based model to simulate sub-catchment and river reach-scale hydrologic fluxes (surface runoff, soil wetness, evapotranspiration) and flows (streamflow). Compared with a "no depression" conventional model constructed for the Missouri and Upper Mississippi River Basins, our exploratory analyses demonstrate that a depression-integrated model (i) significantly alters the spatial patterns and magnitudes of water yields, (ii) improves streamflow simulation accuracy, and (iii) provides realistic spatial distributions of landscape wetness conditions. These emerging findings provide us with new insights into the effects of small surface water storage and stimulates a reassessment of current practices for basin-scale hydrologic modeling and water management.

AGU FALL MEETING 2021 H33B-06

Small surface waters in the world's major basins

- Small surface water storage systems perform sink-lag-source functions
- Hydrologic models typically don't account for small water bodies (i.e., wetlands and surface depressions) and processes therein



AGU FALL MEETING 2021

Small surface waters alter magnitude and distribution of
basin water yieldDepression-integrat

- *Significantly* different water yield with the depression-integrated model
- Increased physical realism in model predictions
- Depression size is *not* the only driver of downstream hydrological influence

AGU FALL MEETING 2021

Depression-integrated hydrologic modeling: Broader impact

- Conventional hydrologic models disregarding small surface waters may be overpredicting floods and underpredicting droughts
- Knowing where small surface waters impart significant hydrologic effects can inform management decisions in response to climate and land use change

Rajib, A., Golden, H., Lane, C., Wu, Q. 2020. Surface depression and wetland water storage improves major river basin hydrologic predictions, *Water Resources Research*. DOI:10.1029/2019WR026561 Contact InformationAdnan RajibAssistant ProfessorTexas A&M University, Kingsvilleadnan.rajib@tamuk.eduwww.adnanrajib.com✓@adnan_hydro

Statements in this presentation do not reflect any determination or policy of the sponsor agencies