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Abstract

It has long been recognized that the energy source for major solar flares and coronal mass ejections (CMEs) is the solar magnetic

field within active regions. Specifically, it is believed to be the release of the free magnetic energy (energy above the potential

field state) stored in the field prior to eruption. For estimates of the free energy to provide a prognostic for future eruptions,

we must know how much energy an active region can store – Is there a bound to this energy? The Aly-Sturrock theorem shows

that the energy of a fully force-free field cannot exceed the energy of the so-called open field. If the theorem holds, this places an

upper limit on the amount of free energy that can be stored. In recent simulations, we have found that the energy of a closely

related field, the partially open field (POF), can place a useful bound on the energy of an eruption from real active regions, a

much tighter constraint than the energy of the fully open field. A database of flare ribbons (Kazachenko et al., ApJ 845, 2017)

offers us an opportunity to test this idea observationally. A flare ribbon mask is defined as the area swept out by the ribbons

during the flare. It can serve as a proxy for the region of the field that opened during the eruption. In this preliminary study,

we use the ribbon masks to define the POF for several large events originating in solar cycle 24 active regions, and compute

the energy of the POF. We compare these energies with the X-ray fluxes and CME energies for these events. Work supported

by NSF, NASA, and AFOSR.
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solutions for which the expanded central arcade lies entirely
in the numerical box. In this situation, the top boundary
is always situated in a potential field region, where the mag-
netic field is unsheared. Therefore, we can use the following
conditions

B’jr¼50 ¼ 0; L jr¼50 ¼ 0 ð15Þ

to evaluate the values of B’ and  at the top boundary, re-
spectively. These boundary conditions have little effect on
force-free field solutions with the central arcade within the
numerical box. When the shear parameter k0 is so large that
the apex of the central arcade reaches the top boundary, we
change the boundary conditions as follows: (1) B’ is evaluated
by equivalent extrapolation along the field lines both at the
solar surface and the top boundary, and the constraint for the
constancy of !’ is disregarded, and (2)  is determined by
linear extrapolation at the top. The changed boundary con-
ditions force the solution to approach a partly open potential
field with three current sheets, as shown in Figure 1b. The
maximum magnetic energy of the obtained sequence of force-
free field solutions depends on the height of the top. Here
we have taken r ¼ 50 for the top, and the maximum energy of

the force-free field solutions is very close to that of the
corresponding partly open-field energy, as is discussed in x 3.

2.4. Maintaining a Constant Azimuthal Flux in the
Sheared-Field Region

The azimuthal flux in the sheared-field region is initially
calculated from equations (12)–(14) for a given k0 and  b. It
is straightforward to maintain the initial azimuthal magnetic
flux invariant in the sheared-field region during the simulation.
To this end, we calculate the flux at two adjacent time steps,
say, tn and tnþ1 (¼ tn þ"t, where "t is the time step length),
using equation (13), and the ratio ! between their values at tn
and tnþ1 as well. Then Bnþ1

’ updated at tnþ1 within the sheared-
field region is replaced by B0 ¼ !Bnþ1

’ . By doing so succes-
sively, !’ must be constant and the same as its initial value.
Note that B’ in the sheared region of the solar surface is also
multiplied by ! so that k in equation (11) varies with time as
mentioned above.

Incidentally, B’ should vanish everywhere in the unsheared-
field region, but a nonzero B’ might appear somewhere because
of numerical diffusion of B’ across the border between the
sheared- and unsheared-field regions. A simple way to suppress
such a diffusion is to reassign the value of B’ to be zero every-
where in the unsheared-field region at each time step.

2.5. Elimination of Numerical Reconnection

Numerical reconnection always exists during numerical
simulations. We take advantage of the magnetic flux function
 , which is taken as a dependent variable, to eliminate nu-
merical reconnections entirely and to treat any electric current
sheets as ideal tangential discontinuities as well. As we know,
 is constant along a current sheet, and it takes an extremum at
the sheet to form a tangential discontinuity for the magnetic
field. For the present case, a transverse current sheet is bound
to occur as the sheared central arcade expands toward the
neutral point. In the frame of ideal MHD, the newly formed
current sheet should be infinitely thin, and  at the sheet is
always equal to  N as a localized maximum. However, in the
presence of numerical reconnection,  will drop gradually
below  N along the sheet at each time step. To avoid such a
reconnection, we find all the maximum points of  in the
domain, from which we single out those with maxima that are
close to but slightly smaller than  N . For each of these points,
we denote the maximum by  0 and the values of  at two
adjacent grid points, for instance, by  %1 on one side and  1

on the other, which should be slightly smaller than  0. The
sampling of the two adjacent grid points depends on the ori-
entation of the sheet, being taken along either the r-direction
for a nearly horizontal current sheet or the "-direction for a
nearly vertical current sheet. If the ratio # ¼  N= 0 is larger
than 1, as generally happens because of numerical reconnec-
tion, then the updated  is enhanced by such a ratio so that the
revised  at the maximum point is still  N . A smaller factor,
(1þ #)=2, is used to enhance  %1 and  1 to maintain a smooth
transition between the sheet and its surroundings. Tentative
simulations show that such a simple approach works well,
although there are certainly other more sophisticated ways to
achieve the same goal. We take this simple approach in the
following simulations, and it efficiently prevents numerical
reconnection across the current sheet. At the same time, the
current sheet appears as an ideal tangential discontinuity in the
magnetic field rather than a layer of finite width as obtained in
most previous MHD simulations.

Fig. 1.—Magnetic configurations for: (a) the initial quadrupolar potential
field, (b) the corresponding partly open field with the central and overlying
arcades fully opened, and (c) the field with the flux entirely reconnected
between the two arcades. In each panel, the thick solid curves represent the
border of the bipolar fields at the flank, and the dashed lines denote the newly
formed current sheets.
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Introduction
• Major solar eruptions such as X-class flares and very fast coronal mass 

ejections (CMEs) usually originate in active regions on the Sun.
• The energy that powers these events is believed to be stored as free 

magnetic energy in active region (AR) fields prior to eruption                                         

• Free Magnetic Energy  = Total Magnetic Energy - Potential Magnetic Energy

• Amount of free energy stored is thus an important indicator of a possible 

eruption


• Solar active regions can store widely varying amounts of energy - so 
free energy alone does not tell you if an eruption is imminent


• We need to know how much energy can be stored (the “bound”)

• In simulation studies, we have found that the energy of a particular 

field, the Partially Open Field (POF), can provide this bound (POFE).

• First, let’s review open fields and their importance.
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Aly-Sturrock “Theorem:”

How Much Energy can be Stored in the Coronal Magnetic Field?

A closed magnetic field;

Magnetic Energy = E

The open magnetic field

(field lines go to infinity);

Magnetic Energy = Eopen

Aly (1984,1991) and Sturrock (1991) showed that 

for force-free magnetic fields   E < Eopen

• Coronal magnetic fields not generally force-free

• In strong active regions, plasma ß very low, effectively force-free

• In MHD simulations, eruption can occur when this limit is reached



OFE is Not a Useful Upper Bound 
• In an axisymmetric calculation, the entire field has to be opened in 

order to get a CME, so the OFE is the relevant upper bound
• For the real Sun, the OFE is huge - no CME opens all of the closed 

fields on the Sun 

4

• In a CME, a portion of the Sun’s field is opened, while surrounding 
fields remain closed.

• Consider a field that is potential everywhere, except on a subdomain 
SO where it is open:  A Partially Open Field (POF).


• POFs discussed previously (e.g. Wolfson & Low 1992; Hu 2004; 
Aly &Amari 2007).


• In idealized simulations, we found that approaching the energy of 
this field (POFE) led to eruption (Amari et al. 2007, 2010, 2011).

Partially Open Fields 



Implications and Observational Tests
• If one can practically compute POFs for solar ARs, there are important 

space weather implications:                                 

• The maximum severity of a flare/CME from a given region could be known 

prior to the event

• If the free magnetic energy in the AR can be reliably measured/deduced, 

major eruptions could be predicted if/when the AR free energy approaches 
the energy bound (POFE)


• Concept applies to eruptive flares/CMEs - confined flares should release less 
than POFE


• How can we test this idea with observations?

• A major component of computing POFs and their energy is identifying the 

region that opens (SO)

• We employ a data base of flare ribbons (Kazachenko et al. ApJ 2017) as a 

proxy for where the field opens

• We compute POFs and their energies (POFE) for these regions

• We will compare the results to actual energy release in the real eruptions
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Calculating the Partially Open Field
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• In general, this is a very difficult calculation to do exactly.

• First, we estimate SO: this can be done topologically, here we use the 

ribbon masks.   

• We develop two estimates of the POF for SO - one a likely lower 

bound to the energy, the other a likely upper bound.

• These estimates involve solution of potential fields (Laplace’s 

equation) and field line tracing.

• We have developed fast routines for accomplishing these tasks (PFSS 

solutions on multicore/GPU systems) 

• We have calculated POFs for the 263 M & X class flares in the ribbon 

database.  There are issues with some of the calculations, that we are 
working through.



Partially Open Field Estimation:  Method 1:
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Full Magnetic Map for Bastille Day Simulation



Partially Open Field Estimation:  Method 1:

7

Consider SO and region 
outside SO separately



Partially Open Field Estimation:  Method 1:

7

Compute PFSS 

Outside SO



Partially Open Field Estimation:  Method 1:

7

Compute PFSS 

Outside SO

Compute Open Field 

Inside SO



Partially Open Field Estimation:  Method 1:

7

Sum these fields to 

obtain POF



Partially Open Field Estimation:  Method 1:

7

Sum these fields to 

obtain POF

Partially Open Field (POF)PFSS outside SO Open Field inside SO

• This POF actually has closed field lines originating in SO (from 
summing the fields).


• We think the energy of this field is a lower bound to the POFE.



Partially Open Field Estimation:  Method 2:
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Partially Open Field (POF 2)PFSS (whole sun) Open Field (whole sun)

• This 2nd estimate for the POF combines the open and closed field 
solutions discontinuously, implying current sheets


• We think the energy of this field is an upper bound to the POFE.
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• We apply our technique to the mutipolar field 
used to illustrate the Breakout model 
(Antiochos et al. 1999).


• They identified EMAX as the energy of field 
where all of the central arcade field lines are 
open - This is the POFE.


• Hu (2004) calculated the energy of this field: 
1.126 referenced to the potential field.


• Our technique provides a POFE estimate of 
1.141, about 1.3% higher than the “true” value.


• The free energy of the POFE estimate (.141) is 
about 12% higher than the true value  (.126). 

How Well Does Our Estimate Work for a Known Case?

Multipolar Potential Field

solutions for which the expanded central arcade lies entirely
in the numerical box. In this situation, the top boundary
is always situated in a potential field region, where the mag-
netic field is unsheared. Therefore, we can use the following
conditions

B’jr¼50 ¼ 0; L jr¼50 ¼ 0 ð15Þ

to evaluate the values of B’ and  at the top boundary, re-
spectively. These boundary conditions have little effect on
force-free field solutions with the central arcade within the
numerical box. When the shear parameter k0 is so large that
the apex of the central arcade reaches the top boundary, we
change the boundary conditions as follows: (1) B’ is evaluated
by equivalent extrapolation along the field lines both at the
solar surface and the top boundary, and the constraint for the
constancy of !’ is disregarded, and (2)  is determined by
linear extrapolation at the top. The changed boundary con-
ditions force the solution to approach a partly open potential
field with three current sheets, as shown in Figure 1b. The
maximum magnetic energy of the obtained sequence of force-
free field solutions depends on the height of the top. Here
we have taken r ¼ 50 for the top, and the maximum energy of

the force-free field solutions is very close to that of the
corresponding partly open-field energy, as is discussed in x 3.

2.4. Maintaining a Constant Azimuthal Flux in the
Sheared-Field Region

The azimuthal flux in the sheared-field region is initially
calculated from equations (12)–(14) for a given k0 and  b. It
is straightforward to maintain the initial azimuthal magnetic
flux invariant in the sheared-field region during the simulation.
To this end, we calculate the flux at two adjacent time steps,
say, tn and tnþ1 (¼ tn þ"t, where "t is the time step length),
using equation (13), and the ratio ! between their values at tn
and tnþ1 as well. Then Bnþ1

’ updated at tnþ1 within the sheared-
field region is replaced by B0 ¼ !Bnþ1

’ . By doing so succes-
sively, !’ must be constant and the same as its initial value.
Note that B’ in the sheared region of the solar surface is also
multiplied by ! so that k in equation (11) varies with time as
mentioned above.

Incidentally, B’ should vanish everywhere in the unsheared-
field region, but a nonzero B’ might appear somewhere because
of numerical diffusion of B’ across the border between the
sheared- and unsheared-field regions. A simple way to suppress
such a diffusion is to reassign the value of B’ to be zero every-
where in the unsheared-field region at each time step.

2.5. Elimination of Numerical Reconnection

Numerical reconnection always exists during numerical
simulations. We take advantage of the magnetic flux function
 , which is taken as a dependent variable, to eliminate nu-
merical reconnections entirely and to treat any electric current
sheets as ideal tangential discontinuities as well. As we know,
 is constant along a current sheet, and it takes an extremum at
the sheet to form a tangential discontinuity for the magnetic
field. For the present case, a transverse current sheet is bound
to occur as the sheared central arcade expands toward the
neutral point. In the frame of ideal MHD, the newly formed
current sheet should be infinitely thin, and  at the sheet is
always equal to  N as a localized maximum. However, in the
presence of numerical reconnection,  will drop gradually
below  N along the sheet at each time step. To avoid such a
reconnection, we find all the maximum points of  in the
domain, from which we single out those with maxima that are
close to but slightly smaller than  N . For each of these points,
we denote the maximum by  0 and the values of  at two
adjacent grid points, for instance, by  %1 on one side and  1

on the other, which should be slightly smaller than  0. The
sampling of the two adjacent grid points depends on the ori-
entation of the sheet, being taken along either the r-direction
for a nearly horizontal current sheet or the "-direction for a
nearly vertical current sheet. If the ratio # ¼  N= 0 is larger
than 1, as generally happens because of numerical reconnec-
tion, then the updated  is enhanced by such a ratio so that the
revised  at the maximum point is still  N . A smaller factor,
(1þ #)=2, is used to enhance  %1 and  1 to maintain a smooth
transition between the sheet and its surroundings. Tentative
simulations show that such a simple approach works well,
although there are certainly other more sophisticated ways to
achieve the same goal. We take this simple approach in the
following simulations, and it efficiently prevents numerical
reconnection across the current sheet. At the same time, the
current sheet appears as an ideal tangential discontinuity in the
magnetic field rather than a layer of finite width as obtained in
most previous MHD simulations.

Fig. 1.—Magnetic configurations for: (a) the initial quadrupolar potential
field, (b) the corresponding partly open field with the central and overlying
arcades fully opened, and (c) the field with the flux entirely reconnected
between the two arcades. In each panel, the thick solid curves represent the
border of the bipolar fields at the flank, and the dashed lines denote the newly
formed current sheets.
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solutions for which the expanded central arcade lies entirely
in the numerical box. In this situation, the top boundary
is always situated in a potential field region, where the mag-
netic field is unsheared. Therefore, we can use the following
conditions

B’jr¼50 ¼ 0; L jr¼50 ¼ 0 ð15Þ

to evaluate the values of B’ and  at the top boundary, re-
spectively. These boundary conditions have little effect on
force-free field solutions with the central arcade within the
numerical box. When the shear parameter k0 is so large that
the apex of the central arcade reaches the top boundary, we
change the boundary conditions as follows: (1) B’ is evaluated
by equivalent extrapolation along the field lines both at the
solar surface and the top boundary, and the constraint for the
constancy of !’ is disregarded, and (2)  is determined by
linear extrapolation at the top. The changed boundary con-
ditions force the solution to approach a partly open potential
field with three current sheets, as shown in Figure 1b. The
maximum magnetic energy of the obtained sequence of force-
free field solutions depends on the height of the top. Here
we have taken r ¼ 50 for the top, and the maximum energy of

the force-free field solutions is very close to that of the
corresponding partly open-field energy, as is discussed in x 3.

2.4. Maintaining a Constant Azimuthal Flux in the
Sheared-Field Region

The azimuthal flux in the sheared-field region is initially
calculated from equations (12)–(14) for a given k0 and  b. It
is straightforward to maintain the initial azimuthal magnetic
flux invariant in the sheared-field region during the simulation.
To this end, we calculate the flux at two adjacent time steps,
say, tn and tnþ1 (¼ tn þ"t, where "t is the time step length),
using equation (13), and the ratio ! between their values at tn
and tnþ1 as well. Then Bnþ1

’ updated at tnþ1 within the sheared-
field region is replaced by B0 ¼ !Bnþ1

’ . By doing so succes-
sively, !’ must be constant and the same as its initial value.
Note that B’ in the sheared region of the solar surface is also
multiplied by ! so that k in equation (11) varies with time as
mentioned above.

Incidentally, B’ should vanish everywhere in the unsheared-
field region, but a nonzero B’ might appear somewhere because
of numerical diffusion of B’ across the border between the
sheared- and unsheared-field regions. A simple way to suppress
such a diffusion is to reassign the value of B’ to be zero every-
where in the unsheared-field region at each time step.

2.5. Elimination of Numerical Reconnection

Numerical reconnection always exists during numerical
simulations. We take advantage of the magnetic flux function
 , which is taken as a dependent variable, to eliminate nu-
merical reconnections entirely and to treat any electric current
sheets as ideal tangential discontinuities as well. As we know,
 is constant along a current sheet, and it takes an extremum at
the sheet to form a tangential discontinuity for the magnetic
field. For the present case, a transverse current sheet is bound
to occur as the sheared central arcade expands toward the
neutral point. In the frame of ideal MHD, the newly formed
current sheet should be infinitely thin, and  at the sheet is
always equal to  N as a localized maximum. However, in the
presence of numerical reconnection,  will drop gradually
below  N along the sheet at each time step. To avoid such a
reconnection, we find all the maximum points of  in the
domain, from which we single out those with maxima that are
close to but slightly smaller than  N . For each of these points,
we denote the maximum by  0 and the values of  at two
adjacent grid points, for instance, by  %1 on one side and  1

on the other, which should be slightly smaller than  0. The
sampling of the two adjacent grid points depends on the ori-
entation of the sheet, being taken along either the r-direction
for a nearly horizontal current sheet or the "-direction for a
nearly vertical current sheet. If the ratio # ¼  N= 0 is larger
than 1, as generally happens because of numerical reconnec-
tion, then the updated  is enhanced by such a ratio so that the
revised  at the maximum point is still  N . A smaller factor,
(1þ #)=2, is used to enhance  %1 and  1 to maintain a smooth
transition between the sheet and its surroundings. Tentative
simulations show that such a simple approach works well,
although there are certainly other more sophisticated ways to
achieve the same goal. We take this simple approach in the
following simulations, and it efficiently prevents numerical
reconnection across the current sheet. At the same time, the
current sheet appears as an ideal tangential discontinuity in the
magnetic field rather than a layer of finite width as obtained in
most previous MHD simulations.

Fig. 1.—Magnetic configurations for: (a) the initial quadrupolar potential
field, (b) the corresponding partly open field with the central and overlying
arcades fully opened, and (c) the field with the flux entirely reconnected
between the two arcades. In each panel, the thick solid curves represent the
border of the bipolar fields at the flank, and the dashed lines denote the newly
formed current sheets.
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The Partially Open Field

(EMAX identified by Antiochos et al. 1999)

Figures adapted from Hu (2004)
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Torok et al. (2018):  Energy Evolution in 7/14/2000 Simulation 
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• The average of the 2 POFEs predicts eruption onset 

• Together, they give a narrow constraint for the energy required for a major eruption
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Flare Ribbon Masks Provide an Estimate of SO (region of opening)

• We use the ribbon masks to put energy bounds on past 
events


• Masks available for 263 M & X class flares in Solar 
Cycle 24 (2010 - 2017)
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Cumulative Flare Ribbons

(provided by Maria Kazachenko)

Example  AR11158 (February 15, 2011)

CME, e.g., UV and HXR emission with the acceleration of
filament eruptions (Jing et al. 2005; Qiu et al. 2010); CME
acceleration and flare energy release (Zhang et al. 2001; Zhang
& Dere 2006); and GOES flare class, flare reconnection flux,
and the CME speed and flux content of the interplanetary CME
(Qiu & Yurchyshyn 2005; Qiu et al. 2007; Miklenic et al.
2009; Hu et al. 2014; Salas-Matamoros & Klein 2015;
Gopalswamy et al. 2017). However, in most of these analyses,
the underlying data for the flare ribbon properties were of
limited accuracy and involved different sets of instruments that
required time-consuming co-alignment, making the systematic
comparison of flare ribbon properties difficult for large
numbers of events.

The launch of the Solar Dynamics Observatory (SDO;
Pesnell et al. 2012), with the Helioseismic and Magnetic
Imager (HMI; Scherrer et al. 2012; Hoeksema et al. 2014) and
the Atmospheric Imaging Assembly (AIA; Lemen et al. 2012)
instruments, represents the first time that both a vector
magnetograph and ribbon-imaging capabilities are available
on the same observing platform, making co-registration of the
AIA and HMI full-disk data relatively easy. In this paper, we
present a database of flare ribbons associated with 3137
events corresponding to all flares of GOES class C1 and
larger, with heliographic longitudes less than 45°, from 2010
April through 2016 April. Our intentions are twofold. First,
we provide the reference for the data set by describing the key
processing procedures. Second, we present the statistical
analyses of the flare reconnection fluxes and their relationship
with other flare and AR properties.
This is the first in a series of two papers. Here, we focus on

the cumulative reconnection properties, while in the second
paper, we will analyze their temporal evolution.

This paper is organized as follows. In Section 2, we describe
the SDO data and the analysis procedure for correcting pixel
saturation, creating the flare ribbon masks, and calculating the
ribbon reconnection fluxes and their uncertainties. In Section 3,
we summarize the database of events, describe the AR and flare
ribbon properties calculated for each of our events, compare
these to the flare GOES peak X-ray fluxes, and present the
distribution of the magnetic energy estimates associated with
the reconnection fluxes. In Section 5, we discuss our results,
and in Section 6, we summarize our conclusions.

2. Data and Methodology

In this section, using an X2.2 flare in NOAA AR 11158 as
an example, we describe how we correct the AIA 1600Å
saturated pixels (Section 2.1), identify the flare ribbons, and
find the reconnection fluxes (Section 2.2).

2.1. Filtering the Pixel Saturation in AIA 1600 Å Observations

The key technical challenge in defining the set of pixels
corresponding to the flare ribbon location, dSribbon, in the
AIA image sequences is the correction of the saturated pixels
caused by CCD saturation and pixel bleeding, and of the
diffraction patterns from the EUV-telescope entrance filter.
Unfortunately, existing software packages for automatic
de-saturation of AIA images such as DESAT (Schwartz
et al. 2015) are not applicable to the 1600 Å channel
(G. Torre 2017, private communication). Here we present
our own empirical approach to correct the intensities of
“bloomed” pixels.
To describe the details of our saturation-correction approach,

we use the SDO AIA observations of the well-known
“Valentine’s Day” flare as a representative example. This flare
occurred in NOAA AR 11158 on 2011 February 15, 01:44 UT
(Schrijver et al. 2011). The SDO AIA observations of this event
were saturated during the impulsive phase, from 01:49 UT to
02:10 UT in the UV 1600Å continuum as well as in other AIA
bands. We re-examine this event in UV 1600Å observations
with 24 s cadence and 0 61 pixel resolution with the objective
of removing the saturated pixels and reconstructing the
evolution of the UV ribbons from the earlier and later
(unsaturated) phases of the flare. We process the UV 1600Å
images in IDL using the aia_prep.pro SolarSoft package
and co-align the AIA image sequence in time with the first
frame.
Our saturation-correction approach includes the following

steps. We first select the pixels above saturation level,
=I 5000sat countss−1, and the pixels surrounding them

within 2 and 10 pixels in the x- and y-directions. We then
replace each saturated pixel intensity with the value linearly
interpolated in time between the individual pixel’s previous
and subsequent unsaturated values that bracket the saturation
duration. Figure 2, left column, shows a sequence of original
AIA 1600 Å images on 2011 February 15: top panel, before
the impulsive phase when AIA observations had no saturated
pixels (01:47 UT); middle panel, at the peak of the impulsive
phase with the largest number of saturated pixels (01:52 UT);
and lower panel, during the gradual phase with no saturated
pixels (02:11 UT). Figure 2, right column, shows the
saturation-corrected images which differ from the original
images only in the location of the saturation-corrected pixels.
This empirical approach, while not suitable for photometric
analysis of the corrected images, does allow one to identify
flare ribbon locations (compare the original and corrected
panels of the middle row). Thus, the saturation-corrected
1600 Å image sequence provides sufficient information to
determine the reconnected flux using Equation (2).
Figure 3 shows the area-integrated light curves of the AIA

1600 Å image sequence at each step of the saturation removal
procedure. The dashed−triple-dotted curve, labeled “Original
saturated,” plots the total number of counts in the saturated
AIA 1600Å image sequence. The period from 01:49 to 02:10

Figure 1. Basic elements of the CSHKP two-ribbon flare model in (a) two
dimensions (2D; from Forbes 2000) and (b) three dimensions (3D; from
Longcope et al. 2007). Here, “R” indicates the location of the flare ribbons,
“CS” the current sheet, “A” the overlying arcade, “P” the erupting
plasmoid, “FR” the 3D flux rope, “PIL” the polarity inversion line, “X” the
site(s) of magnetic reconnection, “S” the separatrix boundary of the
erupting CME flux rope, and “C” the coronal flare loops formed by
magnetic reconnection.
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Results:  Observed Energy Release Correlates with POFE
• X-ray Energy (X-ray fluence ribbon mask area)

• CME Energy (really v2:  mass of 1016 gm assumed)
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POFE Correlates Strongly with Ribbon Mask Flux
• So what new information  does POFE provide?


• POFE provides actual number for energy, not just a correlation
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• POFE for ribbon mask and pre-eruptive calculation similar ( 4.7x1032 vs 5.6x1032 ergs)                                     

We Can Calculate Open Field Masks Prior to  Eruption
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SO: Ribbon Mask (Green) SO: Topogical Calculation with PFSS (Magenta)

Next Steps in this Project:
• Improve calculation pipeline (e.g. balance magnetic flux in ribbon masks)

• Are there databases with total energy release for events?

• Calculate region of opening (SO) topologically - see if correlations hold




