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Abstract

Climate change will amplify erosion rates as erosive power of rainfall will likely increase due to change in rainfall characteristics

(e.g., energy, intensity, duration as well as frequency). According to Intergovernmental Panel on Climate Change Fourth

Assessment report (IPCC AR4), it is projected that by mid-21st Century, the rainfall across southeastern US will both increase

and decrease in intensity, which will substantially affect rainfall erosivity. Few studies have estimated the impact of climate

change (e.g., rainfall intensity) on rainfall erosivity across US and around the world. However, previously published erosion

indices have discrepancies due to differences in methodologies (e.g., primarily omission of small and low rainfall intensity)

adopted in those studies. Therefore, the objective of this study was to estimate change in erosion indices for the period 2030-

2059 using the benchmark rainfall indices established for southeastern region of US. Hourly precipitation data were retrieved

from NA-CORDEX under Representative concentration pathways (RCP) 8.5. Results on change in erosion indices as a result

of climate change will be presented.
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1. BACKGROUND AND OBJECTIVES
Earth's average temperature is expected to be warmer between  1.1 to 5.4°C  by 2100.

  Fig 1: Projected temperature under different climate scenarios by 2100.  Source: Jeff Tollefson (2020) (https://www.nature.com/articles/d41586-

020-01125-x)

Change in rainfall characteristics with climate change ( e.g., Intensity, duration, and frequency).

For example: According to the Clausius-Clapeyron relation, precipitation intensity can be increased by 6-7%
per 1℃.

Southeastern, US has the greatest potential impact on rainfall erosivity than other parts of the country with  2000

to >10,000  .

Need to quantify a reliable projected potential of rainfall to erode soil (Rainfall Erosivity, R). 

[VIDEO] https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1638645506/agu-fm2021/2E-05-49-38-
11-60-DA-D7-90-36-24-07-0E-0F-64-9F/Video/ParallelCandidAnteater_aufjm5.mp4

 Fig 2: Soil erosion by water.    Source: TheGoodKid (https://www.youtube.com/watch?

v=N8C9OaBRW2g&fs=1&modestbranding=1&rel=0&showinfo=0)

( )
MJ.mm

ha.h.yr

https://www.nature.com/articles/d41586-020-01125-x
https://www.youtube.com/watch?v=N8C9OaBRW2g&fs=1&modestbranding=1&rel=0&showinfo=0
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2. STUDY SITE AND DATA

Observed rainfall:
15-min rainfall for 578 stations (1971-2010) from NCEI-NOAA. (http://www.ncei.noaa.gov/access/metadata/landing-
page/bin/iso?id=gov.noaa.ncdc:C00505)

Data screening:

1. 20.11 (YY.MM) approach: minimum number of years and months per year to pass screening (Mcgehee and
Srivastava, 2018).

2. 187 out of 578 stations passed the screening method.

 

Fig 3: Locations of 187 observed precipitation stations after 20.11 screening.

Climate models:

Table 1. Description of climate models from NA-CORDEX
(https://www.earthsystemgrid.org/search/cordexsearch.html).

NOTE: Hist =1970-1999 , rcp8.5= 2030-2059, Precipitation frequency= 1 hour & spatial resolution=50 Km .
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3. RESEARCH METHODOLOGIES

STEP-1: Bias-Correction.

Simplified representation of physical laws.

Quantile-Delta mapping (QDM):

where,

 Bias-Corrected rainfall

 Rainfall

 Cumulative distribution probability function (CDF),
 Observed,

 Climate model,


 Historical, and

 Projected/future scenarios.

STEP-2: Generation of 15-min precipitation.

Modified stochastic method (Socolofsky et al. (2010)
(http://ascelibrary.org/doi/10.1061/%28ASCE%291084-
0699%282001%296%3A4%28300%29), Mirhosseini et al. (2013
(http://link.springer.com/article/10.1007/s10113-012-0375-5))).

[VIDEO] https://res.cloudinary.com/amuze-interactive/image/upload/f_auto,q_auto/v1638489526/agu-fm2021/1b-73-
70-31-f8-84-34-8b-0b-6a-ba-54-cc-5d-1b-97/image/gif_yb1uck.mp4

Fig 4: Stochastic generation of 15-min rainfall using cumulative distribution function (CDF).

where,

𝑫 = Depth of measured/hourly rainfall

a  = Probability corresponding to 𝑫 

𝑼 = Uniformly distributed random number between 0 and a

𝑫 = ⁡ rainfall event depth corresponding to 𝑼

STEP-3: Rainfall Erosivity(R).

Modified Agricultural Handbook (AH)−537 using recommendations from Agricultural Handbook−703
(https://agris.fao.org/agris-search/search.do?recordID=XF2015047686) and  Mcgregor et.al (1995)
(https://elibrary.asabe.org/abstract.asp?aid=27921).

Recommendations:

1. High-resolution precipitation (fixed-intensity)

2. Includes all storms

3. Energy equations of AH-537

4. Maximum Intensity should not limited.

5. No regression between R and rainfall.

a) Rainfall energy per unit depth:

​​

b) Storm Erosivity:

c) Average annual erosivity:
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https://elibrary.asabe.org/abstract.asp?aid=27921


where,

I= rainfall intensity ,


P=rainfall depth (mm),

I  = maximum 30-minute rainfall intensity.

p = number of time segments in the event,

t=single time interval,

j = index of the number of years used to produce an average,

n = number of years used to obtain average R,

k = index of the number of storms in each year, and

m = number of storms in each year.

Narration:
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4. RESULT AND DISCUSSIONS

1. Bias-correction:

Fig 5: Quantile-quantile plot for biased-corrected and historical precipitation under different climate models
(NOTE: BC= bias-corrected).

Fig 6:  Taylor diagram for biased-corrected and historical hourly precipitation under different climate models.



2. Disaggregation:

Fig 7: Statistical comparison between observed and disaggregated precipitation for winter (February) and
summer (August).

Fig 8: Comparision of precipitation intensity between observed(15-min), hourly-observed, and synthetic (15-
min) precipitation.

3. Rainfall Erosivity:



Fig 9: Observed annual rainfall erosivity (1971-2010) for Southeastern, USA.

[VIDEO] https://res.cloudinary.com/amuze-interactive/image/upload/f_auto,q_auto/v1638739142/agu-fm2021/2e-05-
49-38-11-60-da-d7-90-36-24-07-0e-0f-64-9f/image/ei_argf8d.mp4

Fig 10: Projected annual average rainfall erosivity (2030-59) under different climate models.

Fig 11: Boxplot for the projected relative change in annual rainfall ersovity (in %) with reference to 1970-2010
under different climate models.
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5. SUMMARY AND ACKNOWLEDGMENT
Generated 15-min projected rainfall improved over hourly data.

Annual rainfall erosivity is likely to increase spatial coverage.

More reliable projected rainfall erosivity.

LIMITATIONS:
Rainfall characteristics also might not sufficiently represent observed characteristics. 

Estimation of rainfall erosivity is applicable only for Southeastern, US.

Narration:
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ABSTRACT
Climate change will amplify erosion rates as erosive power of rainfall will likely increase due to change in rainfall
characteristics (e.g., energy, intensity, duration as well as frequency). According to Intergovernmental Panel on Climate
Change Fourth Assessment report (IPCC AR4), it is projected that by mid-21  Century, the rainfall across southeastern US
will both increase and decrease in intensity, which will substantially affect rainfall erosivity. Few studies have estimated the
impact of climate change (e.g., rainfall intensity) on rainfall erosivity across US and around the world. However, previously
published erosion indices have discrepancies due to differences in methodologies (e.g., primarily omission of small and low
rainfall intensity) adopted in those studies. Therefore, the objective of this study was to estimate change in erosion indices for
the period 2030-2059 using the benchmark rainfall indices established for southeastern region of US. Hourly precipitation
data were retrieved from NA-CORDEX under Representative concentration pathways (RCP) 8.5. Results on change in
erosion indices as a result of climate change will be presented.
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