Closing the Gap from Uncertainty Quantification to Decision Making: Integrated Prediction-Optimization Modeling of the Critical Infrastructure Flood Resilience

Erhan Kutanoglu¹, Wen-Ying Wu², Sabiha Tabassum², Ashutosh Shukla², Zong-Liang Yang³, Carey King², Surya Santoso², Brent Austgen¹, John Hasenbein², and Joshua Yip¹

¹The University of Texas at Austin ²University of Texas at Austin ³Univ Texas Austin

November 22, 2022

Abstract

Our research team is involved in several projects that seek to integrate the science-based prediction models of flood-causing events such as hurricanes with the decision-making models for critical infrastructure resilience. To this end, we use the state-ofthe-art hydrological models such as WRF-Hydro and ADCIRC to simulate potential realizations of inland and coastal flooding events caused by tropical storms. We use these simulations to generate statistically sound scenarios to populate the inputs of several resilience-based decision making models, all developed using the state-of-the-art scenario-based stochastic and robust optimization methodologies. We identify three time lines where these models can be used to improve the quality of decision making processes: (1) Short-term preemptive resource allocation (preparedness) just before impending tropical storms, (2) Mid-term hardening and resilience investment strategies (mitigation) within a multi-season horizon considering multitudes of potential storms, and (3) Long-term resilience investment and infrastructure design strategy development considering potentially increasing flooding risks due to climate change and sea level rise. We present the overall framework that our team developed relying on the team's in-progress work, particularly for the short- and mid-term prediction-optimization models. We use two specific infrastructures as examples to instantiate our models: (1) Evacuation of patients from healthcare facilities (hospitals and nursing homes), and (2) Substation hardening and preparation for power grids. To create realistic, high-resolution case studies, we consider historical and synthetic storms that impact actual healthcare facilities and power grid for Texas. **AGU 2021**

CLOSING THE GAP FROM UNCERTAINTY QUANTIFICATION TO DECISION MAKING: INTEGRATED PREDICTION AND OPTIMIZATION FOR INFRASTRUCTURE FLOOD RESILIENCE

ERHAN KUTANOGLU

Operations Research and Industrial Engineering Cockrell School of Engineering The University of Texas at Austin erhank@austin.utexas.edu

Team

- Jackson School of Geosciences
 - Zong-Liang Yang
 - Wen-Ying Wu
 - Sabiha Tabassum
- Electrical Engineering
 - Surya Santoso
 - Joshua Yip

- Operations Research and Industrial Engineering
 - John Hasenbein
 - Brent Austgen
 - Ashutosh Shukla
- Energy Institute
 - Carey King

The University of Texas at Austin Cockrell School of Engineering

Hurricanes' Impacts

- Infrastructure
 - Power grid: substations, transformers, power lines
 - IT: data centers, power sources
 - Road network: bridges, highways
 - Healthcare: hospitals, nursing homes
 - Supply chains: chemical plants, ports, retail
- Community and people
 - Housing
 - Patients, nursing home residents, vulnerable communities
- Cascading impacts

Resilience Decision Making Cycle

Preparing the Power Grid

Integration

Integrated Prediction and Optimization-based Decision Support

Track and Rainfall Map

Uncertainty Quantification – Scenario Generation

Scenario Generation: One Cone of Uncertainty, Multiple Tracks

Uncertainty Quantification – Precipitation Shifting

10 50 100 200 300 400 500 600 700 800 900

Hurricane/Rain to Flood Modeling

Power Grid Modeling

Power Grid Modeling

32 GW

Coordinating Pre/Post-Event Decisions

Power Grid Resilience

Resilience is not just about impending events

The National Academies of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

Enhancing the

RESILIENCE

of the Nation's Electricity System

What Comes First? Infrastructure or the resilience?

- How should we **respond to disasters** in the future?
 - Develop a resilience strategy (mitigation, preparedness and recovery) for projected extreme weather events given future climate projections
- How should we design/adapt the infrastructures of the future for resilience?
 - Develop a strategy for transitioning the design of the infrastructure (generation mix, batteries, microgrids for power grids) so that it is more resilient by design

Projects

- NSF: CoPe EAGER: Addressing Human-Centric Decision-Making Challenges from Coastal Hazards via Integrated Geosciences Modeling and Stochastic Optimization
- UT EI: Defending the Electricity Infrastructure against Extreme Weather Events, Now and in the Future
- Sandia: Critical Node Identification, Vulnerability Modeling, and Topology Optimization for the Electric Grid
- UT Planet Texas 2050: Hurricane-Resilient Healthcare Infrastructure Modeling with Integrated Flood Prediction and Stochastic Logistics Optimization

More UT at AGU

H25D-1087: Modeling the impacts of tropical storms and hurricanes on watershed ... 4:00pm-6:00pm Dec 14 (Central) Zong-Liang Yang A25H-1767: Changes in Extreme Rainfall Events under Global Warming: A Case Stu...

Thank you!

Questions, Comments?

Contact: Erhan Kutanoglu erhank@austin.utexas.edu

sites.utexas.edu/erhan