
P
os
te
d
on

22
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
94
45
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Using Machine Learning Models and Logistic Regression Analyses

to Develop a Comprehensive Understanding of Extinction Risk For

Marine Animal Phyla Across the Paleozoic

Adarsh Ambati1, Theo Chiang1, Anya Sengupta1, Pedro Monarrez1, Michael
Pimentel-Galvan1, Noel Heim2, and Jonathan Payne1

1Stanford University
2Tufts University

November 22, 2022

Abstract

Extinction within the Paleozoic era has been studied in the past, but there still lacks a comprehensive understanding of how

extinction risk changed throughout it. Our research project aims to bridge this gap by exploring extinction risk in relation

to major Paleozoic phyla and ecological characteristics. Using R, we analyzed the Stanford Earth Body Size dataset, which

includes extensive data (n=8816) on Paleozoic marine animals. In Step 1, regression coefficients were formed, indicating whether

being in one of the 6 phyla in each period of the Paleozoic era conferred greater or less extinction risk. In Step 2, the examined

ecological characteristics included ocean acidification resilience, feeding patterns, body volume, length, surface area, motility,

tiering, circulatory systems, and respiratory organ type. In Step 3, 6 binomial machine learning models were created using the

traits from Step 2 to determine whether an individual genus went extinct in a particular period. Our Step 1 results confirm

that within these timeframes, while certain phyla have greater extinction risk, extinction risk was not uniform across these

groups. Our Step 2 results show certain traits provided advantages and disadvantages for an organism’s extinction risk. One

interesting pattern was that the only consistently non-significant traits were body length, area, and volume. Likewise with

Step 1, extinction risk for each ecological characteristic varied across the Paleozoic. Finally, in Step 3, the results were largely

successful. Most of the six models had an accuracy above 80% with the highest being 92% in the Cambrian. The areas under

the Precision-Recall and the Receiver Operating Characteristic Curves were all in the acceptable (<0.6) range, demonstrating

that the model has low false positive/ negative rates and is able to distinguish between what trait indicates extinction or

survival for each period. Our research project identified phyla at risk of extinction in each period of the Paleozoic, determined

which natural traits incited greater extinction risk, and demonstrated machine learning models trained on fossil descriptors can

predict when an individual genus became extinct. Our results confirmed that extinction risk is not consistently dependent on

a singular factor nor is it constant across every period of the Paleozoic era.
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Extinction within the Paleozoic era has been studied in the past, but 
there still lacks a comprehensive understanding of how extinction risk 
changed throughout it. Our research project aims to bridge this gap by 
exploring extinction risk in relation to major Paleozoic phyla and 
ecological characteristics.

Using R, we analyzed the Stanford Earth Body Size dataset, which 
includes extensive data (n=8816) on Paleozoic marine animals. In Step 
1, regression coefficients were formed, indicating whether being in one 
of the 6 phyla in each period of the Paleozoic era conferred greater or 
less extinction risk. In Step 2, the examined ecological characteristics 
included ocean acidification resilience, feeding patterns, body volume, 
length, surface area, motility, tiering, circulatory systems, and 
respiratory organ type. In Step 3, 6 binomial machine learning models 
were created using the traits from Step 2 to determine whether an 
individual genus went extinct in a particular period. Our Step 1 results 
confirm that within these timeframes, while certain phyla have greater 
extinction risk, extinction risk was not uniform across these groups. Our 
Step 2 results show certain traits provided advantages and 
disadvantages for an organism's extinction risk. One interesting pattern 
was that the only consistently non-significant traits were body length, 
area, and volume. Likewise with Step 1, extinction risk for each 
ecological characteristic varied across the Paleozoic. Finally, in Step 3, 
the results were largely successful. Most of the six models had an 
accuracy above 80% with the highest being 92% in the Silurian. The 
areas under the Precision-Recall and the Receiver Operating 
Characteristic Curves were all in the acceptable (>0.6) range, 
demonstrating that the model has low false positive/ negative rates and 
is able to distinguish between what trait indicates extinction or survival 
for each period.

Our research project identified phyla at risk of extinction in each period 
of the Paleozoic, determined which natural traits incited greater 
extinction risk, and demonstrated machine learning models trained on 
fossil descriptors can predict when an individual genus became extinct. 
Our results confirmed that extinction risk is not consistently dependent 
on a singular factor nor is it constant across every period of the 
Paleozoic era.

Using Machine Learning Models and Logistic Regression Analyses to Develop 
a Comprehensive Understanding of Extinction Risk For Marine Animal Phyla 

Across the Paleozoic

The dataset we used included nine biological and ecological traits, and 
it also includes taxonomic groupings and phyla. After making logistic 
regression models for each trait, we then made regularized regression 
models predicting extinction in each period based on these 
characteristics. Below are the Paleozoic periods that we are analyzing.

Cambrian
Ordovician

Silurian
Devonian

Carboniferous
Permian

All analyses and plots were made using the programming language R. 
During stages 1 and 2, the following were our categories of analysis.
1. Phyla - Echinodermata, Mollusca, Chordata, Arthropoda, 
Brachiopoda, Foraminifera (Taxonomic Group)
2. Descriptors - buffering, feeding patterns, motility, oceanic tiering, 
respiratory organ type, circulatory system type, length, surface area, 
volume

For Stage 3, we built regularized binomial regression models.

Figure 1: Summary of Analysis Stages

In Stage One, we conducted logistic regression analyses for each stage of 
the Paleozoic era for each of the major phyla. The goal was to identify the 
phyla that have a predilection for extinction during each stage. As evident 
in Figure 2, we came across some impressive results as 23 of the 36 data 
points had a significant regression coefficient. 12 data points had a 
significantly greater extinction risk while 11 were significantly selected for 
survival. Among various phyla, coefficient values were high in magnitude, 
but no groups were consistently significant across all periods. However, 
specifically, Mollusca was generally selected for survival while 
Echinodermata was generally selected for extinction. For Brachiopoda, 
you may notice the relatively low coefficients in background periods but a 
significant extinction risk during the major extinction events in Devonian 
and Permian. This is in line with the understanding that these extinction 
events devastated Brachiopoda populations.

In Stage Two, we conducted a logistic regression analysis and binomial 
test to determine which natural traits incited greater evolutionary 
selection. The examined factors included ocean acidification resilience 
(buffering), predatory nature, body volume, length, surface area, motility, 
tiering, circulatory systems, and respiratory organ type. The largest 
coefficient value was around -3.9 which demonstrated a high 
susceptibility of organisms with open circulatory systems for extinction 
during the Cambrian period. The majority of the data points were 
significant,30 of 54. Among these, the only consistently insignificant 
characteristics were factors associated with body size. This shows that 
body size had little impact on the extinction risk of organisms. 
Surprisingly, two descriptors out of nine were significant across the board, 
circulatory systems, and buffering. Although the type of circulation and 
amount of buffering that was selected for extinction varied across the 
Paleozoic.

Finally, in Stage Three, we built machine learning models for each period 
of the Paleozoic using the ecological factors that we tested in Stage Two. 
In the Cambrian, the model with the highest accuracy was 92%. In 
chronological order, the remaining periods had a model with the highest 
accuracies of 83%, 91%, 79%, 83%, and 84%. As evident, the Devonian 
appeared to have the lowest accuracy. We believe that with increased 
data and testing out alternative models, this accuracy can increase 
greatly.

Major Take-aways:

- Extinction Risk is not uniform across both geologic history or across 
taxonomic groups
- Certain traits can act as indicators for higher extinction risk; however, 
these too vary across geologic history
- These traits can even be used to create relatively accurate predictive 
models.

Future Research:

For future developments, we believe that completing analysis across the 
rest of geologic history could allow us to identify patterns of how 
extinction risk changes for each phylum and each trait across every period 
in Earth’s history. This could allow us to know how anoxic conditions 
affect extinction risk for each phyla/trait or how mass extinctions affect 
extinction risk for each phyla/trait.

For the machine learning model, we would like to test out Decision Tree 
or Random Forest Regression Models to predict the exact first and last 
appearance in geologic history for each genus. Finally, we will look into 
Building Neural Nets for this type of prediction

Adarsh S. Ambati(1), Anya Sengupta(1), Theo Chiang(1), Dr. Pedro Monarrez(2), Michael Pimentel-Galvan(2), Dr. Noel Heim(3), Dr. Jonathan Payne(2)
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Basic Info/Background

➢ Extinction is volatile and relies on many 
ecological and biological variables

➢ Nature of extinction risk varies across 
geologic time; we focus on the Paleozoic Era

Cambrian
Cambrian Explosion

542 mya

Ordovician
Late Ordovician Mass Extinction

488 mya

Devonian
The Devonian Mass Extinction

416 mya

Silurian444 mya

Carboniferous359 mya

Permian
End Permian Mass Extinction - 

299 mya

252 mya



Questions

1. Were certain taxonomic groups of organisms preferentially 
selected for extinction during the Paleozoic era?

2. Were certain types of organisms preferentially selected for 
extinction during the Paleozoic era?

3. Is it possible to predict when a particular genus goes 
extinct during the Paleozoic using 
characteristics/descriptors?



Methodology

➢ Phyla - Echinodermata, Mollusca, Chordata, 
Arthropoda, Brachiopoda 

➢ Descriptors - buffering, feeding patterns, 
motility, oceanic tiering, respiratory organ 
type, circulatory system type, length, surface 
area, volume

➢ Regularized binomial regression models(Step 
3) + logistic binomial regression(Step 1/2 ) 
➢ Built Using R
➢ Uses Stanford Earth Body Size Dataset 

(n=8816)



Methodology Cont.

➢ Step 1:  Binomial Logistic Regression Analysis on 
Phyla/Class/Order during each stage of Paleozoic 
identifying likeliness of extinction on each class

➢ Step 2: Binomial Regression Analysis on 
Phyla/Class/Order during each stage of Paleozoic 
identifying likeliness of extinction on each genus 
descriptor (ie predatory feeding, facultative 
motility, benthic tiering)

➢ Step 3: Developing simple machine learning model 
(using regularization) to predict whether a 
taxonomic group/specimen goes extinct in a 
specific period



Step 1:



➢ 23 of 36 data points were significant
○ 12 data points had a significant greater extinction risk
○ 11 data points were significantly selected for survival.

➢ Patterns
○ Mollusca — consistently selected for survival
○ Brachiopoda— (major extinction events in Devonian 

and Permian, reflected in graphs)
○ Echinodermata — consistently selected for extinction

➢ Extinction Risk was not uniformly felt across 
all major phyla in the Paleozoic

Step 1: Key Findings



Step 2:



Step 2: Key Findings

○
➢ 30 of 54 data
         points were 
         significant

➢ Patterns
○ Body Size
○ Circulatory

Systems 
(very 
volatile)

○ Respiratory 
Organ Type



Step 3: Machine Learning Model
➢ 6 binomial regression models with regularization for each period

○ Regularization is helps in two major ways:
■ Reducing the variance of the model so as to not cause it to become overfit to the training data
■ Helps determine the features that causes the model to increase in variance and removes or 

shrinks their contribution to the model. (Essentially, features that do not predict have their 
coefficients reduced)

➢ Features:
○ Circulatory systems
○ Type of Respiratory Organ
○ Feeding (Predator or Prey)
○ Tiering (Water Column or Benthic)
○ Motility (Freely Moving or Non-motile)
○ Ability to withstand Ocean Acidification 
○ Maximum length
○ Maximum Area
○ Maximum Volume

➢ Predicting Outcome: whether or not a genus went extinct in a particular period



Step 3: Machine Learning Model

Three types of regression models (lasso, elastic net, and ridge regression) were 
tested:

❖ Lasso: Focused on Feature Elimination (penalizes by removing)

❖ Ridge Regression: Focused on Feature Coefficient Reduction (penalizes by 
shrinking)

❖ Elastic Net: middle of both

❖ Nomenclature: Lasso : α= 1; Ridge : α= 0; Elastic net:  0< α<1

❖ The best model identified by running the program for α values between 0-1



Step 3: Machine Learning Model





Step 3: Machine Learning Model Results

Area under ROC Curve of 0.93 (ability to distinguish extinction and survival) and Area 
under PR Curve of 0.80 (fewer prediction errors)



Step 3: Machine Learning Model Results



Major Takeaways

● Extinction Risk is not uniform across both geologic history or across taxonomic 
groups

● Certain traits can act as indicators for higher extinction risk; however, these too 
vary across geologic history

● These traits can even be used to create relatively accurate predictive models 
approximating what period a genus went extinct

● One major goal of our project was to act as a comprehensive foundation for 
future research: each one of the traits or phyla from stages one and two can be 
further studied.



Future Research

● Completing analysis across the rest of geologic history
○ Identifying patterns of how extinction risk changes for each phyla and each 

trait across every period in Earth’s history
■ Ie. How anoxic conditions affect extinction risk for each phlya/trait
■ Ie. How mass extinctions affect extinction risk for each phlya/trait

● Testing out Decision Tree or Random Forest Regression Models to predict exact 
first and last appearance in geologic history for each genus

● Look into Building Neural Nets for this type of prediction
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