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Abstract

\justifying Deep learning has established itself as the go-to methodology for automated event discrimination. However, these

methodologies still provide suboptimal performance in many classification tasks, including the seismic source categorization

problem considered in this article. Here, we develop a novel deep learning framework that allows for the direct integration

of environmental context, which we refer to as Physically-Augmented Deep Learning (PADL). Specifically, we augment the

learning process by incorporating seismic velocity models generated from a physics-based simulator. Our experiments couple

real observational waveform data and synthetic velocity models from the Tularosa Basin region and demonstrate near-perfect

classification accuracy when employing PADL. A robust set of ablation studies on joint and independent convolutional neural

networks and various combinations of real and simulated input data confirm the efficacy of our PADL framework.
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Key Points:8

• Inclusion of the velocity model as a prior in multiview fusion model improves clas-9

sification accuracy over models trained on signals alone.10

• Multiview deep feature fusion of velocity models and explosion waveforms is ro-11

bust to weakly discriminatory inputs from one view.12

• The transferability of learned features between synthetics and real waveforms is13

low, likely due to the simplicity of the physical model.14
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Abstract15

Deep learning has established itself as the go-to methodology for automated event discrimi-16

nation. However, these methodologies still provide suboptimal performance in many classi-17

fication tasks, including the seismic source categorization problem considered in this article.18

Here, we develop a novel deep learning framework that allows for the direct integration of19

environmental context, which we refer to as Physically-Augmented Deep Learning (PADL).20

Specifically, we augment the learning process by incorporating seismic velocity models gen-21

erated from a physics-based simulator. Our experiments couple real observational waveform22

data and synthetic velocity models from the Tularosa Basin region and demonstrate near-23

perfect classification accuracy when employing PADL. A robust set of ablation studies on24

joint and independent convolutional neural networks and various combinations of real and25

simulated input data confirm the efficacy of our PADL framework.26

1 Introduction27

With greater research emphasis being placed on automation and low-yield events (Maceira28

et al., 2017), robust solutions to signal classification become increasingly difficult to real-29

ize. Recent advances in the fields of machine learning and especially deep learning have30

prompted their adaptation to identify signals of interest (SOI) by automatic extraction of31

features from the abundance of seismic data gathered over a long history of recorded events.32

To meet the challenges posed by seismic event discrimination, we adopted deep learning33

frameworks for the development of our classification engines. Deep learning networks are34

biologically-inspired, computational reasoners that have demonstrated unprecedented suc-35

cesses on a variety of decision tasks, including recognition of objects in images and video,36

language translation, self-driving automation, and competitive gaming. Their ability to37

automatically learn rich feature representations, often with low fidelity data, and identify38

distinguishing attributes make them ideally suited for the tactical environments where sim-39

ilar data quality issues exist.40

Furthermore, human decision-making is rarely supported from a single source of in-41

formation. Decisions made based on one source can lead to high degrees of Type 1 and42

Type 2 errors, which is a growing concern for power-based signal classifiers as the yield of43

source events decreases (Maceira et al., 2017). A way to overcome erroneous detections is44

to corroborate the detections of many classifiers; such is the basis of array-level processing.45
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But what if we are limited to station- level processing where no corroboration between sta-46

tions is allowed? Then additional sources of information are restricted to those that are47

co-located and co-collected. In this situation, which is the target performance environment48

for next-generation signal detectors and classifiers (Maceira et al., 2017), we are compelled49

to utilize all streams of data of the source event to maximize confidence in our predictions.50

In conjunction with the rise of deep learning, this leads us to consider Multiview Deep51

Learning (MDL) (Sun et al., 2019) techniques to capture features of multimodal data in52

this effort.53

A strength of deep neural networks lies in their modularity. Just like putting together54

the pieces of a puzzle, we can harness multiple data types of the same source event, called55

views, to extract richer feature descriptors of the event. We adopt techniques from a major56

category of MDL, focused on joint representation learning, where, in our application, hier-57

archical seismic xS time-series features are fused with environmental xE features to form58

the joint representation x.59

x = f(xS , xE) (1)

Within the structure of a deep neural network, any data view can be represented modu-60

larly by their own branch of sequential layers xS,E = fS,E(xS,E). The merging of single-view61

representations to form the joint representation is called representation fusion, an opera-62

tion in which the flexibility and modularity of neural networks has enjoyed a broad range63

of applicability, for example, in computer vision (Ouyang et al., 2014; Jiang et al., 2018),64

high-performance computing (Wang et al., 2015), and sentiment analysis (Nojavanasghari65

et al., 2016). So far as we are aware, no effort has been made to utilize these techniques on66

seismic data with environmental context simultaneously. Therefore, we aim to bring state-67

of-the-art MDL models to time-series classification with environmental context to form our68

Physically-Augmented Deep Learning (PADL) framework in an attempt to attain highly69

accurate and robust models for classification of explosive sources.70

2 Related Work71

There has been a myriad of methodologies investigated for event discrimination based on72

seismic waveform characteristics Seismic event discrimination has been explored for events73

such as earthquakes, explosions, and some tactical signatures like vehicles. However, to the74

best of our knowledge, there is a dearth of research, in the open literature, that attempts to75
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utilize our novel approach of integrating physical context with deep learning in a multiview76

fusion architecture.77

3 Seismic Velocity Models as Physical Context Priors for Joint Repre-78

sentation Learning79

Resultant seismograms are a function of the geological media through which they prop-80

agate. Multiview representations of such geological media are, by and large, left out of the81

training process when performing seismic signal classification. Automatic joint representa-82

tion learning paradigms offer an opportunity to utilize seismic velocity models a priori where83

joint features of the time series and known seismic profiles are conjointly processed to pro-84

duce a signal classification. In this section, we describe the creation of a synthetics dataset85

and our efforts to realize the ability of PADL models to jointly represent these synthetics86

with the velocity models used to create them. Additionally, we report on the efficacy of87

pretraining on this relatively large synthetic dataset in a transfer learning scheme for PADL88

models.89

3.1 Imposed-Variance Synthetic Explosion Dataset90

We embark on an effort to generate a dataset of synthetic seismograms that reflect91

the known conditions of the Humming exercises within the Tularosa Basin. Waveforms92

for the Imposed-Variance Synthetics Explosion Dataset (IVSED) are generated using an93

open source software for seismic simulation called Computer Programs in Seismology (CPS)94

(Herrmann, 2013) from St. Louis University. The specific CPS routine used takes in a95

seismic velocity model and station layout and then outputs a set of synthetic waveforms96

as depicted in Figure 1. Depiction of the modeling environment utilized with Computer97

Programs in Seismology (CPS) software to generate synthetic seismograms, Figure 1. The98

seismic model we use is one-dimensional, isotropic, flat-layered, and constant-velocity earth,99

meaning that sequential flat layers (denoted li) of homogenous physical parameters with100

one-dimensional boundaries conditions define the model. Explosion origins are defined at101

the earths surface. We choose a constant station layout for synthetic generation runs con-102

sisting of 19 stations logarithmically spaced between 0.01km and 600km from the explosion103

origin. Each station records 2.56 seconds around the initial phase arrival with seven channels104

sampled at 100Hz, so there are 133 waveforms per set, each 256 points in length.105
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Each layer of the seismic velocity models consists of ten parameters describing physical106

properties of the earths interaction with pressure waves. We chose six of those ten to alter107

in the creation of IVSED:108

• H - layer thickness (km)109

• VP - compressional wave velocity (km/s)110

• VS - shear wave velocity (km/s)111

• ρ - rock density (gm/cm3)112

• QP - compressional wave quality factor113

• QS - shear wave quality factor114

Figure 1. Depiction of the modeling environment utilized with Computer Programs in Seismol-

ogy (CPS) software to generate synthetic seismograms. Seismograms are collected at each of the

stations.

Based on reported details of the surface rock material in the Humming exercises as115

well as seismological differences of each explosion origin within the Tularosa Basin, we116

choose four velocity models as the basis environments for all synthetics. As a result, these117

four baseline velocity models represent three classes of explosions (Figure S5) with the118
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ANFO explosion class comprising two of the four baseline models. The most prominent119

difference between these four baseline velocity models is the top-layer rock material, one of120

rhyolite, granite, quartz-latite, or alluvium. These four rock materials were specified in their121

respective Humming exercise data reports. The parameters of subsequent layers are derived122

from seismological studies of the Tularosa Basin (Reinke & Herrin, 1977; Adams & Keller,123

1994; Sinno et al., 1986; Bonner et al., 2013) where each of the parameters are identical124

from the fourth layer onwards. We exploit the uniformity of the last four seismic layers125

in an experiment in Section 4 to highlight the contribution of the difference that makes a126

difference for inputs to a joint classifier.127

Because our primary goal is to understand the utility of jointly representing explosion128

waveforms and velocity model features, sufficient variation for both inputs per class is nec-129

essary within the classification pipeline. Therefore, we impose variance on the parameters130

of each of the four baseline velocity models by drawing from a Gaussian centered on the131

value of the parameter. The variance of each Gaussian is chosen as a fraction of the pa-132

rameter value upon which the Gaussian is centered. We generate synthetics from velocity133

models drawn in this way at eight levels of imposed variance: 0.001, 0.01, 0.05, 0.1, 0.2,134

0.3, 0.4, and 0.5. Thus, the six parameters from the velocity models depicted in Figure135

S5 at each layer are varied by as little as 0.1% up to 50% of their baseline value. Velocity136

model parameters for each level of imposed variance were drawn twice, thus constituting137

16 different perturbations of the baseline velocity model per shot. Four shots for each class138

were chosen to further increase the population of velocity models drawn. Thus, the IVSED139

theoretically consists of 25,536 waveforms. However, some combinations of parameters yield140

NaN values for time series or flat waveforms with no signal. We remove these instances141

from the resultant dataset, leading to a reduced size of 24,192 waveforms. Each synthetic142

is detrended by a 10th order polynomial function, filtered between one and 30Hz, and then143

tapered to zero from 1% of each end.144

3.2 PADL with Seismic Time Series and Velocity Models145

In this section, we apply MDL techniques in four experiments designed to characterize146

the IVSED and Humming datasets as well as the PADL architecture in terms of classification147

performance. We prepare a convolution-based PADL fusion architecture (Figure 2) to jointly148

learn features of the time series and physical context in the form of the seismic velocity149

models. We define the PADL model as three separate branches: 1) the time-series branch,150
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dedicated to capturing convolutional features of the input waveforms, 2) the velocity model151

branch, dedicated to learning independent features from the input velocity models, and152

3) the fusion branch, dedicated to learning combinations of features from the independent153

branches via independent feature fusion.154

The time-series branch is comprised of seven convolutional blocks, which are sequential155

convolution, activation, batch normalization, and max pooling operations, followed by a156

flatten operation and fully-connected layer before being concatenated to the output of the157

velocity model branch. To capture multi-scale features in the convolutional layers, we use a158

decreasing kernel size from seven to three as shown in Figure 2 as well as L-2 regularization159

of the weights with coefficient 10−5. The first, second, and third convolutional layers have160

128, 64, and 32 filters respectively. All convolutions use a stride size of one. The output of161

each convolutional layer is zero-padded to be the same shape as its input and is followed by162

a ReLU activation function. Each max pooling layer uses a pool size factor of two.

Figure 2. PADL fusion architecture used to test performance on IVSED dataset as well as

transfer learning generalizability to the real Humming dataset. We utilize convolutional blocks

in the Time-Series branch and simple fully-connected layers in the PADL branch. Concatenation

fusion joins the two branches, then fully-connected layers are used in the Fusion Branch to learn

joint features.

163
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The PADL branch is comprised of three fully-connected layers with the number of nodes164

per layer scaled up to match the output dimensionality of the time-series branch as shown165

in Figure 2 to enable feature-wise concatenation of the independent branch outputs. ReLU166

activation function is used for these fully-connected layers. The fusion branch is designed167

to learn combinations of features from the input branches. We design the fusion branch168

to be three convolutional blocks with 32 filters per layer with ReLU activation functions.169

We flatten the penultimate layer before normalizing into classification probabilities with a170

softmax layer. All models in this section are trained using the Adam optimizer (Kingma &171

Ba, 2014) with the custom learning rate schedule from Section S2, which we have found to172

be an essential tool for enabling consistent results.173

We make use of IVSED in a transfer learning scheme where the larger synthetics dataset174

is used to pretrain PADL model weights to as a starting point for training on real Humming175

signals. We further test the effect of velocity models by implementing class-matched and176

random assignment rules to corresponding signals. One model for each combination of177

transfer learning stage (pretraining or finetuning) and velocity model assignment method178

(random or matched) is trained and evaluated on a test set of real signals from the Humming179

dataset and velocity models from IVSED (Figure S9). In the experiment, weights of the180

pretrained model are either frozen, which halts the weight updates to the pretrained model,181

or trainable in the finetuning phase. Results of this experiment are presented in Figure 5.182

4 Results183

Classification results are presented on the real Humming dataset as well as on the184

synthetic IVSED dataset in various training schemes to elucidate performance behavior on185

single view and multiview deep learning models. To set the stage for comparison to multiview186

PADL models, we first examine single view baselines by implementing and studying the187

effect of a learning rate scheduler described in Section S2 as well as further characterizing188

the Humming dataset by visualizing geographically distributed test performance (Section189

S3). Finally, we present performance benchmarks on IVSED and comparisons that quantify190

the discriminatory benefit of adding seismic velocity models in a PADL architecture in191

Section 4.1, as well as a study of synthetics feature transferability to real explosions in192

Section 4.2.193

–8–



manuscript submitted to Geophysical Research Letters

4.1 Effect of Velocity Model Parameter Variance194

Because IVSED features perturbations of the velocity models with increasing variance,195

we find it prudent to first evaluate the effect of this imposed variance on the performance196

of an independent convolutional deep learning model for time-series classification. In this197

experiment, the time-series branch is used alone to learn on the waveforms only in IVSED.198

We partition IVSED first into groups of imposed variance and then into a training set and a199

testing set in a ratio of 4:1. From there, the training set is used in a 10-fold cross validation200

scheme where class-balanced splits are used to compute training and validation accuracies.201

The examples from each validation split in the cross-validation scheme are not used to train202

on. After training on each of the k-folds, accuracy on the test set is computed. Each model203

is trained for 200 epochs, and the accuracies reported in Figure 3 are computed from each204

model at the end of the 200 epochs. No early stopping criteria were used during training.205

The results of the experiment on imposed variance are presented in Figure 3. As206

imposed variance increases, we observe a slight drop in training accuracy and a large drop207

in both validation and test accuracy. Because all other factors are held constant during208

training, we attribute this loss of generalizability to increasing dissimilarity of waveforms209

drawn from velocity models of increasing imposed variance. In other words, as velocity210

model distributions overlap, so to do the waveforms that they produce.211

To further quantify the effect of adding velocity models to a multiview model, we212

design another experiment in which we test two different assignment rules to pair velocity213

model with corresponding real waveforms in the Humming dataset. We train 30 models214

by randomly assigning velocity models to a waveform of the same class and 30 models by215

randomly assigning velocity model to a waveform regardless of class. This procedure is216

repeated on the seismic phase arrivals of the full Humming dataset. Validation accuracies217

of this experiment are reported in Figure 4.218

The difference between matched (green) and random (orange) performance distribu-219

tions clear and expected. Corroborating time-series features with highly discriminatory220

velocity model features by matching within a class leads to more accurate and precise gen-221

eralization. When velocity models are completely randomly matched, their discriminatory222

power is compromised, and the mean validation accuracy falls to within expectation of our223

classification benchmarks in earlier experimentation.224
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Figure 3. Boxplots of training, validation, and test accuracies of a deep convolutional neural

network trained on the IVSED seismograms. Each box represents a 10-fold cross-validation training

paradigm where model hyperparameters and architecture are held constant. White circles represent

possible outliers. As imposed variance increases, the generalization becomes harder likely due to

overlap in class-conditional distributions.

Figure 4. Test accuracy results of the velocity model assignment experiment where we assign

velocity models constructed for each class of explosion in IVSED to waveforms from the Humming

dataset. Velocity models are either assigned randomly (orange) or matched (green) to the class

label of the time series. 30 models were trained for each assignment method to create the test

accuracy KDE curves.
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4.2 Transferability of Deep Synthetic Features225

Two PADL models were pretrained on IVSED one for each velocity model assignment226

rule (class-matched or random). The expectation here is that assigning velocity models to227

signals randomly would yield results similar to single view models where the view is the228

signal alone. We see a large rise in training accuracy (89.42% to 100%) and a slight rise229

in test accuracy (74.39% to 78.35%), which are above expectation but within reasonable230

limits according to the results in Figure 4. Both pretrained models achieve perfect training231

accuracy, but as expected, we see a sharp drop in test accuracy (100% to 78.35%) when232

velocity model assignment is randomized.233

Results indicate that velocity model assignment in the pretraining phase is the main234

driver of generalizability when pretrained weights are frozen for the finetuning phase. It is235

noteworthy that the only combination of velocity model matching and weight freedom that236

does not classify with near perfect accuracy on the training set is Matched-Random and237

Frozen. Intuition about this result within the context of the other evidence suggests that,238

when provided signals and matched velocity models, very specific and non-generalizable fea-239

tures are learned, such that when randomly assigned velocity models are provided during240

finetuning, the new features learned are interacting destructively with previously learned241

features. We call this behavior negative transfer. In general, negative transfer occurs when242

features from unrelated sources are used in conjunction to perform a target task. When243

pretrained weights are frozen, low testing accuracies are observed as the level of random-244

ness increases which further corroborates the presence of significant negative transfer. An245

alternate conclusion from these observations is that IVSED signals are too unlike the real246

Humming signals to from which to learn conjointly beneficial features. Therefore, if we wish247

to utilize synthetics for scarce data situations, more sophisticated physics models are likely248

necessary in their synthesis.249

When pretrained weights are trainable during finetuning (Figure 5, bottom), we observe250

much better generalization behavior and a trend of decreasing generalizability when more251

class mismatch is introduced. Humming dataset baselines reveal that even random matching252

of velocity models can produce good results, and we see a mirroring of that behavior here253

when synthetic features are transferred. If our hypothesis that significant negative transfer254

is present, we can conclude that significant unlearning of synthetics features occurs. This255

would seem to be the case as trainable weight produce better generalization performance.256
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Figure 5. Results of the velocity model assignment experiment in a transfer learning scheme

where we attempt to boost classification results on the real Humming dataset by pretraining on

IVSED synthetics. The weights of the pretrained PADL model are either frozen (top) or trainable

(bottom) during finetuning to test the value of extracting features from synthetics as a seed to

learn on real signals. Velocity model pairing rules are shown to greatly affect generalizability while

allowing the pretrained weight to be retrained alleviates performance degredation due to the likely

presence of negative transfer.
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5 Conclusion257

Regional explosion classification on both physics-based synthetics and real data was258

attempted with multiview deep learning models. Because the geographical makeup of the259

earth directly influences resultant pressure waves captured by seismological monitoring sta-260

tions, we can view their joint representation as correlating source physics with waveform,261

an idea that would be highly beneficial to seismic signal classification. Thus we explore262

physically-relevant auxiliary information in the form of the seismic velocity models used263

to generated IVSED synthetic waveforms and supply them a prior to the multiview deep264

learning model, which defines the PADL framework.265

Indeed, our PADL model pairing seismic signals and velocity models performs well266

across a variety of experimental conditions. By controlling the variance imposed to the pa-267

rameters in each layer of the velocity models, we can even say that, under certain conditions,268

the joint representation of the multiple views induces improved performance over their sin-269

gular views independently. Because of this result we conclude that the PADL model does270

not simply overfit to a singular view but utilizes both views even when the discriminatory271

evidence of one view is particularly weak.272

Cross-validated classification results indicates the inclusion of velocity models improves273

the test accuracy over single view models trained on the waveforms alone. In fact, PADL274

models trained on velocity models alone score perfectly, leading us to conclude that the275

discriminatory information within seismic velocity models is dominant, specifically in the276

first two layers where the greatest difference between origin-based seismic parameters were277

greatest. However, it is likely that the learned velocity model features would not generalize278

well to new areas, which is why the inclusion of the waveform as a joint input is important.279

We test a transfer learning scheme between IVSED and the real Humming dataset,280

which returns similar results as synthetics alone since the discriminatory information within281

the velocity models is so strong. However, there is low transferability between synthetic282

signal and real signal features likely due to the simplistic physical models used to generate283

these synthetics. We believe the usefulness of synthetic waveforms here to be underrepre-284

sented and would recommend a more rigorous study of transferability between features of285

real signals and more sophisticated physical models286
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Data Availability Statement287

All waveform and auxiliary data for seismograms and velocity models are available for288

download through Zenodo https://doi.org/10.5281/zenodo.5762098289
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Deep multimodal fusion for persuasiveness prediction. In Icmi 2016 - proceedings309

of the 18th acm international conference on multimodal interaction. doi: 10.1145/310

2993148.2993176311

Ouyang, W., Chu, X., & Wang, X. (2014). Multi-source deep learning for human pose312

estimation. In Proceedings of the ieee computer society conference on computer vision313

and pattern recognition. doi: 10.1109/CVPR.2014.299314

Reinke, R. E., & Herrin, E. (1977). Geophysical model studies of the tularosa basin, new315

mexico. (Tech. Rep.). SOUTHERN METHODIST UNIV DALLAS TEX DALLAS316

GEOPHYSICAL LAB.317

Sinno, Y. A., Daggett, P. H., Keller, G. R., Morgan, P., & Harder, S. H. (1986). Crustal318

–14–



manuscript submitted to Geophysical Research Letters

structure of the southern Rio Grande Rift determined from seismic refraction profiling.319

Journal of Geophysical Research, 91 (B6). doi: 10.1029/jb091ib06p06143320

Sun, S., Mao, L., Dong, Z., & Wu, L. (2019). Multiview machine learning. doi: 10.1007/321

978-981-13-3029-2322

Wang, D., Cui, P., Ou, M., & Zhu, W. (2015). Deep multimodal hashing with orthogonal323

regularization. In Ijcai international joint conference on artificial intelligence (Vol.324

2015-Janua).325

–15–



Figure 1.





Figure 2.





Figure 3.





Figure 4.





Figure 5.




	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5

