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Abstract

It is now well-established that earthquakes change the seismic velocity of the near surface. There is certainly some understanding

of what mechanisms are responsible for these changes, but there remain many questions. One of these open questions is how

cracks and other microstructures within the rock control these changing velocities. Here we look at the nonlinear interaction

of two waves, one of which (the PUMP) simulates the effect of an earthquake and the other (the probe) senses the changes in

the travel time caused by the passage of the PUMP wave. We use a sandstone sample that is established to have a nonlinear

response that depends on the orientation of the sample layering. We study two samples with different orientations of this

layering, which we infer to be different orientations of the micro-structure. We show that the dependence of these changes on

applied load are exponential, with a characteristic load of 11.4-12.5˜MPa that is independent of sample orientation and probe

wavetype (P or S); this value agrees with results from the literature.
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Abstract

It is now well-established that earthquakes change the seismic velocity of the near

surface. There is certainly some understanding of what mechanisms are responsible for

these changes, but there remain many questions. One of these open questions is how cracks

and other microstructures within the rock control these changing velocities. Here we look

at the nonlinear interaction of two waves, one of which (the PUMP) simulates the ef-

fect of an earthquake and the other (the probe) senses the changes in the travel time caused

by the passage of the PUMP wave. We use a sandstone sample that is established to have

a nonlinear response that depends on the orientation of the sample layering. We study

two samples with different orientations of this layering, which we infer to be different ori-

entations of the micro-structure. We show that the dependence of these changes on ap-

plied load are exponential, with a characteristic load of 11.4-12.5 MPa that is indepen-

dent of sample orientation and probe wavetype (P or S); this value agrees with results

from the literature.

Plain Language Summary: After a large earthquake, it takes the materials sur-

rounding the epicentre some time to return to their original form. This includes changes

in the speed at which waves travel through the surrounding material. We do not fully

understand why this happens or more specifically what happens to cause these changes

in speed. To improve our understanding, we do experiments on rocks in the laboratory

to try to isolate different characteristics of the material that may control these changes.

Here we look at how changes in the applied load (how much force we apply to squeeze

the rock) changes these signals. We find that there is a characteristic load that is inde-

pendent of the orientation of the layering in the sample and they types of waves we use.

1 Introduction

Understanding the nonlinearity in the Earth’s response to waves is becoming more

important as we try to understand why and how large earthquakes change the proper-

ties of the Earth and to understand reservoirs in more detail. For the former, many stud-

ies show that the Earth’s seismic velocity drops, and subsequently recovers, as a result

of the passage of large waves from an earthquake (see Wang et al. (2019) for a good in-

troduction and Aoki (2015) for a concise overview of recent observations and the the-
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ory behind nonlinear elasticity). At a smaller scale, both induced and pre-existing frac-

tures represent pathways for fluids in reservoirs (e.g. CO2, water, oil and gas). A non-

linear Hooke’s law is becoming a recognized driver of change in such reservoirs (Asaka

et al., 2018). Here, we attempt to simulate this response using a PUMP/probe exper-

iment (Renaud et al., 2008, 2011; Gallot et al., 2015) that tracks the response of a low-

amplitude probe wave as forced by a large-amplitude PUMP wave. (The terminology

’PUMP’ for the stronger wave and ’probe’ for the weaker sensing wave is well-established.

For clarity, we use uppercase ’PUMP’ to indicate the stronger wave.) We use a uniax-

ial load to change the properties of existing fractures to learn how these properties af-

fect the nonlinear signal.

The first reports of non-linear behaviors in rocks (Birch, 1960) and other materi-

als (Hughes & Kelly, 1953) are decades old. Many theoretical models address this non-

linearity, ranging from classical nonlinearity (involving higher-order expansions of Hooke’s

Law) to various phenomenological models to describe additional effects observed in rocks

that are not predicted by the classical theory. A detailed overview of this theory is be-

yond the scope of this experimental paper, but we summarize relevant literature here.

Norris and Johnson (1997) derive the equations of motion for classical nonlinearity. Sens-

Schönfelder et al. (2018) give a thorough overview of recent classical and non-classical

nonlinear theory; Ostrovsky and Johnson (2001) summarize earlier studies. Work relat-

ing to cracks is surveyed by Broda et al. (2014). Scalerandi et al. (2018) give an excel-

lent overview of non-destructive testing applications, especially the influence of cracks

and micro-structures on the nonlinear response. Guyer and Johnson (2009) give a more

detailed treatment of both classical and non-classical theories.

We use classical PUMP/probe experiments that in some sense go back to at least

Hughes and Kelly (1953) who study changes in a probe wave caused by static deforma-

tions (their PUMP). The most common variant in the current literature is Dynamic Acousto-

Elastic Testing method (DAET, Renaud et al. (2008, 2012)). In DAET, a resonant mode

is excited in the sample (the PUMP) and that mode is then analyzed with a high-frequency

probe wave. Rivière et al. (2013) give a careful overview of both the experimental setup

and data processing to help understand and analyze DAET data; Rivière et al. (2015)

give a detailed comparison of DAET to the more classical Nonlinear Resonance Ultra-

sound Spectroscopy (NRUS). Remillieux et al. (2017) provide a large NRUS dataset, which

stimulated model development to better understand the data (Lott, Payan, et al., 2016;

–3–



manuscript submitted to JGR: Solid Earth

Lott, Remillieux, et al., 2016; Lott et al., 2017). Sens-Schönfelder and Eulenfeld (2019)

use Earth tides as a PUMP and noise as probe in a field experiment analogous to DAET.

Muir et al. (2020) use a hammer source in a similar setup to ours designed for much larger

samples. Gallot et al. (2015) develop a method that relies on transient waves, which we

use in this work. Modeling for this particular experiment is a challenge because the sam-

ple experiences two dynamic forces (PUMP, probe) and one static force (press). Gallot

et al. (2015); Rusmanugroho et al. (2020) describe a relatively simple model that is most

appropriate to our specific experiments.

We focus on aligned cracks and their response to applied loads. Aligned cracks are

common in the Earth, wherein tectonic forces can guide crack formation, opening and

closing; in-situ rocks are also generally under load (Alkhalifah & Tsvankin, 1995). It re-

mains difficult to definitively separate the response of cracks from other signals, like het-

erogeneity and intrinsic anisotropy, at second-order (standard linear elasticity) and at

higher orders. TenCate et al. (2016) give a first attempt at characterizing the importance

of microstructure orientation relative to nonlinear wave interactions. A numerical model

of these results, given in Rusmanugroho et al. (2020), suggests that what TenCate et al.

(2016) interpret as a set of aligned cracks is likely more complicated, with evidence that

nonlinear response should vanish when crack normals are perpendicular to a P-wave probe

particle motion.

Here, we aim to separate these signals by running nonlinear elastic experiments re-

peatedly for a rock under different uniaxial loads. This follows from work by: Zinszner

et al. (1997) on classical nonlinear resonance under a variety of loads and saturations,

Rivière et al. (2016) who study DAET under a variety of pressures, and Simpson et al.

(2021) who monitor velocity changes over a range of confining pressures. These earlier

works suggest an exponential decrease in nonlinearity with increasing load, with a char-

acteristic pressure ∼10 MPa (Rivière et al., 2016) for sandstones and 1 MPa (Simpson

et al., 2021) for rocks from an active fault zone.

2 Methods

2.1 Sample Descriptions

We examine two samples of Crab Orchard Sandstone (COS) from Cumberland, Ten-

nessee, which is beige, fine-grained, and cross-bedded with sub rounded grain shapes and
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Lx (mm) Ly (mm) Lz (mm) ρ VPx VPy VSx VSy γP γS

Sample 1 126 155 52 2.4 3.2 3.05 2.24 2.22 5.1% 0.85%

Sample 2 125 154 52 2.5 3.27 3.23 2.25 2.19 1.1% 2.5%

Table 1. Physical parameters of our samples. The dimensions are measured with calipers and

the velocities using the probe transducers by measuring the travel time of the P- and S-waves

across the sample in all three dimensions, Lj is the length along the jth axis; VMj is the velocity

of wave mode M (P or S) propagating in direction j; γM is the M-mode anisotropy.

no preferred grain alignment. It is compositionally and texturally mature (composition:

80% quartz, 10% orthoclase, 9% cement (clays and micas), 1% mica). This composition

is similar to that of Benson et al. (2005) who conclude that the cement destroys much

of the porosity, leaving porosity in the form of cracks and pores. TenCate et al. (2016)

find that COS exhibits strong anisotropy in its nonlinear response. We report physical

parameters of our samples in Table 1. Density is sample mass divided by volume; veloc-

ities are the travel distance divided by the travel time of the wave (recorded with probe

transducers at the probe frequency). We compute anisotropy using

γ =
V max − V min

V ave

where V max is the maximum of the velocities in the two recorded orientations, V min is

the minimum and V ave is the average velocity. Both samples exhibit P- and S-wave anisotropy,

although Sample 1 has much stronger P-wave anisotropy whereas Sample 2 has stronger

S-wave anisotropy. See Supplementary Text S1 for more velocity measurement details.

2.2 Experimental Setup

We use the setup described in Gallot et al. (2015); TenCate et al. (2016) and place

it inside a hydraulic press, (Figure 1). This design is similar to DAET, with the excep-

tion that our PUMP wave is a propagating S-wave, not a resonance mode. We monitor

perturbations induced by a strong PUMP wave by using a weaker probe wave as a sen-

sor. To ensure that the probe is indeed weak, we use a signal that is two orders-of-magnitude

weaker in strain for the probe (order of magnitude of the strain is 10−8) than for the PUMP

(10−6). Details of this strain measurement are given in Supplementary Text S3.
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(a)

PUMP 
source

Secondary  
PUMP receiver

Layering sample 2

Layering sample 1

P-probe source

S-probe receiver
S-probe source

Direction of 
Applied Load 

P-probe receiver

x y
z

Function Generator Oscilloscope

FilterAmplifier

Polarization direction

Recording line for laser
doppler vibrometer

(b)

Figure 1. (a) The experimental setup, including the coordinate system to be used later. In all

experiments the PUMP source is connected to the function generator and amplifier. Solid lines

denote connections for P-probe experiments; dashed lines correspond to S-probe experiments;

dotted lines correspond to PUMP recording only. The polarization directions are noted on each

receiver (b) Summary of experimental protocols. The line style on the boxes (solid, dashed, or

dotted) indicates the receiver setup, as described for (a).
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wave transducer driving cycles polar. prop. amp approx λ

resonance freq. dir. dir. strain

PUMP 100 kHz 90 kHz 4 y x 10 V 10−6 24 mm

P-probe 1 MHz 1 MHz 1 y y 0.1 V 10−8 3.6 mm

S-probe 1 MHz 1 MHz 1 z y 0.1 V 10−8 2.2 mm

Table 2. Summary of experimental parameters: prop. dir. = propagation direction, polar. dir.

= polarization direction, λ = wavelength, and amp = amplitude (peak-to-peak voltage) of the

input signal before going through the (50x) amplifier.

Figure 1 shows our experimental setup and Table 2 summarizes the experimental

parameters. For all experiments, we use a 90 kHz S-wave PUMP signal propagating along

the x-direction with polarization in the y-direction. We explore two different kinds of

probes: a P-wave propagating and polarized along the y direction, and an S-wave probe

propagating along the y direction with polarization in the z-direction. We note that past

experiments by Gallot et al. (2015) find the largest signal when the particle motion of

the PUMP and probe are aligned. Further experimental details, including rationales for

frequency choices and travel time delay details, are discussed in Supplementary Text S1,

and detailed parameter settings are given in Supplementary Text S2.

We sense the change in the probe travel time as the PUMP wave passes. To do this,

we must measure the travel time delay in the probe as it interferes with different phases

of the PUMP wave. We do this by controlling the transmission delay, which is the time

between the emission of the PUMP and probe signals. In our experiments, this delay is

controlled by the function generator, by syncing the triggering of the channel emitting

the probe signal to the channel emitting the PUMP signal, adding a variable delay to

the probe signal. This transmission delay will be the independent variable (x-axis) on

the plots of our experimental results.

To measure the changing travel time, we record three signals on the positive y-face

using transducers identical to those used to excite the probe (i.e. P-wave transducers for

the P-wave probe and S-wave transducers for the S-wave probe). The three signals that

we record (illustrated in Figure 2(b)) are:

1. S1 the probe alone,

–7–



manuscript submitted to JGR: Solid Earth

(a) (b)

(c)

Figure 2. (a) PUMP signal recorded on the x-face of the sample opposite the PUMP gener-

ating S-wave transducer. (This signal uses the recording setup with the dashed lines in Figure 1.)

(b) Signals recorded to estimate travel time delays on the P-transducer on the y-face opposite the

P-probe source transducer. (These signals use the recording setup shown with the solid lines in

Figure 1.) The three signals shown are with the PUMP only (S2), the probe only (S1) and both

together, (S3). These signals have been filtered to remove as much of the PUMP signal as possi-

ble. Note the different scales in both time and amplitude. (c) Cartoon to illustrate the format of

the data plots (shown in Figure 6).
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2. S2 the PUMP alone,

3. S3 the PUMP and probe together.

As it is our goal to compare the probe signal present in S3 to the unperturbed probe in

S1, we need to remove the PUMP from S3. We do this in two parts. The first is the high-

pass physical filter shown in Figure 1. This significantly reduces the amplitude of the

PUMP signal, allowing us to record the probe signal with sufficiently high precision, but

does not completely eliminate it. Because the filter is imperfect, we then form S4 = S3−

S2 to remove the remaining PUMP signal and obtain an estimate of the perturbed probe

signal. The travel time delay is the difference in the arrival time between the original

probe (in S1) and perturbed probe (in S4). We measure this delay using cross-correlations,

as explained by Catheline et al. (1999); we give further details on this in Supplementary

Text S4. Having measured one travel time delay, we then change the transmission de-

lay time between the PUMP and probe and measure the same three signals to obtain

the next data point. This is summarized in Figure 1(b), and a cartoon of the resulting

experimental data to illustrate the transmission delay is shown in Figure 2(c). The data

collection takes approximately one hour for a single applied stress and PUMP/probe com-

bination. For each sample and applied load we collect two datasets, one with a P-wave

probe and the other with an S-wave probe. All data use an S-wave PUMP. Hayes and

Malcolm (2017) find that the relative polarizations of the two S-waves have a small im-

pact on the resulting time-delay measurements when using an S-wave probe.

2.3 Loading Protocols

We repeat our experiments at five or six uniaxial loads for each sample and probe-

type. A hydraulic press provided the load (Figure 1). The sample, along with spacers,

is placed in the cell between two stainless steel plates to promote uniform load distri-

bution. The press pistons apply a constant force with a sequence of hydraulics, with the

applied load being this force divided by the sample area. We apply the load in steps: raise

the force to have a 1 MPa load on the sample and collect data for both the P and S probes,

then release the force, then raise the force to 2 MPa and record the next dataset, con-

tinue up to 15 MPa for Sample 1 and 18 MPa for Sample 2. The additional load for Sam-

ple 2 was necessary because of the reversal between 10 and 15 MPa. Although the steel

plates help to distribute the strain uniformly throughout the sample, we do not expect
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PUMP 
source

Sample 1
vertical

P-probe S-probe

Sample 2
horizontal

Applied
load

Initial layer
configuration

Force 
direction

propagation 
direction

n/a

n/a n/a x y y

y y z

together
Horizontal 
distortion

Compression  
and dilation 

vertical 
distortion

together 
and apart

slide 
verticallybow out

horizontal 
distortion

Figure 3. Schematic summary of the forces acting on layers within our samples. The top

rows show force directions, with the thickness of the arrow indicating the different strengths of

the forces (not to scale). The bottom two rows show the expected perturbations relative to the

layering in each sample.

the strain to be uniform throughout. However, we do expect it to be distributed sim-

ilarly at different loads and among different samples.

3 Theory and Modeling

3.1 Intuition

Figure 3 gives a schematic illustration of the expected sample responses to each type

of applied force. Three forces act on the sample simultaneously: the static load, the PUMP

wave, and the probe wave. Under a static load, we expect the layers in Sample 1 (with

vertical layers) to bow out, while those in Sample 2 (with horizontal layers) will squeeze

together. For the PUMP, we expect this perturbation to distort layers within the hor-

izontal plane; several layers will distort together because the transducer diameter cov-

ers approximately 25 layers. For Sample 1, the layers are vertical, so the distortion is across

the layers and would change their separation. For Sample 2, the distortion will remain

largely within the horizontal layer itself. The P-probe will move Sample 1 layers closer

and further together, but will compress/dilate within the Sample 2 layers. The S-probe

will slide the layers against each other in Sample 1, but will vertically distort layers in

Sample 2 (the transducer covers approximately ten layers).
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3.2 Modeling the PUMP strain

We are interested in traveling waves because, in the field, transient signals are eas-

ier to excite than resonance modes. To achieve this in our experiments, we send only four

cycles of the PUMP, and at a frequency such that this PUMP does not excite the en-

tire sample simultaneously. As a result, our probes sense a much more complicated strain

than what occurs in resonance-based DAET (Renaud et al. (2008)). To explore this fur-

ther, we present a simple numerical model of the experiment, based on a finite-difference

implementation of the elastic wave equation (Virieux, 1986; Graves, 1996) to determine

what the probe senses as it travels across the sample. More details on the numerical re-

sults are given in Supplementary Text S5.

Our model estimates the cumulative strain, caused by the PUMP, that is sensed

by the probe wave during our experiments. We simulate PUMP propagation and esti-

mate the resulting strain distribution as a function of position in the sample and prop-

agation time. Examples of strain field snapshots are shown in Figure 4.

We use calculated strains to compute the cumulative strain experienced by the probe

as it travels across the sample, perpendicular to the PUMP propagation direction. In

our experiments, we analyze only the arrival time of the probe, so we expect that the

strain experienced by the first part of the probe waveform is most important. As a re-

sult, it is not necessary to model the probe propagation (see further discussion in Sup-

plementary Text S5). Instead, we compute (analytically) where the probe wave will be

within the PUMP strain field; these calculated locations are shown by white ellipses in

Figure 4(b,c). To estimate the cumulative strain, we integrate the strain encountered by

the probe over both space (within the white ellipse) and time (the white ellipse moves

as the probe moves), and then divide by the path length. This follows a procedure iden-

tical to that used by Gallot et al. (2015) (more detail in Supplementary Text S5). The

results of this calculation are shown in Figure 4(d), and demonstrate that the cumula-

tive strain is at the frequency of the pump, and that it varies in magnitude (but not in

frequency) as a function of the probe transmission delay.

3.3 Linking modulus to applied pressure

Rivière et al. (2016) introduce a simple model to fit the change in modulus to an

exponential function of applied pressure. The change in modulus (M = ρv2), induced
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(a)

(b) (c)

(d)

Figure 4. (a) Schematic depiction of the numerical model. The black area in the y − z plane

represents the location of the pump transducer, and example snapshots are taken in the x − y

plane. (b,c) Example snapshots of the εyx component of the strain. Labels in white indicate the

wave type and the transmission delay (in µs), illustrating the locations of the P- and S-probe

extents for various transmission delays. (d) Modeled cumulative total strain for the P-probe,

estimated by integrating the PUMP strain along the probe path for different probe transmis-

sion delays. Component breakdowns and analyses for S-probe times are given in Supplementary

Figures S5 and S6, respectively.
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by the PUMP, can be recovered easily from the change in the traveltime of the probe

wave via

∆M

M
=

2ρv∆v

M
=

2∆v

v
= 2

∆T

T
,

where T is the travel time, v is the velocity and ∆ indicates a change. Rivière et al. (2016)

suggest simply fitting this change in modulus to an exponential model,

∆M

M
= Ae−

P
P0 . (1)

As mentioned above, we measure a change in traveltime (and thus modulus) for many

different transmission delays. To reduce these data to a single number as a function of

applied load, we extract the maximum traveltime delay (and thus change in modulus)

for each applied load, and fit the resulting datasets to this simple model. This model is

also used by Simpson et al. (2021) to fit velocity change data as a function of confining

pressure.

4 Experimental Results

4.1 Velocities and Amplitudes

As a precursor to the nonlinear wave mixing data, we first assess changes in veloc-

ity, anisotropy, and PUMP amplitude with applied load (Figure 5).

We measure the travel times of four waves from which we obtain four velocities:

vyy (P-probe), vyz (S-probe), vxy (S-PUMP), and vxx (P-wave generated by S-PUMP

transducer). Yurikov et al. (2019) describe a similar methodology to that used here for

measuring velocities, which is summarized in Supplementary Text S1. In Figure 5a, all

measured velocities increase as a function of applied load, except for a slight decrease

for Sample 1 velocities at low loads.

Anisotropies are calculated using the velocities shown in Figure 5a: the P-wave anisotropy

is between the x− and y−directions, whereas the S-wave anisotropy is between the yz

and xy directions. Figure 5b shows that anisotropy is largest for P-waves in Sample 1.

In that sample, the P-wave probe (vyy) travels across the layering (the slow direction),

whereas the S-wave excited by the PUMP transducer travels along the layers (the fast

direction). This is expected based on prior reports by Gallot et al. (2015). All measures

of anisotropy increase slightly and then plateau or decrease at higher applied loads. We

note that different waves are measured with different transducers and frequencies in the

–13–



manuscript submitted to JGR: Solid Earth

different directions, so conclusions about the absolute anisotropy of the samples should

not be made with these data. However, we do not expect these errors to change with ap-

plied load. In addition, all changes are within the errors of our estimated velocities, so

we cautiously conclude that anisotropy changes only by a few percent during our exper-

iments.

Figure 5c shows the maximum value of the recorded PUMP signal, obtained us-

ing the dotted line setup in Figure 1. The maximum change in this amplitude is 20%

for the P-wave probe in Sample 2. Note also that PUMP amplitude increases initially

with applied load in Sample 2, whereas it decreases initially for Sample 1. Neither sam-

ple shows a consistent trend in PUMP amplitude with applied load.

To summarize, with the exception of the PUMP amplitude for the first step in load

(from 1 to 2 MPa), the applied load changes velocity, anisotropy and PUMP amplitude

by only a few percent.

4.2 Nonlinear Responses

For each sample and applied load, we performed two kinds of nonlinear wave-mixing

experiments: P-wave probe, and S-wave probe. Figure 6 shows measured travel time de-

lays (in ns) as a function of the transmission delay time (in µs) between when the PUMP

and probe waves were initiated. (Recall from Section 3.3 that the travel time delay can

be related directly to changes in moduli.) We note that some of these data were part of

the conference presentation of (Hayes et al., 2018).

In Figure 6 – and as illustrated in the cartoon in Figure 2(c) – we see two clear fre-

quency components in the time delay vs transmission delay data (as reported in simi-

lar experiment designs (Gallot et al., 2015; TenCate et al., 2016)). The first component

follows the total envelope of the PUMP wave pulse, while the second higher-frequency

component matches the period of the PUMP wave (90 kHz).

It is the component due to the PUMP envelope that explains why there is a net

rise in time delay with transmission delay for some PUMP/probe combinations, while

others show a decrease (compare Figure 6(a) and (b)). Whether the probe senses the in-

creasing or decreasing part of the PUMP envelope depends largely on sample geometry

and the relative locations of the PUMP and probe transducers. Thus, (a) shows the on-

–14–
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Figure 5. Comparison of (a) velocity, (b) anisotropy, and (c) recorded PUMP amplitude with

applied load. (a) All measured velocities increase as a function of applied load, except for a slight

decrease for Sample 1 velocities at low loads. (b) Anisotropy is most significant for P-waves in

Sample 1, as expected. All measures of anisotropy increase slightly and then plateau or decrease

at higher applied loads. Nevertheless, all are within the errors of the estimated velocities. (c)

PUMP amplitude differences are quite consistent on the same sample (with different probes), but

evolve quite differently as a function of load between the two samples. Overall, the amplitude

changes are 9-20% of the average PUMP amplitude. The legend in (b) also applies to (c).
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Time delay vs. transmission delay time data for different applied loads. (a) Sample

1 (vertical layers) with a P-probe, (b) Sample 1 with an S-probe, (c) Sample 2 (horizontal layers)

with a P-probe, (d) Sample 2 with an S-probe. Note that, with the exception of the data in (d),

the delay time decreases with applied load. (e) The maximum delay time as a function of applied

load. (f) The maximum of the 90 kHz signal component as a function of applied load.
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set of the PUMP/probe interaction, whereas (b) shows the tail-end of the interaction as

the PUMP pulse passes out of the interaction region in the center of the sample. We note

that it is this envelope part of the time delay vs transmission delay data that TenCate

et al. (2016) found to change with sample orientation.

For the second, higher-frequency component, we compute the maximum of this 90 kHz

component by filtering the travel time delay data with a butterworth bandpass filter (cor-

ner frequencies 50 and 150 kHz), and then record the maximum of the filtered signal.

Our results show that there is no consistent trend in this 90 kHz component; previous

work has also shown this component to be independent of sample orientation (TenCate

et al., 2016). What controls the signal at 90 kHz remains an open question.

In summary, the envelope of the travel time delays decrease as a function of ap-

plied load for all experiments, except for the S-probe in Sample 2.

4.3 Fitting to the model

To conclude this section, we fit the data in Figure 6(e) to the model given in the

Theory section in equation 1. The results of this fitting are shown in Figure 7. For Sam-

ple 2 with the S-probe, we note that there is no modulus change before 10 MP; thus, we

include only 10, 15, 18 MPa in the fit. We show the characteristic load for each probe

and sample type as insets in Figure 7; these are consistent within our experimental er-

rors. The values agree with those recovered by Rivière et al. (2016) on sandstones, but

they are different from those recovered by Simpson et al. (2021) for metamorphic rocks.

5 Discussion

Before interpreting new observations from our data, we first discuss how our data

agree with known results. We observe that the nonlinear response changes by a factor

of three to five, whereas the changes in velocities are on the order of at most ten per-

cent. Scalerandi et al. (2018), among many others, observe that the nonlinear response

to fractures is generally larger than the linear response, consistent with our observations.

Our Sample 1 has larger delays than Sample 2 (Figures 6); this is consistent with the

observations of TenCate et al. (2016), who find that the relative orientations of PUMP,

probe, and sample layering influence the magnitude of the measured traveltime delays.

TenCate et al. (2016) also note, as do we (Figure 6(f)), that there was no change in the
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Figure 7. Fits to the model in equation 1 for (a) Sample 1 (vertical layers) with a P-probe,

(b) Sample 1 with an S-probe, (c) Sample 2 (horizontal layers) with a P-probe, and (d) Sample 2

with an S-probe. For all cases, the characteristic load P0 (insets) is the same within error.
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higher-frequency (90 kHz) component of the time delay signal when changing the ori-

entation of the samples.

Our main new observation from these data is that, with the exception of the first

three loads for Sample 2 with an S-probe, the nonlinear signal decreases with applied

load. This decrease is well-described by an exponential decay with an average charac-

teristic load of 11.8±1 MPa across the four experiments. These results are consistent

with published results using confining pressure (Rivière et al., 2016) instead of our uni-

axial load. (Note that Zinszner et al. (1997) also see a significant drop in the nonlinear

signal near 10 MPa.) We posit that this signal decrease with applied load is controlled

by cracks or other grain-scale structures aligned with the visible layering in the sample.

Before going into the details of this interpretation, we first rule out two other possible

mechanisms.

Bittner and Popovics (2019) show that fluid movement occurs during a nonlinear

resonant ultrasound spectroscopy (NRUS) experiment. The applied loads here are not

large enough to limit pore-scale flow (Gist (1994) find that 40 MPa is sufficient to limit

some pore-scale flow), and so we cannot immediately rule out the movement of water

as a significant mechanism in our results. That said, at ambient load conditions Khajehpour Ta-

davani et al. (2020) find that it takes many days for changes in fluid content to show sim-

ilar magnitude changes as those observed here. This leads us to conclude that changes

in ambient humidity are unlikely to be the controlling mechanism behind our results.

Another potential mechanism to explain our results is that the sample may change

length due to either the PUMP wave or the applied load. (TenCate et al., 2016) note

that strains on the order of 10−4 would be necessary to explain their data based on changes

in length due to the PUMP; they also note that travel time delays would also be observed

in linear materials, which they show is not the case. If changes in length were to explain

our signals, we would expect the maximum travel time delay to increase with applied

load as the sample would get longer in both the PUMP and probe propagation direc-

tions. This is counter to our observations. We thus exclude changes in length as a pos-

sible mechanism.

Having ruled out these two potential mechanisms controlling our nonlinear signal,

we now interpret our results in terms of the changes in the layers, as sketched in Figure 3.

We first examine what might be the small-scale structures that are present at the layer
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boundaries. Benson et al. (2005) do interpret crack-like microstructures in rocks from

the same quarry with the cracks aligned with the layers. It is well-established that cracks

are a dominant influence on changes in velocity with applied load (Nur, 1971), and that

cracks are a driver of nonlinearity (Guyer & Johnson, 1999, 2009). We do not think that

we have applied enough stress to produce new cracks (which might increase nonlinear-

ity, as seen in Sample 2 with the S-probe). For example, Browning et al. (2017) find that

new cracks develop at a confining pressure of approximately 40 MPa, which is much higher

than the 18 MPa of uniaxial load that we apply. Batzle et al. (1980) see distinct open-

ing of vertical cracks at uniaxial loads up to 30 MPa. This leads us to expect that we

could open vertical cracks in Sample 1. However, our results (Figure 6) do not show any

increase in nonlinearity in Sample 1, even with low applied loads, meaning that they are

not consistent with a ’crack-opening’ interpretation.

Our data suggest that the underlying mechanism is perhaps less sensitive to the

orientation of the microstructures than to how much strain is required to perturb these

structures. If the mechanism depended on the orientation of the structures, then we would

expect different responses for samples with that micro-structure oriented in different ways

(i.e., Sample 1 vs Sample 2). In contrast, the stiffness of the contacts is likely to increase

as the load is increased, independent of the orientation of the layers. As the contacts get

stiffer, it is logical that they will not be as easily perturbed by the PUMP wave, thus

decreasing the nonlinear response. Our only observation that is not consistent with this

explanation is that, for Sample 2 and the S-probe, the decay does not begin until a larger

load. This is puzzling, yet it also shows consistency with Simpson et al. (2021), where

they observe this kind of holding before changes with (in their case) confining pressure.

It is interesting that once the decay begins it proceeds with the same characteristic load.

As a final observation from our data, we check their consistency with the postu-

lation by Rivière et al. (2015) that there are two clear mechanisms causing changes to

the nonlinear response. This observation is also discussed by Scalerandi et al. (2015), where

they divide these mechanisms into clapping and hysteresis. Our results are consistent

with the presence of two mechanisms. The first mechanism, characterized by the signal

at the frequency of the PUMP, seems independent of the applied load (Figure 6f), and

crack orientation (TenCate et al., 2016). The second mechanism, which follows the shape

of the envelope of the PUMP signal depends strongly on load and crack orientation (Fig-

ure 6a).
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6 Conclusions

We present a dataset showing the evolution of the nonlinear interaction of differ-

ent wave-types as a function of applied uniaxial load. We find a characteristic load that

is consistent with literature results for other samples measured with different experimen-

tal configurations. Our data support the idea that nonlinear measurements are more sen-

sitive to aligned structures (such as cracks or layering) – and their changes to these aligned

stuctures – than other (linear) measurements used to characterize the sample. This is

supported by a larger percentage change in moduli, when compared to directly measured

changes in wavespeed, anisotropy, and amplitude of the perturbing PUMP wave.
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Renaud, G., Talmant, M., Callé, S., Defontaine, M., & Laugier, P. (2011, De-

cember). Nonlinear elastodynamics in micro-inhomogeneous solids ob-

served by head-wave based dynamic acoustoelastic testing. The Jour-

nal of the Acoustical Society of America, 130 (6), 3583–9. Retrieved from

http://www.ncbi.nlm.nih.gov/pubmed/22225015 doi: 10.1121/1.3652871

Rivière, J., Pimienta, L., Scuderi, M., Candela, T., Shokouhi, P., Fortin, J., . . .

Johnson, P. A. (2016). Frequency, pressure, and strain dependence of non-

linear elasticity in Berea Sandstone. Geophysical Research Letters, 43 (7),

3226–3236.

Rivière, J., Renaud, G., Guyer, R. A., & Johnson, P. A. (2013). Pump and probe

waves in dynamic acousto-elasticity: Comprehensive description and compari-

son with nonlinear elastic theories. Journal of Applied Physics, 054905 , 1–19.

Retrieved from http://scitation.aip.org/content/aip/journal/jap/114/

5/10.1063/1.4816395

Rivière, J., Shokouhi, P., Guyer, R. A., & Johnson, P. A. (2015). A set of measures

for the systematic classification of the nonlinear elastic behavior of disparate

rocks. Journal of Geophysical Research: Solid Earth, 120 (3), 1587–1604.

Rusmanugroho, H., Darijani, M., & Malcolm, A. (2020). A numerical model for the

nonlinear interaction of elastic waves with cracks. Wave Motion, 92 , 102444.

doi: https://doi.org/10.1016/j.wavemoti.2019.102444

Scalerandi, M., Bentahar, M., & Mechri, C. (2018). Conditioning and elastic

nonlinearity in concrete: Separation of damping and phase contributions. Con-

struction and Building Materials, 161 , 208-220. Retrieved from https://

–25–



manuscript submitted to JGR: Solid Earth

www.sciencedirect.com/science/article/pii/S0950061817322481 doi:

https://doi.org/10.1016/j.conbuildmat.2017.11.035

Scalerandi, M., Idjimarene, S., Bentahar, M., & El Guerjouma, R. (2015). Evidence

of microstructure evolution in solid elastic media based on a power law analy-

sis. Communications in Nonlinear Science and Numerical Simulation, 22 (1-3),

334–347.

Sens-Schönfelder, C., & Eulenfeld, T. (2019). Probing the in situ elastic nonlinear-

ity of rocks with earth tides and seismic noise. Physical review letters, 122 (13),

138501.

Sens-Schönfelder, C., Snieder, R., & Li, X. (2018). A model for nonlinear elasticity

in rocks based on friction of internal interfaces and contact aging. Geophysical

Journal International , 216 (1), 319–331.

Simpson, J., van Wijk, K., & Adam, L. (2021). Spatial dependence of dynamic non-

linear rock weakening at the alpine fault, new zealand. Geophysical Research

Letters, e2021GL093862.

TenCate, J. A., Malcolm, A. E., Feng, X., & Fehler, M. C. (2016). The effect of

crack orientation on the nonlinear interaction of a P wave with an S wave.

Geophysical Research Letters, 43 (12), 6146-6152. Retrieved from https://

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016GL069219 doi:

10.1002/2016GL069219

Virieux, J. (1986). P-sv wave propagation in heterogeneous media; velocity-stress

finite-difference method. Geophysics, 51 (4), 889–901.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,

D., . . . SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms

for Scientific Computing in Python. Nature Methods, 17 , 261–272. doi:

10.1038/s41592-019-0686-2

Wang, Q.-Y., Campillo, M., Brenguier, F., Lecointre, A., Takeda, T., & Hashima, A.

(2019). Evidence of changes of seismic properties in the entire crust beneath

Japan after the Mw 9.0, 2011 Tohoku-Oki earthquake. Journal of Geophysical

Research: Solid Earth.

Yurikov, A., Nourifard, N., Pervukhina, M., & Lebedev, M. (2019). Laboratory ul-

trasonic measurements: Shear transducers for compressional waves. The Lead-

ing Edge, 38 (5), 392–399.

–26–



manuscript submitted to JGR: Solid Earth

Zinszner, B., Johnson, P., & Rasolofosaon, P. (1997). Influence of change in physical

state on elastic nonlinear response in rock: Significance of effective pressure

and water saturation. Journal of Geophysical Research, 102 (96), 8105–8120.

Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/96JB03225/

full

–27–



JOURNAL OF GEOPHYSICAL RESEARCH

Supporting Information for ”Experimental

Monitoring of Nonlinear Wave Interactions Under

Uniaxial Load”
Alison Malcolm 1, Lauren Hayes1, Kamal Moravej1, Andrey Melnikov1,

Kristin Poduska3, Stephen Butt2

1Department of Earth Sciences, Memorial University of Newfoundland

2Department of Engineering, Memorial University of Newfoundland

2Department of Physics and Physical Oceanography, Memorial University of Newfoundland

Contents of this file

1. Text S1 to S5

2. Figures S1 to S6

3. Tables S1 to S2

Introduction

This supporting information gives additional detail on the experimental setup not nec-

essary for understanding the results, but necessary for duplicating the experiments. In

addition, it gives more detail on the modeling of the strain induced by the pump and the

cumulative strain observed by the probe.

Text S1: Measuring Velocity at Different Loads

It is important to calibrate transducers to have accurate travel time measurements by
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measuring the travel time through different thicknesses of the same material and finding

the intercept time. This intercept time measures the inherent delay from the transducer.

For our transducers this number is 0.3 µs for S and 0.5 µs for P; we apply these corrections

to the measured travel times before computing the associated velocities. To measure the

velocities shown in Table 1 and Figure 5, we first pick the travel times. For the lowest

applied load (1 MPa), this is done by picking the zero-crossing before the peak within a

user-defined time window. Each pick is then manually checked to ensure that it chose the

correct arrival. For higher loads, we measure the travel time change by cross-correlating

the waveforms with those recorded at 1 MPa. When we extract the P-wave velocity

from measurements of the S-wave PUMP, we are using what are sometimes referred to

as parasitic P-waves, generated by S-wave transducers. In this case, the P-wave is much

smaller than the S-wave and so to recover a reliable velocity change we window the data to

include only the P-wave. This methodology along with estimates of the errors in P-wave

velocities inferred from such parasitic waves is described by Yurikov et. al. (2019); they

report errors of 5% compared with traditional methods of measuring P-wave velocities

with P-wave transducers. We do not need to window when measuring the S-wave travel

time because the S-wave is much stronger. For measurements on the probe signals, we

record only about 2 periods of the signal and so there is no interference between different

wavetypes. We measure the dimensions of the samples with calipers and use them to

convert the travel times to velocities; these values are given in Table 1. We use the

repeated measurements on the PUMP signals (for the two probes) to estimate the errors

in our recovered velocities at less than 5%, in line with the errors from Yurikov et al.

(2019) from using parasitic P-waves from S-transducers.
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Text S2: Experimental details

All signals are generated with a standard (Agilent 33500B Series) function generator and

recorded with a standard (KEYSIGHT InfiniiVision MSOX2014A) 8-bit oscilloscope. The

pump signals are amplified with an (E & I 240L RF) power amplifier and all recorded

signals are high-pass filtered with a (Krohn-Hite) adjustable digital filter with cut-off

frequency of 600 kHz. Each recorded signal is an average of 4096 signals to reduce noise

and sampled every 4 ns; example signals are shown in Figure 2. The signals are recorded at

the lowest vertical range on the oscilloscope that does not result in clipping the recorded

signal, this maximizes the accuracy of the recorded probe signal. This ranges from 1-

200 mVp-p, except for when we record the PUMP alone (dotted lines in Figure 1) where

the scale is 150 Vp-p.

We use Olympus transducers, specifically V-153 (S, 1 MHz, 1.3 cm diameter), V-103

(P, 1 MHz, 1.3 cm diameter) for the two probes and the V-1548 (S, 100 kHz, 2.5 cm

diameter) for the PUMP. The driving frequencies of all transducers are chosen to give

a signal recorded on the opposite face that most closely resembles our ideal waveform.

For the pump this is a four-cycle sinusoid, and for the probe this is a one-cycle sinusoid.

Example signals are shown in Figure 2.

All of our experiments were performed at room conditions, in an interior climate-

controlled room. We wrapped the sample in plastic wrap to diminish the influence of

humidity changes on the results. We would certainly expect to see changes in that en-

vironment over the course of the experiments, and the local humidity over the period of

the experiment averaged 83% with significant excursions to a high of 100% and low of

approximately 40%, with all days averaging between 75 and 95% and no consistent trends.
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Experiments were completed on each sample and probe before moving to the next to min-

imize the effect of variations in room conditions on the results. Khajehpour Tadavani et.

al. (2020) find that humidity changes impact the results, but that these impacts have an

exponential time constant on the order of days to weeks for these samples, in other words

these changes happen slowly compared to our experimental time.

Text S3: Measuring the strain This strain is measured using a laser-doppler vibrom-

eter and averaging the amplitude (measured from the peak of the Hilbert transform of

the signal) of the recorded particle velocity signals at several locations on the sample.

We then divide the recorded particle velocity by the phase velocity of the recorded wave.

This gives an estimate of the strain assuming that we are exciting plane waves. Because

this assumption is not strictly true, we are confident only that this gives us the order-of-

magnitude of the strain and that it gives us a good measure of the relative magnitude of

the two strains. This is the same protocol as used by Gallot et al. (2015), repeated on

this sample in our laboratory. It is explained in more detail by Khajehpour Tadavani et

al. (2020).

Text S4: Computing the travel time delays We compute the travel time delays

plotted on the y-axis in Figure 6 by fitting a sinc function to the five points nearest

the peak of the cross-correlation of the two signals. This follows the suggestion of e.g.

Catheline et al. (1999), replacing the parabola with a sinc function because in fitting

the peak we are essentially assuming that we have undersampled our signals, for which a

sinc interpolation is the optimal solution (Ali Gholami, personal communication, 2018).

Our numerical experiments using one-cycle sine waveforms shifted by a known amount

indicate that we can estimate a travel time delay with two digits of accuracy down to
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approximately 1/100 of our sampling interval (i.e. the error in our travel time estimate is

0.04 ns).

Text S5: Modeling Strain

The goal of this section is to explain what our measurements are sensitive to. More

specifically, we aim to demonstrate which parts of the pump waveform cause the pertur-

bations we observe when we measure delays in the travel time of the probe wave. To this

end, we model both waveforms through a sample that is meant to be close to both of the

samples used in the experiment. The parameters of the model rock are given in Table S1.

The code we use is a standard staggered-grid finite-difference algorithm (Virieux, 1986;

Graves, 1996). The numerical parameters are given in table S2. This code computes

the particle velocity and stresses; we compute the strain from the stresses using a linear

Hooke’s law. We use reflecting boundaries on all sides. Our goal is to estimate the cumula-

tive strain, caused by the pump, that is sensed by the probe wave during our experiments.

To this end, we show the results of three experiments. The first simulation is to verify

the accuracy of our transducer model. This simulation is compared with a separate set

of experimental data to verify that our modeled transducer does indeed agree with our

experimental equipment, and uses a grid and geometry, described below, appropriate to

that experiment. The second dataset we compute models the probe, which uses a fine

mesh and a scaled-down model because of the higher frequency of the probe signal. This

simulation is used to verify that our assumptions about where this signal is in space and

time are accurate. The third experiment models the propagation of the pump. We first

use these simulated data to compare with our experimentally recorded pump signal and

evaluate the accuracy of the numerical model. We then use this simulation to estimate
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the observed strain distribution in the sample for a variety of pump/probe delays from

which we estimate the cumulative strain the probe wave will see as it travels across the

sample. This simulation is done on a coarser grid and thus we are able to simulate the

wave propagation throughout the larger sample.

We begin by checking the transducer model. We model the source transducer as a

set of 492 point-forces distributed over a circular region on one face of the model. We

do not weight the sources in any way, so all contribute equally to the generated waves.

To verify that this is sufficiently accurate, we compare our modeled transducer radiation

pattern with a recorded radiation pattern. The relevant numerical parameters are given

in table S2. The experimental dataset that we compare to is measured in a homogeneous

plexiglas sample. The experimental geometry is shown in Figure S1. We send a single

cycle of a 200 kHz sine function to the source P-wave transducer (the same make and

model as that used as the P-wave probe source in our other experiments) in the positive

y-direction, and a laser doppler-interferometer measures the same y-component of the

particle velocity on the opposite side of the sample. The experimental data are collected

on a line and then corrected for geometrical spreading to recover the radiation pattern. For

the numerical data, we excite a y-direction force on a simulated transducer with radius of

5 mm to match our transducer’s active radius. We then record the mdoel data on an array

of detectors on a circle of radius 2 cm centered on the transducer center to avoid the need

for a geometrical spreading correction. We see in Figure S1 that the agreement between

the experimental and modeled data are excellent. We thus conclude that our transducer

model is adequate for the probe transducer when it is driven at 200 kHz. We now must

ask if this translates to our probe signal, which is at a higher frequency. Although the only
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way to know for certain is to do the experiment, the transducer is designed to respond

linearly over a relatively wide frequency range, and so we do not anticipate significant

deviations. For the PUMP signal, the argument is similar. It is a different transducer

and different frequency range, but manufactured by the same company using the same

technology. We thus expect that this model is sufficient for our purposes. In addition, this

is the same modeling strategy and code used by Gallot et al. (2015) where they were able

to obtain excellent agreement between the signal recorded with the laser on the surface

(though they did not look at this agreement as a function of position).

Next, we look at the propagation of the probe. This is expected to be quite straight-

forward as it is a small wave, likely in the linear regime, and it propagates directly from

the source transducer to an identical receiver transducer on the opposite face. Because of

the high-frequency of this signal, this simulation requires a small spatial sampling inter-

val, which can be challenging numerically as it takes a great deal of memory to run the

simulation. To mitigate these extreme memory requirements, we reduce the size of the

model to be only 5 × 15 × 5 cm in x, y, z, as shown in Figure S2. This will not result in

an accurate waveform for the parts of the wave that arrive after the direct arrival as the

scattering from the boundaries is significantly enhanced in this smaller simulation, but

this scattering will not affect the direct arrival that we are interested in. Snapshots of

the wavefield at several times are shown in Figure S2. On top of these snapshots, we plot

an ellipse with major axis the size of the transducer and minor axis one wavelength. We

also show, with two horizontal lines, the extent of the transducer. We assume that the

transducer will measure only those signals that arrive between these two white lines. In

what follows, we will use the pump strain within this ellipse to calculate the cumulative
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strain that the probe sees as it travels across the sample. We see that the ellipse tracks

this first-arriving wave across the sample and includes the dominant part of the signal.

Little difference is anticipated if we change the details of the shape or size of this elliptical

domain. We show the εyy component of the strain because this is the component that we

dominantly excite and observe for a P-wave travelling in the y-direction. Although the

shape of the strain changes if we look at different components, the extent and travel time

does not, so we do not expect significant changes to these ellipsoidal regions if we were to

look at different strain components.

Now that we have verified that we are able to simulate our transducer response and that

the simulated probe wave travels directly across the sample in a way that is easily tracked,

we now model the pump signal. Figure S3 shows the model setup and the modeled pump

signal recorded on virtual transducers located within the sample. The displayed signal is

the average of all of the signals recorded within the area of the transducer, which is set

to correspond with the physical transducer located on the bottom of the sample in the

physical experiment. Varying the number of recording locations within the transducer or

even looking at the response at a single detector has only a minor influence on the results.

We model the data at 100 kHz rather than the 90 kHz at which we drove the physical

transducer because the spectrum of the data (shown in Figure S3 for a recording from the

center of the sample in (x, z) and the bottom in x, specifically (x, y, z)=(12.6, 7.5, 2.5) cm)

has a spectrum centered closer to 100 kHz than to 90 kHz. We show the modeled signal

at several depths because our model is linearly elastic whereas our sample exhibits both

nonlinearities and is clearly visco-elastic. In addition, the numerical boundary conditions

are not perfect and we model the edges as though they are perfectly flat surfaces, which
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they are not. These effects combine to make the boundary reflections significantly stronger

in the model than they are in the data. We conclude this by comparing the recorded data

with the modeled data at both x = 12.5 cm and x = 5.5 cm. At x = 12.5 cm we would

expect the experimental and modeled data to agree, but they clearly do not. The waves

arrive at approximately the same time (there is no shift in the experimental data on this

sub-plot), but do not have the same waveform. By contrast, when looking at the data at

x = 5.5 cm the times do not agree as expected (the modeled data are shifted), but the

waveform shapes are nearly identical. In the data at x = 5.5 cm, there is a clear boundary

reflection arriving after the direct wave. These two waves would be expected to be on top

of one another when the data are recorded directly on the boundary, which changes the

shape of the modeled waveform. Based on this comparison, we conclude that the modeled

data are giving a more complicated picture of the waveforms than are likely present in

the physical experiment, but this picture still captures the majority of the phenomena of

interest particularly away from the edges of the sample.

Having discussed the validity of the model, we now use it to track the cumulative strain.

This follows a procedure identical to that in (Gallot et al., 2015), which we describe

briefly here. We model the strain caused by the pump, snapshots of the εxy component

are shown in Figure S4, with the locations of the P- and S-probes overlain for various

transmission delays. Using these snapshots, we then compute the cumulative strain for

the AB-component of strain, εAB

ecumAB (τ) =
1

|S|

∫
S

∫ Tmax

0

χ(x, t− τ)εAB(x, t)dxdt (S.1)

where S is the path along which the probe travels, |S| is its length, and χ is an indicator

function that is equal to one in the vicinity of the probe wave and zero elsewhere. We
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compute this cumulative strain for a range of phase shifts, τ , covering the range that we

use in the experiments and more, and use strains up to a time of Tmax = 200 µs, which is

approximately the time it takes the pump wave to travel across the sample and then back

to the source. Our procedure is to take the computed εAB(x, t) from the pump propagation

and then multiply it by χ(x, t − τ), where χ is supported (=1) on the ellipse described

above and shown in Figure S4, and zero elsewhere. The remaining strain is then added

to the strain from the previous (x, τ)-pair until either the probe reaches the opposite side

of the sample or we run out of times for the pump. We repeat this process for different

transmission delays and show the results of the cumulative strain in Figure S5. Because

the path is a straight line, |S| is constant and the same for all measurements.

Figure S5 shows the cumulative strain, computed using eyy, for the P-wave probe and

Figure S6 shows the cumulative strain, computed using eyz for the S-wave probe. The

first key point to note is that the cumulative strain is oscillatory, with the period of

the pump, and with a shape that echoes the general shape of the pump, with some

modifications caused by both boundary effects and from the integration. In the first

panel of both figures, we test whether or not the waves interact primarily in the central

region of the sample. This serves to test both whether or not inaccuracies in the model

are strongly influencing the estimated accumulated strain and to test whether the central

region of the strain field is more important to the interactions than the edge regions. For

this test, we progressively remove more of the edges of the sample from the integration

region. Specifically, before computing the integration we remove the contribution from

the edges by setting εAB(x, Ymax − Yperc/2 < y < Ymax, z) = 0 and εAB(x, Ymin < y <

Ymin + Yperc/2, z) = 0, where Ymax/Ymin are the maximum/minimum y-value and Yperc
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is the percentage of the data set to zero and eAB is the AB component of the strain

tensor. From this plot, we see that the magnitude of the cumulative strain changes when

we exclude parts of the sample, but the shape (as a function of time) does not. As a

second test, we look at how the cumulative strain changes if we estimate it with different

components of the modelled strain. This test is shown in (b) of Figure S5 and Figure S6.

In this case, we see that the details of the shape change, but the strong component at the

frequency of the pump remains whichever component of the strain we use. This gives us

confidence that the cumulative strain is indeed an oscillatory function at the frequency

of the pump. This helps to explain the signals that we observe; we see oscillations at the

frequency of this cumulative strain with the sort of softening that is common in nonlinear

experimental observations.
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Table S1. Physical parameters for the numerical model.

Physical Parameters
VP 3.1 mm/µs
VS 2.1 mm/µs
ρ 2.4 kg/m3

xmax ymax zmax dx=dy=dz dt f nperiods srad sdir fdir
radiation pattern

50 mm 155 mm 52 mm 0.75 mm 50 ns 200 kHz 1 5 mm x x
probe
50 mm 155 mm 52 mm 0.1 mm 10 ns 1 MHz 1 5 mm x x
PUMP
126 mm 155 mm 52 mm 1 mm 100 ns 100 kHz 4 12.5 mm z x

Table S2. Numerical parameters used in the experiments. nperiods is the number of periods

in the input source waveform (all use a sinusoid), sdir indicates the direction the source wave

travels and fdir the direction of the applied force.
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(a)

(b)

(c)

Figure S1. (a) Experimental configuration for measurement of the radiation pattern of the

transducer. (b) Numerical experimental configuration for the measurement of the radiation

pattern. (c) Comparison of the measured and modeled radiation patterns.
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(a) (b)

Figure S2. (a) Numerical Experimental Geometry for probe model. The yellow region

highlights the location of the snapshots plotted below. (b) εyy for the probe signal at different

times. The white lines show the boundaries of the transducer. The white ellipse shows the

region included in the cumulative strain calculation. This shows that the probe signal is easily

predicted.
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(a) (c)

(b)

Figure S3. (a) Experimental setup for the PUMP model. The yellow regions show where

snapshots are recorded; data from the vertical slice and the central horizontal slice are shown

in Figure S4, and data from all of the horizontal slices are used in the computations shown in

Figure S5. (b) Spectrum of the data (recorded at (x, y, z) = (12.6, 7.5, 0.0) cm). (c) Comparison

of the modeled and recorded signals at the top, middle, and bottom of the sample. The location

of the receivers are shown as blue dots in the top panel. All data are normalized and we have

shifted the experimental data to align with the first peak of the modeled data; the shifts are

given in the individual plot titles.
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Figure S4. Snapshots of the PUMP wavefield (the eyx-component as a function of time (plot

title gives the time of the snapshot). The white ellipses outline the probe location for various

delays (text above ellipses, in µs). The left column shows the vertical snapshot and the right

column the central horizontal snapshots.
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(a) (b)

Figure S5. Cumulative strain for the P-probe. (a)Cumulative strain calculated with eyy, as a

function of the percentage Yperc, of the model left out of the calculation (removed symmetrically

from both sides); the legend number gives the value of Yperc with units of %. (b) Cumulative

strain computed using different input strain components. The bottom plot shows a sinusoid at

the frequency of the pump with arbitrary phase. Note that each plot in (b) has its own y-axis

values.
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(a) (b)

Figure S6. Cumulative strain for the S-probe. (a) Cumulative strain calculated with exy

as a function of the percentage of the model left out of the calculation (removed symmetrically

from both sides). (b) Cumulative strain computed using different input strains components. The

bottom plot shows a sinusoid at the frequency of the pump with arbitrary phase. Note that each

plot in (b) has its own y-axis values.
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