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Abstract

A multi-stage fuzzy inference system (FIS), a symbolic knowledge-based artificial intelligence technique, is used to delineate
exploration targets for rare earth elements (REEs) associated with carbonatite-alkaline complexes in NE India. A conceptual
REE mineral systems model was used to identify the following targeting criteria for REE deposits. The multi-stage FIS was
structured based on the mineral systems model. The first stage of the multi-stage FIS comprised of three individual FIS to
represent (1) plume-metasomatised SCLM in an extensional regime that make up fertile source regions for REE-bearing fluids
and favourable geodynamic settings; (2) trans-lithospheric structures that provide favourable lithospheric architecture for the
transportation of REE-enriched alkaline-carbonatite magma and (3) near-surface higher-order structures that make up a shallow
crustal architecture facilitating emplacement of alkaline-carbonatite complexes. The targeting criteria were represented by their
spatial proxies in the form of GIS layers derived using spatial analyses and geoprocessing tools for inputting to the FIS. The
outputs of the FIS were mapped to generate prospectivity maps that were analysed to identify exploration targets for REE in
the study area. The uncertainties in the outputs of the FIS were quantified using Monte-Carlo-based simulations. Exploration
targets at low uncertainty levels were delineated around Sung valley and Jasra carbonatite-alkaline-complexes. Areas around
the carbonatite-alkaline complex around Swangkre and to the south of the Nongstoin town were identified as high-uncertainty
targets. It is recommended that ground follow-up exploration should be carried out in the former targets, and more data should

be collected to increase confidence in the latter targets.
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(Zhou et al., 2017)
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TYPES OF REE DEPOSITS
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Distribution of known REE deposits according to type; Data source - Orris and Grauch, 2002
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AVAILABLE DATA FOR NE INDIA

Geochemistry

*Soil C horizon
*Soil regolith
»Stream sediment

Geology

*Geology 2M
*Geology 50K

Structures

*Faults 2M
*Thrusts 2M
Faults 50K
eLineaments 250K

Geophysics

*Ground gravity (10 km)
*Satellite gravity (2)
*Magnetics (300 m)

Topography
*SRTM (1 km)
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Prospectivity maps
with quantified
confidence.
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TARGETING MODEL FOR NE INDIA
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MgO concentration values
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SYSTEMIC UNCERTAINTY MODELLING
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SYSTEMIC UNCERTAINTY MODELLING
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SYSTEMIC UNCERTAINTY MODELLING

Fuzzy membership value
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SYSTEMIC UNCERTAINTY MODELLING
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SYSTEMIC UNCERTAINTY MODELLING
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SYSTEMIC UNCERTAINTY MODELLING
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SYSTEMIC UNCERTAINTY MODELLING
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SYSTEMIC UNCERTAINTY MODELLING
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Predictor map

Proximity to the Rajmahal-Sylhet Large Igneous
Province

Proximity to the trace of mantle plume
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Proximity to mapped faults
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concentration values

Catchment basins with K and Na concentration
values (Fenitisation)

Catchment basins with U and Th concentration
values

Catchment basins with
REE&P,05&Nb&Ba&TiO,&Sr concentration
values

Magnetic anomaly map
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Justification for ranking

LIP directly mapped on the field on 50000 scale.

Derived trace, however, based on a relatively reliable
alignment of remnants of Kerguelen plume products.

Rift mapped on 50000 scale map, supported by geophysical
data.

Field mapped faults on 50000 scale.

Derived from lineament extraction processing of magnetic
data.

Derived from lineament extraction processing of gravity data.
Derived by lineament extraction of remotely sensed data, may
contain geomorphological lineaments.

Intrusions directly mapped on field on 50000 scale.

Derived by processing geophysical data for circular features
followed by extraction.

Derived from lineament extraction processing of geophysical
data.

Derived from lineament extraction processing of geophysical
data.

Unreliable geochemical data. After cleaning up, only about 2-3
sample points represent a single basin.

Unreliable geochemical data. After cleaning up, only about 2-3
sample points represent a single basin.

Unreliable geochemical data. After cleaning up, only about 2-3
sample points represent a single basin.

Unreliable geochemical data. After cleaning up, only about 2-3
sample points represent a single basin.

Processed image of magnetic data.
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Numbers represent known carbonatite-alkaline complex occurrences
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