Simulating N₂O Emission from Fertilized Mesocosm Using Knowledge Guided Machine Learning

Licheng LIU¹, Shaoming Xu¹, Zhenong Jin², Jinyun Tang³, Timothy Griffis⁴, Kaiyu Guan⁵, Alexander Frie⁶, Taegon Kim¹, Bin Peng⁵, Yufeng Yang¹, Wang Zhou⁵, and Vipin Kumar¹

¹University of Minnesota Twin Cities ²University of Minnesota-Twin Cities ³Lawrence Berkeley Natl Lab ⁴Univ Minnesota ⁵University of Illinois at Urbana Champaign ⁶University of California Riverside

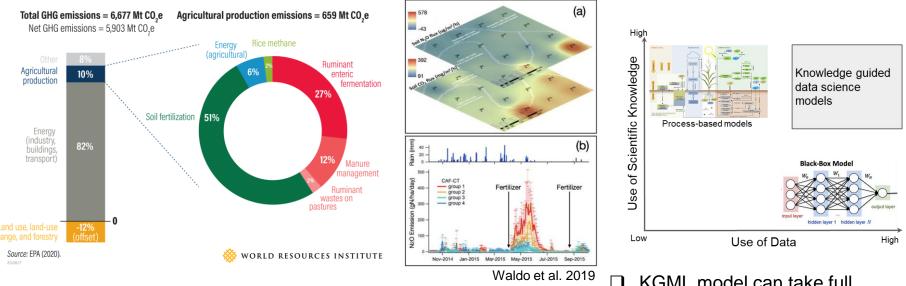
November 24, 2022

Abstract

Nitrous oxide (N_2O) is one of the important greenhouse gases (GHGs), with its global warming potential 265 times greater than that of carbon dioxide (CO_2) . About 60% of the anthropogenic N₂O emission is from agriculture production. To date, estimating N_2O emissions from cropland remains a challenging task because the related microbial origin processes (e.g. incomplete nitrification and denitrification) are controlled by a diverse factors of climate, soil, plant and human activities. In this study, we developed a ML model with physical/biogeochemical domain knowledge, namely knowledge guided machine learning (KGML), for simulating daily N₂O fluxes from the agriculture ecosystem. The Gated Recurrent Unit (GRU) was used as the basis to build the model structure. A range of ideas have been implemented to optimize the model performance, including 1) hierarchical structure based on variable causal relations, 2) intermediate variable (IMV) prediction and transfer, 3) inputting IMV initials for constraints, 4) model pretrain/retrain, and 5) multitask learning. The developed KGML was pre-trained by millions of synthetic data generated by an advanced PB model, ecosys, and then re-trained by observations from six mesocosm chambers during three growing seasons. Six other pure ML models were developed using the same data from mesocosm chambers to serve as the benchmark for the KGML model. The results show that KGML can always outperform the PB model in efficiency and ML models in prediction accuracy of capturing N₂O flux magnitude and dynamics. Besides, the reasonable predictions of IMVs increase the interpretability of KGML. We believe the footprint of KGML development in this study will stimulate a new body of research on interpretable machine learning for biogeochemistry and other related geoscience processes.

Knowledge Guided Machine Learning for Simulating Agricultural N₂O Emission *Presenter: Licheng Liu;* lichengl@umn.edu;

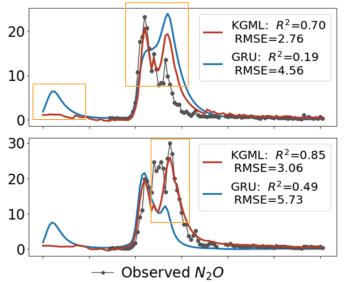
Motivation:

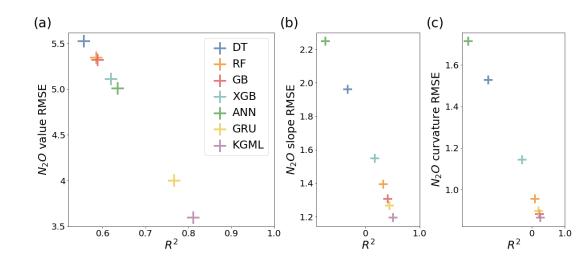


- □ Fertilizer use accounts for 51% of the ag emissions, largely in forms of N₂O, 265x more powerful than CO₂ as a GHG
- Hard to estimate due to hot spots, hot moment of N₂O fluxes
- KGML model can take full advantage of data without ignoring the treasure of accumulated scientific knowledge

Knowledge Guided Machine Learning for Simulating Agricultural N₂O Emission *Presenter: Licheng Liu;* <u>lichengl@umn.edu;</u>

Key results:





One example of KGML model comparing to GRU model in mesocosm experiment data

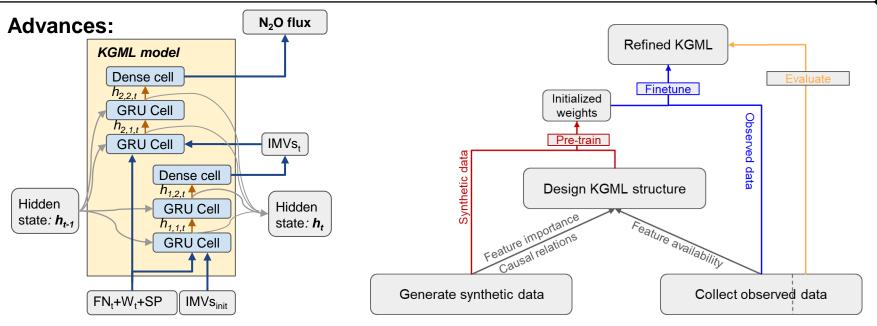
□ KGML (purple) outperform all other ML models

This is mainly because (1) pre-training using synthetic data,
 (2) knowledge guided architecture, (3) knowledge guided initial values

Liu, L., Xu, S., Jin, Z., Tang, J., Guan, K., Griffis, T. J., ... & Kumar, V. (2021). KGML-ag: A Modeling Framework of Knowledge-Guided Machine Learning to Simulate Agroecosystems: A Case Study of Estimating N2O Emission using Data from Mesocosm Experiments. *Geoscientific Model Development Discussions*, 1-29.

Knowledge Guided Machine Learning for Simulating Agricultural N₂O Emission

Presenter: Licheng Liu; lichengl@umn.edu;



KGML model structure

KGML model development workflow

- High performance
 Low data demand
 Flexible structure
- Structure and workflow can be easily transfer to other similar geoscience tasks!

Liu, L., Xu, S., Jin, Z., Tang, J., Guan, K., Griffis, T. J., ... & Kumar, V. (2021). KGML-ag: A Modeling Framework of Knowledge-Guided Machine Learning to Simulate Agroecosystems: A Case Study of Estimating N2O Emission using Data from Mesocosm Experiments. *Geoscientific Model Development Discussions*, 1-29.

Licheng Liu¹, Shaoming Xu², Zhenong Jin^{1,3}, Jinyun Tang⁴, Timothy J Griffis⁵, Kaiyu Guan^{6,7}, AlexanderLee Frie⁵, Taegon Kim¹, Bin Peng^{6,7}, Xiaowei Jia⁸, Yufeng Yang¹, Wang Zhou⁶ and Vipin Kumar²

¹Department of Bioproducts & Biosystems Engineering, University of Minnesota
 ²Department of Computer Science, University of Minnesota
 ³Institute on the Environment, University of Minnesota
 ⁴Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory
 ⁵Department of Soil, Water & Climate, University of Minnesota
 ⁶Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign
 ⁷National Center for Supercomputing Applications, University of Pittsburgh
 ⁸Department of Computer Science, University of Pittsburgh

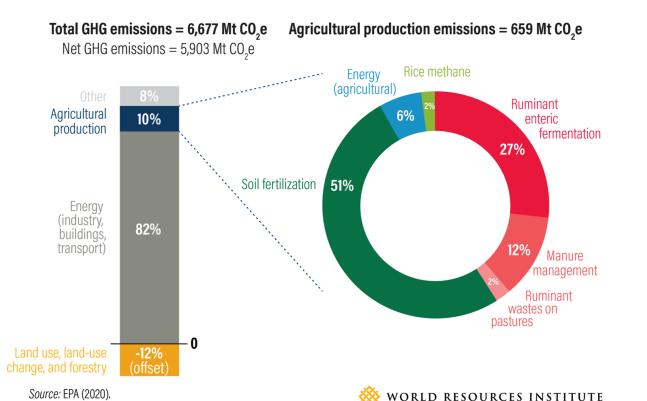
AGU Fall meeting 2021

UNIVERSITY OF MINNESOTA

Driven to Discover®

20.08.17

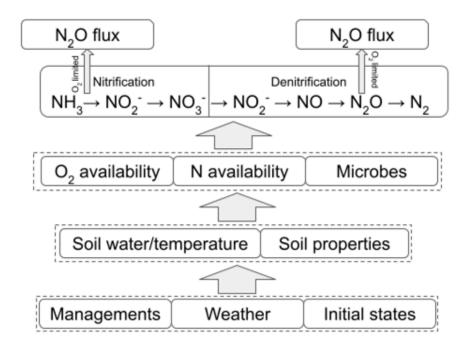
Agriculture contributes a quarter of global greenhouse gas (GHG) emissions that are causing climate change: ~14% directly from agricultural activities and ~10% through land use change.



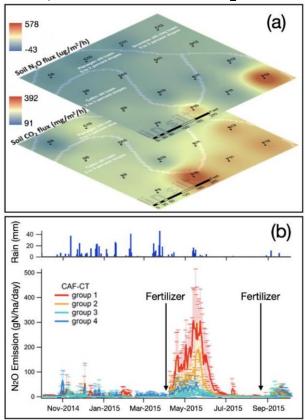
 Agricultural production accounts for 10% of U.S. GHG emissions in 2018

 Fertilizer use accounts for 51% of the ag emissions, largely in forms of N₂O, 265x more powerful than CO₂ as a GHG

Over applying fertilizer also causes water & air pollution and land degradation Soil nitrous oxide (N_2O) emissions are highly variable in space and time due to dynamic controls by a range of biotic and abiotic factors.

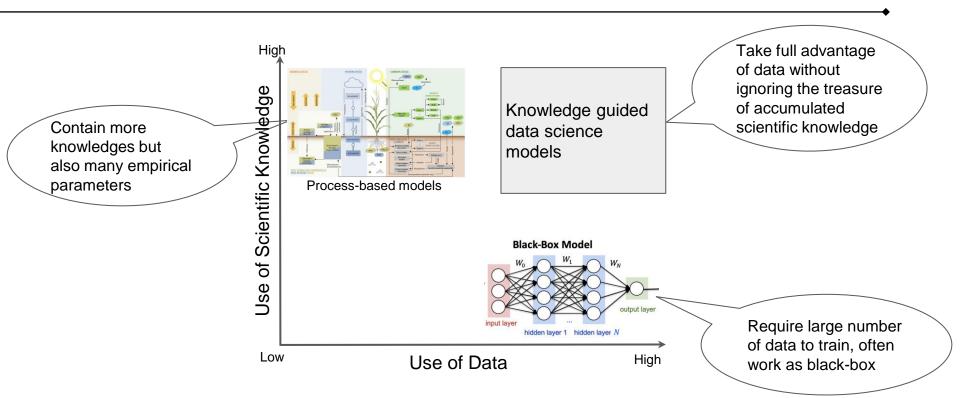


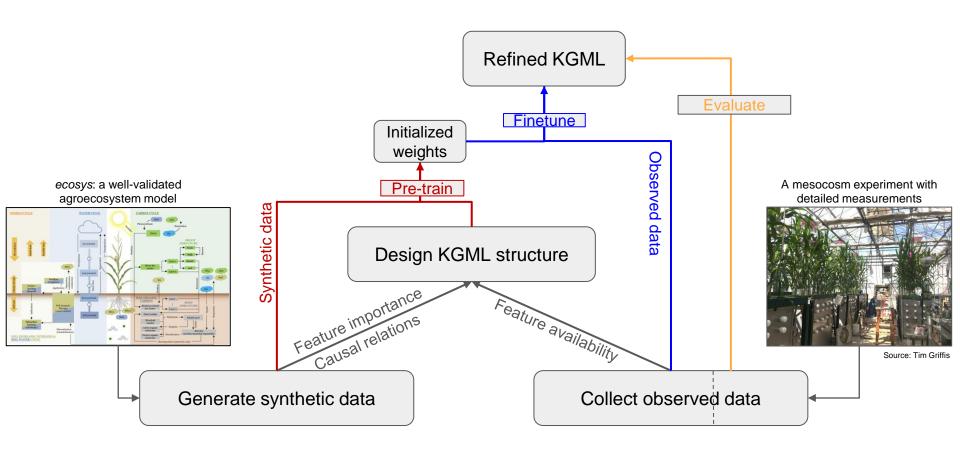
Hot spots, hot moment of N₂O fluxes



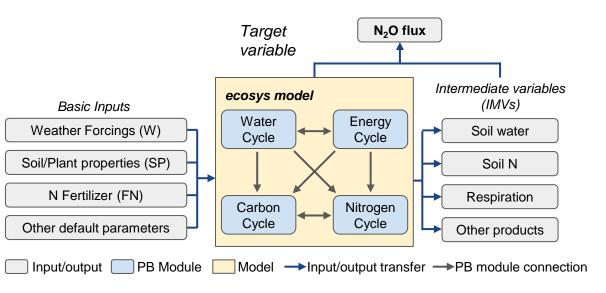
Waldo et al. 2019

Opportunities with knowledge guided machine learning





Generate synthetic data from an advanced agroecosystem model, *Ecosys*



GPP NEE US-Ne1 R²=0.87 100 US-Ne2 US-No3 -100 -20 R²=0.92 (a) (b) 100 400 500 600 700 800 -300 -200 -100 0 Obs. (gC/m2/month) Reco Obs. (gC/m2/month) 500 R²=0.78 R²=0.87 400 Sim. (gC/m2/month) 002 002 (m2/m2) (c) 100 200 300 400 500

Obs. (gC/m2/month)

Validation at 7 US FluxNet sites for ag

Ecosys simulation:

- 99 random sites from Illinois, Indiana and Iowa
- 18 years simulations
- Over 4 million synthetic data samples

Zhou et al. (2021)

Obs. (m2/m2)

Observed N₂O fluxes from mesocosm experiments

Experiment setup:

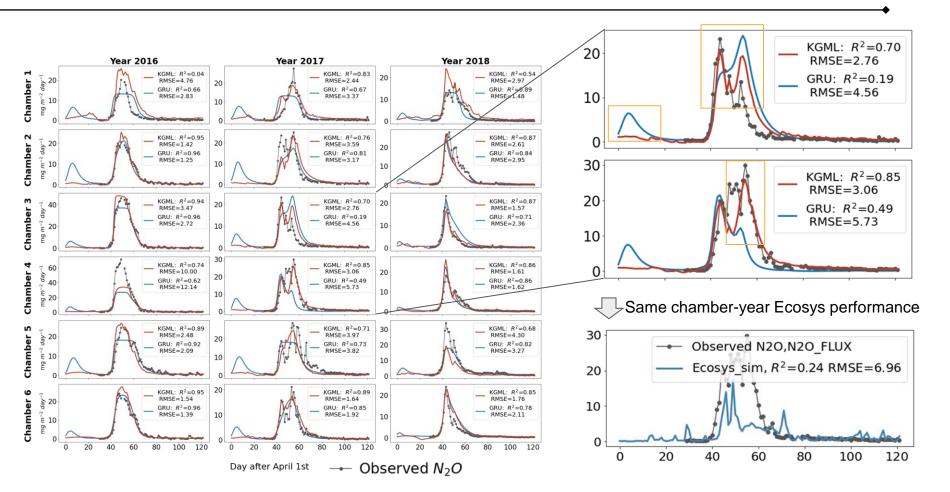
- Growing seasons during 2016-2018
- 6 chambers with different precipitation treatment
- N₂O flux was measured by Teledyne M320EU Analyzer in automatic chamber

Available variables:

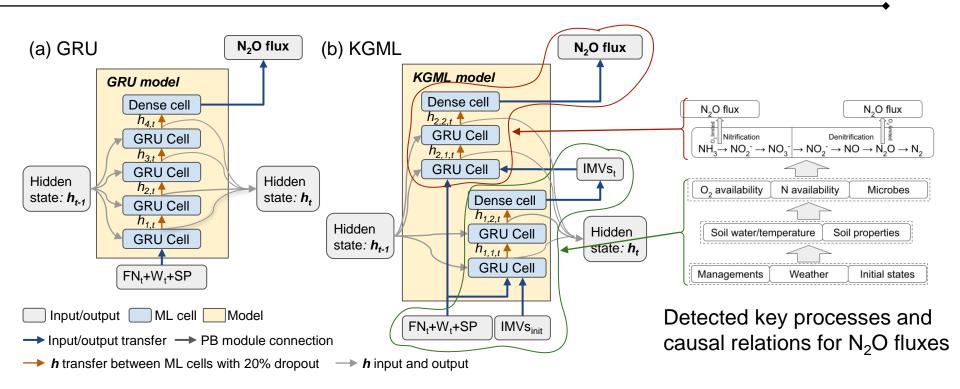
- Controlled weather conditions
- Hourly N₂O fluxes, CO₂ fluxes, and soil moisture at 15 cm depth
- Weekly soil [NO₃-], [NH₄+] at 15cm depth
- Management info: planting/harvesting dates, fertilizer application timing and rate

Source: Tim Griffis

The KGML model outperformed the pure ML model

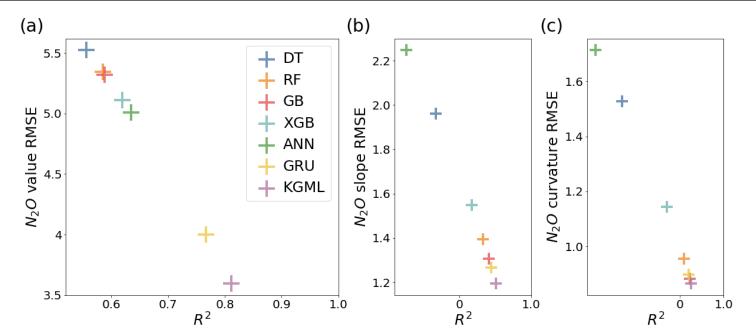


Develop KGML model based on causal relations and feature importance



- GRU outperformed LSTM with its simpler structure in N₂O simulation
- GRU model was used to do feature importance tests
- Knowledge guided initialization and architecture constraints were applied

The KGML model outperformed the pure ML model



□ KGML (purple) outperform all other ML models

This is mainly because (1) pre-training using synthetic data, (2) knowledge guided architecture,
 (3) knowledge guided initial values

Liu, L., Xu, S., Jin, Z., Tang, J., Guan, K., Griffis, T. J., ... & Kumar, V. (2021). KGML-ag: A Modeling Framework of Knowledge-Guided Machine Learning to Simulate Agroecosystems: A Case Study of Estimating N2O Emission using Data from Mesocosm Experiments. *Geoscientific Model Development Discussions*, 1-29.

□ We used 1) knowledge-guided initialization, 2) hierarchical architecture, and 3) initial values of intermediate variebles to develop the KGML-ag strucure for N₂O prediction

- The KGML-ag model has been tested on mesocosm experiment observations and can outperform all other pure ML models
- □ KGML reduced data demand significantly comparing to ML
- □ More N₂O flux data are needed for further improvement of KGML
- The structures are flexible and can be easily revised or transferred to other data/study (Another study of KGML-ag for Carbon is presented in AGU poster named: Estimating the Autotrophic and Heterotrophic Respiration in the US Crop Fields using Knowledge Guided Machine Learning)

Thank you so much for your interest!

If you have any questions, please feel free to contact Licheng Liu: lichengl@umn.edu