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Abstract

Dominant processes in a watershed are those that most strongly control hydrologic function and response. Estimating dominant

processes enables hydrologists to design physically realistic streamflow generation models, design management interventions,

and understand how climate and landscape features control hydrologic function. A recent approach to estimating dominant

processes is through their link to hydrologic signatures, which are metrics that characterize the streamflow timeseries. Previous

authors have used results from experimental watersheds to link signature values to underlying processes, but these links have not

been tested on large scales. This paper fills that gap by testing signatures in large sample datasets from the U.S., Great Britain,

Australia, and Brazil, and in Critical Zone Observatory (CZO) watersheds. We found that most inter-signature correlations are

consistent with process interpretations, i.e., signatures that are supposed to represent the same process are correlated, and most

signature values are consistent with process knowledge in CZO watersheds. Some exceptions occurred, such as infiltration and

saturation excess processes that were often misidentified by signatures. Signature distributions vary by country, emphasizing

the importance of regional context in understanding signature-process links and in classifying signature values as ‘high’ or ‘low’.

Not all signatures were easily transferable from small- to large-scale studies, showing that visual or process-based assessment of

signatures is important before large-scale use. We provide a summary table with information on the reliability of each signature

for process identification. Overall, our results provide a reference for future studies that seek to use signatures to identify

hydrological processes.
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Key Points: 
● Large sample signature distributions enabled us to put signature values into context as 

high or low, but differ by country. 
● Most signatures agreed with the processes they are supposed to represent, except for 

infiltration and saturation excess signatures. 
● We provide a table of signatures with recommendations on their reliability and use for 

process interpretation.  
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Abstract 

Dominant processes in a watershed are those that most strongly control hydrologic function and 
response. Estimating dominant processes enables hydrologists to design physically realistic 
streamflow generation models, design management interventions, and understand how climate 
and landscape features control hydrologic function. A recent approach to estimating dominant 
processes is through their link to hydrologic signatures, which are metrics that characterize the 
streamflow timeseries. Previous authors have used results from experimental watersheds to link 
signature values to underlying processes, but these links have not been tested on large scales. 
This paper fills that gap by testing signatures in large sample datasets from the U.S., Great 
Britain, Australia, and Brazil, and in Critical Zone Observatory (CZO) watersheds. We found 
that most inter-signature correlations are consistent with process interpretations, i.e., signatures 
that are supposed to represent the same process are correlated, and most signature values are 
consistent with process knowledge in CZO watersheds. Some exceptions occurred, such as 
infiltration and saturation excess processes that were often misidentified by signatures. Signature 
distributions vary by country, emphasizing the importance of regional context in understanding 
signature-process links and in classifying signature values as ‘high’ or ‘low’. Not all signatures 
were easily transferable from small- to large-scale studies, showing that visual or process-based 
assessment of signatures is important before large-scale use. We provide a summary table with 
information on the reliability of each signature for process identification. Overall, our results 
provide a reference for future studies that seek to use signatures to identify hydrological 
processes. 

1 Introduction 

1.1 Hydrologic function and dominant processes 
Within the hydrologic cycle, watersheds transport water from the land surface to its release as river 
flow, evapotranspiration, or groundwater. This role is referred to as “watershed function” and can 
be divided into key categories, such as partitioning, storage, and release of water (Black, 1997; 
McDonnell & Woods, 2004; Wagener et al., 2007). For example, partitioning includes 
interception, infiltration, percolation, runoff, and return flow processes. Storage includes snow, 
unsaturated or saturated zone storage, perched or deeper aquifers, and lakes. Release of water 
includes evapotranspiration, channel flow, and groundwater flow out of the watershed. Inherent in 
watershed process descriptions is the idea of “dominant processes.” Although watersheds might 
include a wide variety of processes under certain conditions, dominant processes are those most 
influential in controlling the hydrologic function and response (Grayson & Blöschl, 2001). For 
example, infiltration and saturation excess processes may both occur in a watershed, but the 
dominant process is the one that most strongly controls the magnitude and shape of the hydrograph. 

There are many reasons to estimate the dominant processes in a watershed. Identifying the 
processes is a first step to developing models that provide physically realistic simulations (Grayson 
& Blöschl, 2001; Gupta et al., 2014). This is important given a new generation of hydrologic 
models with flexible structures that can simulate spatially variable processes, but may lack the 
corresponding spatial process knowledge (Clark et al., 2015). Watershed managers can apply 
process knowledge when designing interventions to intercept floodwater or prevent polluted 
runoff. More fundamentally, hydrologists seek to explain how climate, landscape, and critical zone 
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features control watershed processes and runoff generation (Dunne, 1978; Fan et al., 2019; 
Sivapalan, 2006). To achieve these goals, accurate estimation of dominant processes is essential. 

1.2 Estimating dominant processes using regionalization and modeling 
Two main approaches have been used to estimate dominant processes: regionalization and 
modeling. In the regionalization approach, knowledge is used from other similar watersheds. For 
example, Peschke et al. (1999) propose a regionalization method based on their experience in two 
experimental watersheds. After a literature review of conditions that favor the process of interest, 
they examined hydrograph shapes in the target basin and compared these with nearby basins. They 
examined potential runoff contributions from different land covers based on water balance 
estimates. The approach culminated in a rules-based assessment of which processes are possible 
given hydrologic and landscape characteristics. This method was automated and applied in a 
mesoscale basin by Hellie et al. (2002) to create process-oriented subdivisions. A similar, decision-
tree approach was created by Scherrer & Naef (2003) to identify processes in highly-instrumented 
plots, providing a structured method to translate hydrologic observations into dominant process 
identification. 

In the modeling approach, dominant processes are those which show the greatest sensitivity and 
improvement when incorporated into a model. Each candidate process can be added into the model 
in turn, and the model tested for improved performance (Sivakumar, 2008). At the same time, the 
dimensionality of the system can be analyzed to estimate how many processes are needed, although 
this approach cannot identify specific processes. Alternatively, a model which already incorporates 
all the candidate processes can be used in a sensitivity analysis. Markstrom et al. (2016) undertook 
a U.S.-wide assessment of parameter sensitivity for the PRMS model. Model parameters were 
grouped by process, and for each hydrological response unit, dominant processes were those with 
the highest sensitivity scores in their related parameters. This method was used to produce US-
wide maps of process importance. 

1.3 Hydrologic Signatures link to processes 
A new approach to estimating dominant processes is through their link to hydrologic signatures. 
Signatures are quantitative metrics that describe statistical or dynamical features of streamflow 
timeseries, and are often used to assess model ability to simulate streamflow dynamics (McMillan, 
2021). Examples include annual flood, baseflow index, slope of the flow duration curve, and 
descriptors of recession shapes. Some hydrologic signatures have well-understood links to 
processes in the upstream watershed, such as hydrograph recession shapes that can be derived from 
watershed storage-discharge behavior.  

Such signature-process links have been used to assess dominant processes. Beighley et al. (2005) 
made a qualitative assessment of dominant processes based on total runoff ratio, hydrograph 
recession rate and flashiness, and change in event runoff ratio with season. They checked that the 
inferred processes were plausible given soil depth and impervious area, and added spatial data to 
understand process distribution within the watershed. The processes were then included in a 
watershed model. Recently, Wu et al. (2021) inferred patterns of runoff generation processes in 
the U.S. by using six signatures to cluster watersheds into eight classes. Signature values in each 
class were used to identify the dominant processes as infiltration excess, saturation 
excess/subsurface stormflow, lateral preferential flow, or baseflow. The classes were linked to 
physical watershed characteristics using random forest modeling. Both these studies rely on 
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proposing links between signatures and processes, which then enable a regionalization-type 
approach to estimate dominant processes. 

A catalog of signature-process links was created by McMillan (2020) who collected streamflow 
signatures and independent information on dominant processes in papers from experimental 
watersheds. However, these links might be specific to particular climates or hydrologic regimes. 
To provide a sound basis for large-scale estimation of processes based on streamflow data, we 
must be sure that these links are consistent across watersheds. Some evidence for consistency 
exists, e.g., storage-related signatures (baseflow index and watershed sensitivity to runoff) were 
consistently linked to regolith development (weathering and creation of clay lenses) across the 
U.S. Critical Zone Observatory network (Wlostowski et al., 2020). However, further evidence is 
required to establish consistency of interpretation for a wide range of signatures and watershed 
characteristics. 

1.4 Aims of the paper 
The aim of this paper is to determine whether links between streamflow generation processes and 
streamflow signatures are consistent across a large sample of watersheds, or to determine for which 
signatures and processes the links hold. Understanding if and where the signature-process 
relationship is consistent will enable us to choose robust and reliable signatures to estimate 
dominant processes from large databases of streamflow data. 

2 Data 

We used two sources of hydrologic data: large scale data from several CAMELS datasets and 
small scale data from several Critical Zone Observatory (CZO) watersheds. Watershed locations 
are illustrated in Figure 1. 

2.1 CAMELS datasets 
We used several CAMELS datasets to test whether large-scale correlations and patterns in 
signature values conform with process knowledge. CAMELS datasets are national or continental-
scale datasets of daily streamflow and forcing climate variables for watersheds, mostly with low 
influence from human impacts. We used CAMELS data from the U.S. (Addor et al., 2017; 
Newman et al., 2015), Great Britain (Coxon et al., 2020), Australia (Fowler et al., 2021) and Brazil 
(Chagas et al., 2020), and hourly CAMELS U.S. rainfall data from Gauch et al. (2020; 2021). 

We used CAMELS streamflow (Q), precipitation (P), and potential evapotranspiration (PET) data 
for water years 1989 to 2009 and only kept watersheds with at least 99% complete records. Water 
years are defined as starting from 1 October for the U.S. and Great Britain, 1 April for Australia, 
and 1 September for Brazil. A few watersheds had very small negative PET values, and those were 
set to zero. We removed watersheds with more than 30% of precipitation falling as snow, which 
is about the upper limit of the CZO data investigated here. We also removed watersheds with 
significant human influences based on the following criteria, noting that this had a very small 
impact on the results. The number of watersheds used is shown in brackets: 

● CAMELS U.S.: we kept all watersheds as they are near-natural (546 watersheds), 
● CAMELS Great Britain: we only used benchmark watersheds (120 watersheds), 
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● CAMELS Australia: we removed watersheds with a river disturbance index > 0.2 (87 
watersheds), 

● CAMELS Brazil: we removed watersheds with consumptive_use_perc > 5% and 
watersheds with regulation_degree > 10% (486 watersheds). 

2.2 CZO datasets 
Critical zone observatories are highly-instrumented watersheds that are used to study 
interconnected hydrological, physical, biological, and chemical processes at the Earth’s surface. 
These observatories offer precipitation, climate and streamflow data, and extensive literature 
describing hydrological processes, which can be compared with processes inferred from signature 
values. We conducted a signature analysis at five CZO sites with a total of eight streamflow 
gauges: Eel River, California (Elder and Dry Creeks); Shale Hills, Pennsylvania (Shale Hills 
Creek); Luquillo, Puerto Rico (Rio Mameyes and Rio Icaros); Intensively Managed Landscapes 
(IML), Illinois/Iowa (Upper Sangamon River); Santa Catalina, Arizona (Marshall Gulch and 
Oracle Ridge streams).  

These observatories encompass a wide range of hydrological and climatological conditions, from 
arid, mountainous landscapes in Arizona, to tropical forest in Puerto Rico, to a humid, steep 
watershed in Pennsylvania. The CZOs with paired sites offer the opportunity to compare signature 
values in contrasting sites under similar climate conditions. In particular, Elder and Dry Creeks, 
and Rios Mameyes and Icaros differ significantly in underlying geology. These five observatories 
were selected from the CZO network as those with less than 30% of precipitation falling as snow, 
because event-based signatures in particular are unreliable under high snowfall conditions. Future 
options for including landscapes with significant snow could be to exclude snowmelt periods from 
the analysis (although current methods for determining spring snowmelt onset do not perform well 
in rivers with winter rains (Lundquist et al., 2004)); or to run a snow model to simulate soil water 
input, although this might lead to unwanted signature dependence on model characteristics. 

For each site, raw data were processed into precipitation, streamflow, and PET time series with 
consistent hourly and daily timesteps, with the exception of Luquillo for which only daily data was 
available. Data were obtained from the Level 1 streamflow, precipitation, and meteorological 
datasets provided by Wlostowski et al., (2020), which comprise re-formatted versions of raw data. 
For Luquillo, we used Level 2 precipitation datasets that had been corrected based on annual totals 
(Wlostowski et al., 2020). For Eel River, additional streamflow and precipitation data for the 
neighboring Dry Creek were provided by D. Dralle (pers. comm.). Where multiple precipitation 
gauges were available, we calculated areal averages following the site-specific methods described 
by Wlostowski et al. (2020). Where necessary, we used disaggregated daily streamflow values 
from United States Geological Survey (USGS) gauges to infill missing hourly data. PET values 
were calculated from meteorological variables using the algorithm described by Zotarelli et al. 
(2010).  

https://www.zotero.org/google-docs/?NNf4Mc
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Figure 1. Map of CAMELS watersheds colored according to their aridity index (PET/P) and locations of CZOs. 
Note that the maps of the countries are not to the same scale. 

3 Hydrologic signatures 
The signatures tested in this paper relate to baseflow/groundwater processes and overland flow 
(saturation and infiltration excess) and are taken from the McMillan (2020) catalog. Matlab codes 
to calculate these signatures were implemented as part of the Toolbox for Streamflow Signatures 
in Hydrology (TOSSH) (Gnann et al., 2021a). The TOSSH toolbox provides standardized methods 
for hydrologic signature calculations, including recommended parameter values. Minor changes 
from the original catalog were made to revise or remove three signatures for ease of interpretation 
(see Table S1 in the supporting information). Full descriptions of the signatures calculated for this 
paper are given in Table 1 (17 signatures for groundwater/baseflow processes and 9 signatures for 
overland flow processes), and their Matlab code can be found at 
https://tosshtoolbox.github.io/TOSSH/p2_signatures.html#process-based-signature-sets.  

Table 1. Groundwater and overland flow signatures used in this paper. 
Signature Unit Description                                                        

Groundwater and baseflow signatures 
TotalRR - Total runoff ratio 

EventRR - Event runoff ratio (average over all events) 
RR_Seasonality - Runoff ratio seasonality (summer total RR/winter total RR) 
StorageFraction - Ratio between active and total storage 
ActiveStorage mm Active storage defined as maximum storage deficit 

https://tosshtoolbox.github.io/TOSSH/p2_signatures.html#process-based-signature-sets
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TotalStorage mm Total storage calculated by extrapolation to find storage deficit at near-
zero flow 

Recession_a_Seasonality - Seasonal variations in recession ‘a’ parameter, related to recession 
timescale. 

AverageStorage mm Average storage derived from average baseflow and storage-discharge 
relationship 

RecessionParameters_b - Recession analysis parameters (T0, b) approximate storage-discharge 
relationship. b is a shape parameter. 

RecessionParameters_T0 d Characteristic timescale of recessions, at median flow. 
MRC_num_segments - Number of different segments in nonparametric master recession curve 

(MRC) 
BFI - Baseflow index, i.e., fraction of flow classified as baseflow 

BaseflowRecessionK 1/d Exponential recession constant fitted to master recession curve 
First_Recession_Slope 1/d Steep section of MRC, related to storage that is quickly depleted 

Mid_Recession_Slope 1/d Mid section of MRC, related to water retention capacity of the 
watershed 

EventRR_TotalRR_ratio - Ratio between event and total runoff ratio 

VariabilityIndex - Variability index of flow 

Overland flow signatures 
IE_effect - Infiltration excess importance (positive coefficients of intensity metrics 

in a regression equation to predict peak magnitude/ volume) 
SE_effect - Saturation excess importance (positive coefficients of storage metrics in 

a regression equation to predict peak magnitude/ volume) 
IE_thresh_signif - Infiltration excess threshold significance (whether a significant change 

of slope occurs in a plot of quickflow volume vs. maximum intensity) 
SE_thresh_signif mm/ 

time-
step 

Saturation excess threshold significance (whether a significant change 
of slope occurs in a plot of quickflow volume vs. total precipitation) 

IE_thresh - Infiltration excess threshold depth (hourly intensity of precipitation 
needed to produce quickflow in a plot of quickflow volume vs. 
maximum intensity) 

SE_thresh mm Saturation excess threshold location (depth of precipitation needed to 
produce quickflow in a plot of quickflow volume vs. total precipitation) 

SE_Slope mm/ 
mm 

Above-threshold slope in a plot of quickflow volume vs. total 
precipitation 

Storage_thresh_signif - Storage threshold significance (whether a significant change of slope 
occurs in a plot of quickflow volume vs. antecedent precipitation index 
+ total precipitation) 

Storage_thresh mm Storage threshold location (storage depth needed to produce quickflow 
in a plot of quickflow volume vs. antecedent precipitation index + total 
precipitation) 
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Several of the signatures require watershed-specific parameters, and their values are described in 
the supporting information, Table S2. We inspected TOSSH errors and warnings to see if any 
signatures failed, typically due to default parameters being unsuitable for the watershed, or to data 
errors. Most TOSSH signatures offer a “plot_results” parameter for diagnostic graphical display 
of signature calculation and values. We used this option for CZOs and for selected watersheds 
from different regions to visually check the signature calculations (e.g., the fitted recessions). For 
the CZO watersheds, we made visual checks of the baseflow separation function, that baseflow 
was adequately separated from quickflow during events. For the event identification function, we 
checked that the event periods cover major rainfall periods, and those event recession periods 
include flow peaks occurring immediately after rainfall. We checked that the recession 
identification function selected all major recession periods and adjusted recession selected 
parameters if required. For plots where threshold functions were fitted (e.g., to a plot of quickflow 
against antecedent condition metrics), we checked whether the fit was influenced by a few large 
or unusual rainstorms.  

4 Signature Analysis 
We used two approaches to test whether the links between signatures and processes described in 
McMillan (2020) hold true across multiple watersheds. The first approach used a large sample 
analysis of signature values across the CAMELS watersheds. For these data, we tested whether 
signatures related to the same process are correlated, and how signature values are related to 
climate aridity. The second approach used detailed analyses of signature values in CZO 
watersheds, to test whether processes inferred from signature values agree with information from 
watershed-specific literature. 

4.1 Large-scale signature and process patterns in CAMELS watersheds 

4.1.1 Distribution of signature values 

We applied the overland flow and groundwater signature sets across the CAMELS datasets to 
determine the distributions of values for each signature. This enabled us to classify signature 
values in terms of their quantile values, i.e., high or low compared to the median for their 
country, or quasi-globally. This information is valuable for interpretation of the signatures in 
new watersheds, for example to say whether a recession constant should be considered fast or 
slow. 

4.1.2 Correlation between signature values 

Several of the signatures target the same or similar processes, for example multiple signatures 
indicate high water storage in the watershed. If these signatures represent the same process, we 
should find correlations between their values. We therefore created a correlation matrix showing 
rank correlations between each pair of signatures. Spearman rank correlation was used as a 
nonparametric correlation measure, as relationships between signatures may not be linear. We 
assessed whether signatures that represent the same or similar processes have high correlations. 
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4.1.3 Hydro-climate relationship to signature patterns 

Climate is a strong control on many signatures (Addor et al., 2018; Knoben et al., 2018). In 
particular, the aridity index (PET/P) has shown strong (empirical) links to many signatures. We 
therefore investigated to what extent aridity explains observed signature patterns and whether 
these patterns are consistent across different countries. We calculated rank correlations and 
plotted signature values against the aridity index, separated by country. The results will serve as 
a first assessment of similarity in signature controls across regions, therefore showing how 
transferable our results might be. 

4.2 Signature-process links at Critical Zone Observatories 
We based our analysis of signature-process links in CZOs on the summary findings of McMillan 
(2020; their Table 1). We reorganized their findings into a series of questions about processes in 
the watershed that could potentially be answered from literature descriptions, and matched the 
signature values that relate to each question, for example “Do riparian zones contribute to flow?” 
a positive answer implies that there is no rainfall depth threshold before flow occurs, i.e., 
SE_thresh is close to 0 and/or SE_thresh_signif > 0.05. (see Results section 5.2 for the full list of 
questions, corresponding signature values, and answers). Restructuring the analysis in this way 
allowed for multiple signatures relating to one process. For each observatory, we collected journal 
articles describing the watershed processes, and used these to answer the questions. In several 
cases, the observatories included contrasting sub-watersheds, and process information was 
collected about each one. 

We calculated signature values for all signatures described in Section 3. Where hourly data were 
available (i.e., all CZOs except Luquillo), we calculated signatures at both hourly and daily 
timesteps. We compared the impact of timestep choice and noted cases where signature values 
depend strongly on timestep. We used the distributions of signature values described in Section 
4.1.1 to assign a percentile to each value, within the distribution of values across the CAMELS 
U.S. dataset. We chose to use only the U.S. dataset to quantify percentiles, as we assume that 
descriptions of processes as being of high or low importance are most likely to implicitly imply a 
comparison against other U.S. watersheds. 

We then placed each question-signature pair into one of three categories: good agreement, mixed 
agreement, or poor agreement between signature and described process. For CZOs with multiple 
watersheds with contrasting properties, we assessed whether differences in signatures between 
these watersheds correspond to known contrasts in hydrologic processes. 

5 Results 

5.1. Large-scale patterns and distributions 

We calculated signature values across each CAMELS dataset. Maps for the four regions and for 
eight representative signatures are shown in the supporting information (Figures S2-S9). 

5.1.1 Distribution of signature values 
The distributions of each signature for each CAMELS dataset are shown in Figure 2. These 
distributions calculated using large samples can be used to assess empirically whether signature 
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values should be considered high or low. The percentiles of each signature are given in the 
supporting information, Tables S3 and S4. Some signatures have clearly defined limits (e.g., BFI), 
while others such as watershed storage (AverageStorage) have no upper limit. We found that 
distributions can vary substantially between countries, such that a high signature value in one 
country might not be considered high in another country (e.g., low values of the 
BaseflowRecessionK in Brazil would be considered average in the U.S., Great Britain, or 
Australia). Signatures with more uniform and less peaked distributions would be more resilient to 
uncertainties in the signature value when converting to a percentile of the distribution. 

 

Figure 2. Distributions of (a) groundwater signatures and (b) overland flow signatures, smoothed using a kernel 
density estimation, except for MRC_num_segments, which can only take three values and is thus shown as a bar 
plot. Plot ranges are adjusted for better visibility.  
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5.1.2 Correlation between signature values 
To test whether signature correlations aligned with physical interpretations of the signatures, we 
looked for examples where multiple signatures related to the same feature of a flux or store: its 
magnitude, spatial variation, temporal variation, or response time. The signature correlations are 
shown in Figure 3.  

For baseflow signatures, multiple signatures were available to characterize baseflow magnitude, 
baseflow response time, and groundwater storage magnitude. High baseflow magnitude and long 
response time are characterized by high BFI, low BaseflowRecessionK, low VariabilityIndex, low 
First_Recession_Slope, Mid_Recession_Slope, and high recession timescale 
(RecessionParameters_T0). These correlations are all correctly represented by the signatures, and 
provide evidence for the common use of BFI as an overarching measure of baseflow importance 
(Figure 3a). However, the high correlation of baseflow magnitude and response time signatures 
means that the signatures do not provide a robust method to separate these two aspects of baseflow. 
Using multiple BFI signatures with different time windows would help to resolve this issue (Gnann 
et al., 2021b). 

Several signatures are related to the magnitude of groundwater storage (Table 1 above), including 
AverageStorage, ActiveStorage, TotalStorage, and RR_Seasonality. These signatures are 
positively correlated, as expected (Figure 3a). However, small values of event runoff ratio 
(EventRR) and its fraction of total runoff ratio (EventRR_Total_RR_ratio) are also supposed to 
signify high storage, and this is not supported by the data. Instead, we found that event runoff ratio 
and its fraction of TotalRR are highly correlated with total runoff ratio, suggesting that they are 
controlled by losses to evapotranspiration (ET) or deep groundwater as part of the overall water 
balance. The StorageFraction signature is also supposed to relate to storage magnitude but was 
found to be unreliable, often giving unrealistic values and a poor fit when plotted against the 
underlying data. This signature was originally developed for a set of 16 watersheds in Luxembourg 
(Pfister et al., 2017), but modification or generalization of the signature would be needed for it to 
translate well to other watersheds. 

The signature MRC_num_segments (number of segments in the master recession curve) has 
notably low correlations with all other signatures, including RecessionParameters_b (nonlinearity 
in the shape of recession curve) as shown in Figure 3a. However, this is likely due to 
MRC_num_segments being an ordinal signature that can only take values of 1, 2, or 3, and 
therefore provides less information about the relative values of different watersheds.  

For overland flow, we expect negative correlations between saturation excess (SE_effect) and 
infiltration excess (IE_effect) and the significance P-value of their thresholds (IE_thresh_signif, 
SE_thresh_signif). This holds true for IE_effect. For SE_effect, the correlation is weaker, showing 
that precipitation depth can control flow peak and volume but without a threshold in the 
relationship (Figure 3b). The data also show that threshold size and significance are negatively 
correlated, showing correctly that the signature algorithm will not identify a large threshold if it is 
not significant. Although not predicted in advance, we found that all the thresholds (IE_thresh, 
SE_thresh, Storage_thresh) are strongly positively correlated. High values identify watersheds that 
require a lot of water to start producing flow, whether this be via infiltration or saturation excess 
mechanisms. 
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Overall, we find that expected relationships in baseflow and overland flow signatures hold in 
general, with a few exceptions as noted above. 

 

 
Figure 3. Correlations between (a) groundwater signatures and (b) overland flow signatures for all four 
CAMELS datasets. 

5.1.3 Hydro-climate relationship to signature patterns 
Aridity is correlated only with a few signatures (e.g., runoff ratios, see Figure 4a) when all 
CAMELS watersheds are lumped together (see Figures S10 and S11, and Tables S5 and S6 in the 
supporting information for all signatures). This changes when countries are investigated 
separately. For instance, the IE_effect signature has a strong correlation with aridity in Great 
Britain (rank correlation -0.92), while overall it shows only a very weak correlation (rank 
correlation -0.24), see Figure 4b. Sometimes, the relationships even have opposite signs, as is the 
case for the BFI in Great Britain and Australia, see Figure 4c. As we expected, these results show 
that signatures are not solely controlled by climate, but also by other watershed characteristics 
(e.g., soils, geology). An understanding of how climate and landscape characteristics interact will 
be essential in predicting signature values. Our results demonstrate that relationships between 
climate characteristics and signatures from a single region should not be assumed to hold in other 
regions, and show the benefits of using multi-continent datasets to understand drivers of signature 
patterns. 
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Figure 4. Relationships between (a) TotalRR and aridity (PET/P) for all CAMELS countries, (b) between 
IE_effect and aridity for all CAMELS countries, and (c) between BFI and aridity for Great Britain and Australia. 

5.2 Signature-process links at Critical Zone Observatories 
As described in the Methods section, we collected literature from each CZO to answer each process 
question, and calculated the values and percentiles of each signature matched to that question. This 
information allowed us to describe the signature-process agreement in text, and ascribe good, 
partial, or poor agreement between each pair. For these well-studied watersheds, most of the 
process questions could be answered by searching the literature, but there were some gaps (white 
cells in the table). A full spreadsheet showing all signature values, percentiles, descriptions of each 
process, and key references for each CZO watershed is given in the Github repository (see data 
availability section). A summary showing signature-process agreement is shown here (Figure 5).
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Figure 5. Questions derived from McMillan (2020), used to compare signature values and process knowledge. For each CZO watershed, cells are color-
coded for process knowledge and signature values agreement (blue-green), partial agreement (yellow), or poor agreement (red). Where results differ 
substantially between signatures and/or subwatersheds, split colors are used. White cells imply that we found insufficient literature to answer the question. 
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In general, there was good agreement between the processes interpreted from literature and the 
corresponding signatures (blue-green in Figure 5). Overall, groundwater signatures (71% 
agreement, 20% partial agreement, 8% poor agreement) were more reliable than overland flow 
signatures (46% agreement, 28% partial agreement, 26% poor agreement). 

Good matches between signatures and processes occur in Eel River, Shale Hills, and Luquillo 
CZOs. Eel River in Northern California has two contrasting sub-watersheds, Elder Creek with high 
groundwater storage, and Dry Creek with low groundwater storage and frequent saturation excess 
flow. Groundwater signatures accurately represent the contrasts in storage and seasonality. 
However, SE flow in Dry Creek is incorrectly identified as IE at daily timescale, and BFI is 
moderate (not high as expected) in Elder Creek, representing a compromise between the 
Mediterranean climate that favors low baseflow and high storage that favors high baseflow. Shale 
Hills in Pennsylvania lies on sedimentary geology in the Appalachian Mountains. In wet 
conditions, rising water tables generate interflow with a transmissivity-feedback mechanism. Deep 
groundwater and surface flow are smaller components, although saturated riparian areas generate 
flow. Signatures and processes agree across almost all overland flow and groundwater processes, 
predicting low storage and BFI, fast recessions, a storage threshold for flow, seasonal ET 
influence, and low/moderate surface flow. Luquillo watersheds in Puerto Rico comprise tropical, 
montane forest, with Rio Icaros (granitoid) and Rio Mameyes (volcaniclastic) on contrasting 
geologies. Fast/shallow processes dominate despite deep soils, with event water flowing as a 
perched water table. Signatures and processes mostly agree, predicting fast processes (high event 
runoff coefficient and steep initial recessions), a storage threshold for flow, low seasonality, and 
no clear IE or SE dominance. Granitoid Icaros correctly has higher BFI and lower Recession K 
than Mameyes, but for both rivers the recession parameters incorrectly merge fast event processes 
with a small but sustained baseflow component. 

Poorer matches between signatures and processes occur in IML and Santa Catalina CZOs. The 
IML Upper Sangamon watershed in Illinois is in row-crop agriculture with tile drains. SE and IE 
flow are both reported in the literature, but with IE dominant. Groundwater rises quickly after 
events and runs off via tile drains. Groundwater signatures and processes mostly agree, with low 
event runoff ratio suggesting drainage to groundwater, and low storage signatures suggesting that 
this groundwater drains quickly to the stream. However, overland flow processes are incorrectly 
identified as dominated by SE, with IE found not significant although it is known to occur. The 
Santa Catalina watersheds in Northern Arizona are arid, mid to high-elevation sites. Heavy 
summer monsoon storms produce overland and near-surface flows dominated by event and soil 
water. IE dominates, with some near-stream SE. Streams gain some water from deep/regional 
groundwater. Signatures and processes often disagree; signatures incorrectly suggest that 
saturation and storage processes dominate, and very low runoff ratios make interpretation difficult. 
However, moderate BFI and recession K agree with the limited but important groundwater 
contribution. 
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6 Discussion 

In this paper, we applied hydrological signatures and assessed their process interpretations in a 
diverse set of basins, in many cases well outside of the hydroclimatic regimes for which the 
signatures were designed. Therefore, we gained many useful insights into signature use. 

6.1 Benefits of calculating signature distributions 
To interpret signature values as ‘high’ or ‘low’, it was essential to know the distributions of 
signature values (Figure 2). For example, SE_effect values (saturation excess importance) are 
consistently higher than IE_effect values (infiltration excess importance), so these values are 
interpreted differently. It was therefore useful to present the signature value as a percentile of the 
national distribution rather than an absolute value. We recommend a comparison with regional 
rather than global distributions, as we hypothesize that authors implicitly compare processes within 
the same region. For example, a low BFI in Brazil might be considered a high BFI in the U.S. 

Analyzing signature values on a national scale was also useful when understanding correlations of 
signatures with aridity. We found examples where a correlation that occurs for the combined set 
of four CAMELS data sets does not hold for individual countries. Strong but diverging correlations 
(e.g., BFI, see Figure 4c) might point at relationships that are not causal. For instance, the most 
productive aquifers in Great Britain happen to be in the least humid places, so a correlation 
between aridity and BFI here might be a coincidence, and this could be the reason why it does not 
hold for other countries. Understanding such regional differences in relationships will be essential 
for prediction of signatures in ungauged basins. 

6.2 Signature robustness 
Large sample signature calculations pose several challenges. Some signatures are straightforward 
to calculate (e.g., TotalRR), or have been widely used (e.g., BFI) and are relatively robust. Some 
watershed types may prove more susceptible to uncertainties or difficulties in signature 
calculation, such as leaky watersheds that cause errors in estimated ET (Wlostowski et al., 2020). 
Signatures that have only been used in a few small scale studies, or are sensitive to parameter 
selections (e.g., recessions, see Dralle et al., 2017; Stoelzle et al., 2013) are less robust for large 
samples. Their results might not be reliable, even though the values might be within a realistic 
range. For example, the monsoonal climate in some parts of Brazil leads to a distinct seasonal flow 
regime, with many short recessions during the wet season and a long recession during the dry 
season (Figure 6). This is not picked up by the recession signatures we used, as they return a single 
(average) storage-discharge relationship. It is thus important to check visually whether the 
signature results are reasonable, and to test signatures when transferring them to other scales or 
other places. It is then possible to tailor the signatures to certain regions, e.g., by dividing the time 
series according to season (Euser et al., 2013). 
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Figure 6. (a) Hydrograph of a watershed in Brazil that shows very seasonal (monsoonal) precipitation and thus 
streamflow. (b) The corresponding master recession curve flattens out for late recessions, indicating the 
transition from wet season recessions to dry season recessions. (c) The same can be seen from the dQ/dt plot 
where dry season recessions are systematically steeper. 
 
Although we expected hourly data to provide more accurate estimates of event characteristics and 
recession dynamics in small watersheds, we found that working with hourly data required a hands-
on approach to prevent errors. This included changing recession selection tolerance due to diurnal 
flow fluctuations, and filling gaps in timeseries; for example, USGS flow data is usually infilled 
at the daily timescale, but not for hourly data. Such interventions cause hourly signature values to 
be more uncertain, trading off accuracy and data processing time. We suggest comparing hourly 
and daily signature values, and identifying reasons for significant differences. In the arid Santa 
Catalina CZO, hourly data gave poor results that did not match literature information on processes. 
We do however recommend hourly data for identifying overland flow processes, as it produced 
results that better matched field observations, and were often substantially different from daily 
results.  

6.3 Lessons from comparisons of signatures and processes for CZOs 
We found some challenges in the CZO watersheds when comparing signature values to process 
descriptions. It could be difficult to obtain standardized process data, such as depth to bedrock 
which was sometimes quantified differently by different authors, even in the same watershed. We 
sometimes found conflicting information, such as in the Intensively Managed Landscapes CZO, 
where saturation excess flow was said to occur, but the water table was said to be low due to tile 
drains. Such conflicts could be due to differences in exact location, or in wetness conditions at the 
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time of observation, and illustrate the difficulties in summarizing complex understanding of the 
landscape. Similarly, some signature values failed to capture the full insights of field studies, such 
as in Shale Hills CZO that has a known discharge of old (20-30yr) water to the stream, but which 
comprises only a small percentage of flow. Therefore, the BFI signature value is low and 
downplays this discharge. 

Some processes were less reliable in their match to signature values across multiple CZOs. In 
particular, IE and SE processes (first three rows in Figure 5) were not well differentiated. For 
example, SE is known to dominate in Dry Creek in the Eel River CZO, but signatures show IE; 
whereas IE is known to dominate in IML CZO, but signatures show SE. Additionally, watersheds 
differed in their reliability, for example, Shale Hills showed high reliability across all signatures 
with no disagreements. In the arid but high-elevation Santa Catalina CZO, the reliability of 
signatures based on events and recession periods was reduced, because only a small number of 
storms produced flow, and some of these were impacted by snow. The IML CZO, where the 
hydrology reflects significant human impacts in cropped areas, showed low reliability for overland 
flow signatures. The low reliability could be due to high variability in processes between impacted 
and non-impacted areas of the watershed, as overland flow signatures face a scale conflict between 
location-specific observations of flow, and signature values that reflect integrated watershed 
response. Low reliability could also be due to human impacts such as tile drains. Signatures are 
known to be modified by human activities, such as baseflow index being affected by groundwater 
abstraction and effluent discharges to rivers (Bloomfield et al., 2021), but were not originally 
designed for use in human-impacted watersheds. 

6.4 Comparison with previous studies 
It is useful to compare our results with previous studies that related process descriptions to 
signature values. For overland flow processes, Wu et al. (2021) identified infiltration and 
saturation excess using Spearman correlations between event runoff ratios and rainfall intensity, 
rainfall volume and rainfall storage. They found few watersheds with dominant infiltration excess, 
agreeing with previous findings that IE flow is rare in the U.S. (Buchanan et al., 2018; Wolock, 
2003). However, there are substantial differences in spatial patterns of IE between our study and 
these previous studies, and among the previous studies. One explanation for high uncertainty is 
that overland flow signatures are sensitive to calculation methods, particularly whether hourly or 
daily rainfall intensity is used, and require multiple choices including baseflow separation, event 
definition, and storage calculation methods. Our IE_effect and SE_effect signatures are based on a 
study by Estrany et al., (2010) in a Mediterranean watershed, but may not function correctly in 
other climates, as also evidenced by the unexpected positive correlation between wetness and 
IE_effect in daily CAMELS-GB data. Our IE_thresh and SE_thresh signatures were more 
consistent with previous studies and process knowledge, particularly when using hourly rainfall 
intensity. They showed positive infiltration excess thresholds in arid and Southeastern U.S., where 
infiltration excess is expected to occur, and positive saturation excess thresholds in most of the 
U.S. except the arid West and in the North East where antecedent conditions may outweigh event 
volume. In summary, IE_effect and SE_effect signatures are not reliable, and future work is needed 
to design and test signatures that better differentiate these processes.  

For groundwater processes, we can compare our results with those of Wlostowski et al. (2020), 
who studied how critical zone architecture controls signature values. Our results agree with theirs 
in finding that baseflow and storage signatures are controlled not by depth to bedrock but rather 

https://www.zotero.org/google-docs/?Vgnv8C
https://www.zotero.org/google-docs/?Vgnv8C
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by properties and structures of the soil. For example, expert observations of whether shallow 
interflow and return flow processes occur were more likely to match signature values than a simple 
depth to bedrock value. An example occurs in the Luquillo CZO, where depth to bedrock at the 
Rio Mameyes site is 30-40m, but streamflow dynamics are dominated by rapid delivery of event 
water to the stream by fast, shallow runoff processes including lateral macropore flow. Wlostowski 
et al. (2020) further agreed with our findings in noting a clear influence of tile drains in signatures 
for the IML CZO. 

6.5 Recommendations for signature choice 
In this section we record signature-specific conclusions from our study, in particular whether 
signatures could be robustly calculated across large samples of watersheds, whether signatures 
related correctly to process interpretations, and whether signatures relied on any watershed-
specific fitting parameters. Fitting parameters that affect multiple signatures, and would ideally be 
checked visually against the flow timeseries, are those that control event selection and recession 
selection. The recommendations are summarized in Table 2. 

Table 2. Summary of findings for groundwater and overland flow signatures.  

Signature Recommendation/Comments                                                       
Groundwater and baseflow signatures 
TotalRR Strongly related to aridity across all CAMELS datasets; describes climate 

more than hydrology. Easy and robust to calculate. 
EventRR Highly correlated to Total RR, interpretation therefore relates to total water 

balance rather than to watershed storage as previously thought. Relies on 
multiple parameters to control event selection that may be region-specific. 

RR_Seasonality Agreed well with process interpretations in CZO watersheds, related to 
bedrock permeability and watershed storage size. Correlates well to other 
storage magnitude signatures. Relies on recession selection parameters. 

StorageFraction (incl. 
ActiveStorage and 
TotalStorage) 

Unreliable signature for large samples as seen in unrealistic values and poor 
fit in plotting (shown in the supporting information Figure S1). 

Recession_a_Seasonality Agreed well with process interpretations in CZO watersheds, relates to ET 
influence on storage. Relies on recession selection parameters. 

AverageStorage More reliable than the StorageFraction above, recommended when estimates 
of storage are needed. Good agreement with process knowledge in CZO 
watersheds. 

RecessionParameters (b, 
T0) 

Established signatures with theoretical link to watershed storage-discharge 
relationship, highly correlated to other signatures of baseflow magnitude and 
response time. Does not distinguish short event recessions from longer dry 
season recessions. Relies on recession selection parameters.  

MRC_num_segments Useful signature to identify complexity of recession shapes, robust across a 
wide range of recession characteristics. Relies on recession selection 
parameters. Where recessions have multiple segments with different slopes, 
the BaseflowRecessionK signature may be unreliable. 

BFI Reliable signature that correlates strongly with most other baseflow 
signatures. However, note that BFI integrates multiple aspects of baseflow 
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(volume of baseflow, response time, multiple baseflow sources or pathways), 
which could not be distinguished based on a single BFI value. 

BaseflowRecessionK Usually reliable, correlates well with other baseflow signatures. However, 
when using high BFI and Low Baseflow_Recession_K as indicators of  long 
GW residence times, it does not properly differentiate between a little 
baseflow with long residence time or a moderate amount of baseflow with 
moderate residence times. We advise a visual check of fit when 
MRC_num_segments is > 1. 

First_Recession_Slope MRC fitting was robust across varied recession shapes. A low first slope is 
supposed to indicate high storage near the soil surface, i.e., the fastest flow 
path is delayed due to this storage. However, it is not easy to determine 
whether this matches with soil profile observations that typically record soil 
texture and/or importance of shallow flow processes. Relies on recession 
selection parameters. 

Mid_Recession_Slope MRC fitting was robust across varied recession shapes, correlates well with 
other baseflow signatures. Relies on recession selection parameters. 

EventRR_TotalRR_ratio Event and Total RR are highly correlated, making this ratio more uncertain. 
Showed reasonable match to process interpretations in most CZOs, except 
for arid Santa Catalina watershed. Relies on multiple parameters to control 
event selection. 

VariabilityIndex Showed a moderate fit to storage information in CZO watersheds and easier 
to calculate than AverageStorage signature although the latter is preferred for 
storage estimates. 

Overland flow signatures 
IE_effect IE_effect is not a reliable signature. Watersheds where IE or SE dominates 

can be incorrectly identified by IE_effect and SE_effect values. Hourly data 
produces a closer match to process knowledge. Relies on event selection 
parameters. 

SE_effect SE_effect is not a reliable signature. Not strongly related to the threshold 
signatures; may show control of rainfall depth on flow, independent of the 
existence of a threshold. SE_effect is above 0.5 for most watersheds, so need 
the percentile to quantify high/low values. Hourly data produces a closer 
match to process knowledge. Relies on event selection parameters. 

IE_thresh_signif Strongly negatively correlated to IE_thresh: i.e., the code will generally not 
identify a threshold if it is not significant, but useful to confirm threshold 
existence. Relies on event selection parameters. 

SE_thresh_signif Strongly negatively correlated to SE_thresh: i.e., the code will generally not 
identify a threshold if it is not significant, but useful to confirm threshold 
existence. Relies on event selection parameters. 

IE_thresh, SE_thresh, 
Storage_thresh 

These signatures are more reliable than IE/SE_effect: large, significant 
thresholds suggest that these processes are important. All the thresholds (IE, 
SE, storage thresh) are strongly positively correlated. i.e., this identifies 
watersheds that require a lot of water to start producing flow. The very 
strong correlation between Storage and SE thresholds shows a difficulty in 
separating the impacts of pre-event storage and event depth. To achieve this, 
a longer storage memory than Mosleys (Mosley, 1979) 30-day API used in 
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the Storage_thresh signature may be required. Hourly rainfall data is 
preferred for IE_thresh. Relies on event selection parameters. 

SE_slope Agreed well with process interpretations in CZO watersheds, relates to 
expansion of saturated areas with event precipitation. Relies on event 
selection parameters. 

Storage_thresh_signif Moderately negatively correlated to SE_thresh: i.e., the code will usually not 
identify a threshold if it is not significant. Useful to confirm threshold 
existence, but see comments on Storage_thresh above. Relies on event 
selection parameters. 

 

7 Conclusions 
This study tested whether relationships between signatures and processes developed from 
experimental watershed studies hold true when applied over large scales and diverse hydro-
climates. The relationships were tested using two types of data: large sample CAMELS datasets 
from four regions, and detailed information from five CZO watersheds in the U.S. We note that 
when single signature values are used to summarize complex watershed responses, they might 
represent a compromise value between climate and process effects, or between multiple processes 
(e.g., fast and slow recession processes, or spatially variable overland flow). This compromise 
demonstrates the difficulty of summarizing processes using quantitative values, without losing 
some information.  

We identified a small number of signatures that were not reliable (SE_effect, IE_effect, 
StorageFraction) or had different interpretations than expected (EventRR). We made 
recommendations for adapting some signatures to better differentiate between processes (using 
multiple BFI timescales to separate baseflow magnitude and response time, calculating 
Storage_thresh with longer memory to differentiate from SE_thresh). Overall, the results showed 
that most signature patterns agreed with process interpretations, with groundwater and baseflow 
signatures being more reliable than overland flow signatures. Based on the CZO watershed results, 
signature-process relationships were most reliable in humid and Mediterranean-climate 
watersheds, and less reliable in arid and human-impacted watersheds. This difference reflects the 
history of signature development which has been concentrated in natural, humid basins, and points 
to scope for future signature development in a wider range of watersheds. 

 

Open Research 
Data and Code Availability 
The CAMELS U.S. dataset is available at https://dx.doi.org/10.5065/D6MW2F4D (Addor et al., 
2017; Newman et al., 2015). The hourly rainfall dataset corresponding to the CAMELS U.S. 
locations is available at https://doi.org/10.5281/zenodo.4072700 (Gauch et al., 2020, 2021). The 
CAMELS Great Britain dataset is available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-
86d2987543a9 (Coxon et al., 2020). The CAMELS Australia dataset is available at 
https://doi.pangaea.de/10.1594/PANGAEA.921850 (Fowler et al., 2021). The CAMELS Brazil 
dataset is available at https://zenodo.org/record/3964745 (Chagas et al., 2020). CZO data products 
are available at https://doi.org/10.4211/hs.29e2ec85770b42c881ef0750696463e5 (Wlostowski et 
al., 2021). The TOSSH toolbox (Gnann et al., 2021a) used to calculate hydrologic signatures is 

https://dx.doi.org/10.5065/D6MW2F4D
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
https://doi.pangaea.de/10.1594/PANGAEA.921850
https://zenodo.org/record/3964745
https://doi.org/10.4211/hs.29e2ec85770b42c881ef0750696463e5
https://www.zotero.org/google-docs/?xk8Dql
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available at https://github.com/TOSSHtoolbox/TOSSH. The code used to load the CAMELS data 
into Matlab is available at https://github.com/SebastianGnann/CAMELS_Matlab. The code to 
reproduce our analysis, and a full spreadsheet showing all signature values, percentiles, 
descriptions of each process and key references for each CZO watershed, are available at 
https://github.com/SebastianGnann/LargeScaleSigs. 

 
 

References 

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., & Clark, M. P. (2018). A ranking of 
hydrological signatures based on their predictability in space. Water Resources Research, 
54(11), 8792–8812. https://doi.org/10.1029/2018WR022606 

Addor, N., Newman, A. J., Mizukami, N., & Clark, M. P. (2017). The CAMELS data set: Catchment 
attributes and meteorology for large-sample studies. Hydrology and Earth System Sciences 
(HESS), 21(10), 5293–5313. https://doi.org/10.5194/hess-21-5293-2017 

Beighley, R. E., Dunne, T., & Melack, J. M. (2005). Understanding and modeling basin hydrology: 
Interpreting the hydrogeological signature. Hydrological Processes, 19(7), 1333–1353. 
https://doi.org/10.1002/hyp.5567 

Black, P. E. (1997). Watershed functions. Journal of the American Water Resources Association, 33(1), 
1–11. https://doi.org/10.1111/j.1752-1688.1997.tb04077.x 

Bloomfield, J. P., Gong, M., Marchant, B. P., Coxon, G., & Addor, N. (2021). How is Baseflow Index 
(BFI) impacted by water resource management practices? Hydrology and Earth System 
Sciences, 25(10), 5355–5379. https://doi.org/10.5194/hess-25-5355-2021 

Buchanan, B., Auerbach, D. A., Knighton, J., Evensen, D., Fuka, D. R., Easton, Z., Wieczorek, M., 
Archibald, J. A., McWilliams, B., & Walter, T. (2018). Estimating dominant runoff modes 
across the conterminous United States. Hydrological Processes, 32(26), 3881–3890. 
https://doi.org/10.1002/hyp.13296 

Chagas, V. B., Chaffe, P. L., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C., & Siqueira, V. A. 
(2020). CAMELS-BR: Hydrometeorological time series and landscape attributes for 897 
catchments in Brazil. Earth System Science Data, 12(3), 2075–2096. 
https://doi.org/10.5194/essd-12-2075-2020 

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., 
Gutmann, E. D., Wood, A. W., & Gochis, D. J. (2015). A unified approach for process-based 
hydrologic modeling: 2. Model implementation and case studies. Water Resources Research, 
51(4), 2515–2542. https://doi-org/10.1002/2015WR017200 

Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J., Lane, R., 
Lewis, M., & Robinson, E. L. (2020). CAMELS-GB: Hydrometeorological time series and 
landscape attributes for 671 catchments in Great Britain. Earth System Science Data, 12(4), 
2459–2483. https://doi.org/10.5194/essd-12-2459-2020 

Dralle, D. N., Karst, N. J., Charalampous, K., Veenstra, A., & Thompson, S. E. (2017). Event-scale 
power law recession analysis: Quantifying methodological uncertainty. Hydrology and Earth 
System Sciences, 21(1), 65. https://doi.org/10.5194/hess-2016-341 

Dunne, T. (1978). Field studies of hillslope flow processes. In M. J. Kirkby (Ed.), Hillslope hydrology 
(pp. 227–293). John Wiley & Sons.  

Estrany, J., Garcia, C., & Batalla, R. J. (2010). Hydrological response of a small mediterranean 
agricultural catchment. Journal of Hydrology, 380(1–2), 180–190. 
https://doi.org/10.1016/j.jhydrol.2009.10.035 

https://github.com/TOSSHtoolbox/TOSSH
https://github.com/SebastianGnann/CAMELS_Matlab
https://github.com/SebastianGnann/LargeScaleSigs


Manuscript submitted to Water Resources Research 

 

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., & Savenije, H. H. G. (2013). 
A framework to assess the realism of model structures using hydrological signatures. Hydrology 
and Earth System Sciences, 17(5), 1893–1912. https://doi.org/10.5194/hess-17-1893-2013 

Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, 
W. E., Flores, A., & Grant, G. (2019). Hillslope hydrology in global change research and Earth 
system modeling. Water Resources Research, 55(2), 1737–1772. 
https://doi.org/10.1029/2018wr023903 

Fowler, K. J., Acharya, S. C., Addor, N., Chou, C., & Peel, M. C. (2021). CAMELS-AUS: 
Hydrometeorological time series and landscape attributes for 222 catchments in Australia. Earth 
System Science Data Discussions, 1–30. https://doi.org/10.5194/essd-13-3847-2021 

Gauch, M., Kratzert, F., Klotz, D., Nearing, G., Lin, J., & Hochreiter, S. (2021). Rainfall–runoff 
prediction at multiple timescales with a single Long Short-Term Memory network. Hydrology 
and Earth System Sciences, 25(4), 2045–2062. https://doi.org/10.5194/hess-25-2045-2021 

Gauch, Martin, Kratzert, Frederik, Klotz, Daniel, Nearing, Grey, Lin, Jimmy, & Hochreiter, Sepp. 
(2020). Models and Predictions for "Rainfall-Runoff Prediction at Multiple Timescales with a 
Single Long Short-Term Memory Network" [Data set]. Zenodo. 
https://doi.org/10.5281/zenodo.4095485 

Gnann, S. J., Coxon, G., Woods, R. A., Howden, N. J., & McMillan, H. K. (2021a). TOSSH: A Toolbox 
for Streamflow Signatures in Hydrology. Environmental Modelling & Software, 138, 104983. 
https://doi.org/10.1016/j.envsoft.2021.104983 

Gnann, S. J., McMillan, H. K., Woods, R. A., & Howden, N. J. K. (2021b). Including Regional 
Knowledge Improves Baseflow Signature Predictions in Large Sample Hydrology. Water 
Resources Research, 57(2), e2020WR028354. https://doi.org/10.1029/2020WR028354 

Grayson, R., & Blöschl, G. (2001). Summary of pattern comparison and concluding remarks. Spatial 
Patterns in Catchment Hydrology: Observations and Modelling., 355–396. 

Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., & Andréassian, V. (2014). 
Large-sample hydrology: A need to balance depth with breadth. Hydrology and Earth System 
Sciences, 18(2), 463–477. https://doi.org/10.5194/hess-18-463-2014 

Hellie, F., Peschke, G., Seidler, C., & Niedel, D. (2002). Process-oriented subdivision of basins to 
improve the preprocessing of distributed precipitation-runoff-models. Interdisciplinary 
Approaches in Small Catchment Hydrology: Monitoring and Research, 137.  

Knoben, W. J. M., Woods, R. A., & Freer, J. E. (2018). A Quantitative Hydrological Climate 
Classification Evaluated With Independent Streamflow Data. Water Resources Research, 54(7), 
5088–5109. https://doi.org/10.1029/2018WR022913 

Lundquist, J. D., Cayan, D. R., & Dettinger, M. D. (2004). Spring onset in the Sierra Nevada: When is 
snowmelt independent of elevation? Journal of Hydrometeorology, 5(2), 327–342. 
https://doi.org/10.1175/1525-7541(2004)005%3C0327:SOITSN%3E2.0.CO;2 

Markstrom, S. L., Hay, L. E., & Clark, M. P. (2016). Towards simplification of hydrologic modeling: 
Identification of dominant processes. Hydrology and Earth System Sciences, 20(11), 4655–4671. 
https://doi.org/10.5194/hess-20-4655-2016 

McDonnell, J. J., & Woods, R. (2004). On the need for catchment classification. Journal of Hydrology, 
299(1), 2–3. https://doi.org/10.1016/j.jhydrol.2004.09.003 

McMillan, H. (2020). Linking hydrologic signatures to hydrologic processes: A review. Hydrological 
Processes, 34(6), 1393–1409. https://doi.org/10.1002/hyp.13632  

McMillan, H. K. (2021). A review of hydrologic signatures and their applications. Wiley 
Interdisciplinary Reviews: Water, 8(1), e1499. https://doi.org/10.1002/wat2.1499 

Mosley, M. P. (1979). Streamflow generation in a forested watershed, New Zealand. Water Resources 
Research, 15(4), 795–806. https://doi.org/10.1029/wr015i004p00795 

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., 
Brekke, L., & Arnold, J. R. (2015). Development of a large-sample watershed-scale 
hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of 

https://doi.org/10.5281/zenodo.4095485


Manuscript submitted to Water Resources Research 

 

regional variability in hydrologic model performance. Hydrology and Earth System Sciences, 
19(1), 209–223. https://doi.org/10.5194/hess-19-209-2015 

Peschke, G., Etzenberg, C., Töpfer, J., Zimmermann, S., & Müller, G. (1999). Runoff generation 
regionalization: Analysis and a possible approach to a solution. IAHS-AISH Publication, 147–
156. 

Pfister, L., Martínez-Carreras, N., Hissler, C., Klaus, J., Carrer, G. E., Stewart, M. K., & McDonnell, J. J. 
(2017). Bedrock geology controls on catchment storage, mixing, and release: A comparative 
analysis of 16 nested catchments. Hydrological Processes, 31(10), 1828–1845. 
https://doi.org/10.1002/hyp.11134 

Scherrer, S., & Naef, F. (2003). A decision scheme to indicate dominant hydrological flow processes on 
temperate grassland. Hydrological Processes, 17(2), 391–401. https://doi.org/10.1002/hyp.1131 

Sivakumar, B. (2008). Dominant processes concept, model simplification and classification framework 
in catchment hydrology. Stochastic Environmental Research and Risk Assessment, 22(6), 737–
748. https://doi.org/10.1007/s00477-007-0183-5 

Sivapalan, M. (2006). Pattern, Process and Function: Elements of a Unified Theory of Hydrology at the 
Catchment Scale. In Encyclopedia of Hydrological Sciences. John Wiley & Sons. 
https://doi.org/10.1002/0470848944.hsa012 

Stoelzle, M., Stahl, K., & Weiler, M. (2013). Are streamflow recession characteristics really 
characteristic? Hydrology and Earth System Sciences, 17(2), 817–828. 
https://doi.org/10.5194/hess-17-817-2013 

Wagener, T., Sivapalan, M., Troch, P., & Woods, R. (2007). Catchment classification and hydrologic 
similarity. Geography Compass, 1(4), 901–931. https://doi.org/10.1111/j.1749-
8198.2007.00039.x 

Wlostowski, A. N., Molotch, N., Anderson, S. P., Brantley, S. L., Chorover, J., Dralle, D., Kumar, P., Li, 
L., Lohse, K. A., & Mallard, J. M. (2020). Signatures of Hydrologic Function Across the Critical 
Zone Observatory Network. Water Resources Research, 57(3). 
https://doi.org/10.1029/2019wr026635 

Wolock, D. M. (2003). Infiltration-excess overland flow estimated by TOPMODEL for the conterminous 
United States. US Geological Survey. Retrieved from 
https://pubs.er.usgs.gov/publication/ofr03310 

Wu, S., Zhao, J., Wang, H., & Sivapalan, M. (2021). Regional patterns and physical controls of 
streamflow generation across the conterminous United States. Water Resources Research, 57(6). 
https://doi.org/10.1029/2020wr028086 

Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., & Morgan, K. T. (2010). Step by step 
calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and 
Agricultural Sciences. University of Florida.  



 
 

1 
 

 

Water Resources Research 

Supporting Information for 

Large Scale Evaluation of Relationships between Hydrological Signatures and 
Processes 

H. McMillan1, S. J. Gnann2, and R. Araki1  

1Department of Geography, San Diego State University, San Diego, CA, USA 

2Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany 

 

Contents of this file  
Figures S1 to S11 
Tables S1 to S6  

Introduction  

This supporting information contains Figures and Tables that were not included in 
the main manuscript. Figures and Tables present either additional information or 
full results of the analysis.  

Figure S1 illustrates the uncertainties in calculating StorageFraction signatures. 
Figures S2 to S9 present maps of eight selected signatures (AverageStorage, 
EventRR, RecessionParameters_b, BaseflowRecessionK, IE_effect, SE_effect, 
IE_thresh, and SE_thresh). Figures S10 and S11 present relationships between 
signatures and aridity. 

Tables S1 and S2 provide additional information on signature selection and 
calculation methods. Tables S3 and S4 show signature distributions converted to 
percentiles. Tables S5 and S6 show rank correlations of signature values and aridity 
by country.  
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Figure S1. Plot showing StorageFraction signature calculation. 
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Figure S2. Maps of AverageStorage. Note that the maps of the countries are not to 
the same scale. 
 

Figure S3. Maps of EventRR. Note that the maps of the countries are not to the 
same scale.
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Figure S4. Maps of RecessionParameters_b. Note that the maps of the countries are 
not to the same scale.

Figure S5. Maps of BaseflowRecessionK. Note that the maps of the countries are 
not to the same scale.  
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Figure S6. Maps of IE_effect. Note that the maps of the countries are not to the 
same scale. 

Figure S7. Maps of SE_effect. Note that the maps of the countries are not to the 
same scale.
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Figure S8. Maps of IE_thresh. Note that the maps of the countries are not to the 
same scale.

Figure S9. Maps of SE_thresh. Note that the maps of the countries are not to the 
same scale. 
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Figure S10. Relationship between groundwater signatures and aridity (PET/P). 
 
 

Figure S11. Relationship between overland flow signatures and aridity (PET/P). 
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Table S1. Signatures that were removed from the analysis. 
Signature Reason 

RecessionParameters_a Units depend on RecessionParameters_b, RecessionParameters_T0 is used instead 

Spearmans_rho Superseded by Recession_a_Seasonality for variations in recessions 

min_Qf_perc Uninformative signature which mostly yields a value of 0 

 

Table S2. Watershed-specific parameters and methods of estimation. 

Workflow Parameter Description Method of Estimation 

OF max_recessiondays Max. length of 
recession after 
rainfall, to calculate 
event volume 

Set to 5  

GW recession_length minimum number of 
days of decreasing 
flow required to count 
as a recession 

Set to 2  

GW start_water_year Month when the 
water year starts  

Set to 10 for US and Great Britain, 4 for 
Australia, 9 for Brazil 

GW eps Allowed increase in 
flow during recession 
period 

Set to median flow * 0.001 in most cases, 
checked visually that recessions were not 
being rejected due to diurnal cycles. Higher 
values (up to median flow * 0.17) needed for 
intermittent watersheds (Eel and Santa 
Catalina CZOs). 

GW n_start Days after flow peak 
to start recession 
period 

Set to 1 
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Table S3. 1st, 25th, 50th, 75th, and 99th percentiles of groundwater signatures.  

Signature 1st 25th 50th 75th 99th 

TotalRR [-] 0.03 0.26 0.37 0.49 0.95 

EventRR [-] 0.01 0.14 0.21 0.28 0.72 

RR_Seasonality [-] 0.30 0.62 0.96 1.74 4.02 

StorageFraction [-] 0.28 0.72 0.91 1.00 1.18 

ActiveStorage [mm] 154 347 474 643 2881 

TotalStorage [mm] 218 409 568 836 3267 

Recession_a_Seasonality [-] 0.44 1.10 1.60 2.46 5.68 

AverageStorage [mm] 64 149 207 278 582 

RecessionParameters_b [-] 1.20 2.02 2.52 3.46 7.77 

RecessionParameters_T0 [d] 2.65 9.54 14.47 22.13 91.31 

MRC_num_segments [-] 1.00 2.00 3.00 3.00 3.00 

BFI [-] 0.06 0.38 0.53 0.70 0.98 

BaseflowRecessionK [1/d] 0.02 0.08 0.11 0.17 0.49 

First_Recession_Slope [1/d] 0.01 0.24 0.46 0.77 2.04 

Mid_Recession_Slope [1/d] 0.02 0.12 0.17 0.24 0.90 

EventRR_TotalRR_ratio [-] 0.25 0.50 0.55 0.64 0.91 

VariabilityIndex [-] 0.08 0.25 0.35 0.51 1.17 

 

Table S4. 1st, 25th, 50th, 75th, and 99th percentiles of overland flow signatures. 

Signature 1st 25th 50th 75th 99th 

IE_effect [-] -0.30 0.00 0.07 0.18 0.53 

SE_effect [-] 0.28 0.62 0.74 0.84 1.03 

IE_thresh_signif [-] 0.00 0.00 0.00 0.00 1.00 

SE_thresh_signif [-] 0.00 0.00 0.00 0.00 1.00 

IE_thresh [mm/d] 0 8 12 18 52 

SE_thresh [mm] 0 16 29 45 140 

SE_slope [mm/mm] 0.01 0.14 0.26 0.44 1.03 

Storage_thresh_signif 
[-] 

0.00 0.00 0.00 0.00 0.53 

Storage_thresh [mm] 9 30 44 60 142 
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Table S5. Rank correlation between groundwater signatures and aridity (PET/P) by 
country. 
Signature US GB AUS BR Total 

TotalRR [-] -0.89 -0.90 -0.82 -0.78 -0.87 

EventRR [-] -0.90 -0.92 -0.83 -0.77 -0.86 

RR_Seasonality [-] 0.03 -0.48 -0.33 0.48 -0.11 

StorageFraction [-] 0.22 0.26 0.27 0.13 0.36 

ActiveStorage [mm] -0.23 0.16 -0.43 0.23 -0.05 

TotalStorage [mm] -0.32 0.11 -0.46 -0.13 -0.29 

Recession_a_Seasonality [-] 0.36 0.67 0.41 0.25 0.44 

AverageStorage [mm] -0.38 -0.17 -0.48 0.38 0.01 

RecessionParameters_b [-] -0.24 0.47 -0.45 0.22 -0.15 

RecessionParameters_T0 [d] 0.11 0.77 -0.28 0.36 0.11 

MRC_num_segments [-] -0.06 -0.34 0.11 -0.09 0.01 

BFI [-] -0.25 0.54 -0.56 0.29 -0.18 

BaseflowRecessionK [1/d] 0.38 -0.40 0.62 -0.18 0.26 

First_Recession_Slope [1/d] -0.05 -0.27 0.29 -0.22 0.11 

Mid_Recession_Slope [1/d] 0.16 -0.30 0.44 -0.29 0.10 

EventRR_TotalRR_ratio [-] -0.59 -0.65 -0.06 -0.20 -0.39 

VariabilityIndex [-] 0.26 -0.27 0.39 -0.18 0.27 

 

Table S6. Rank correlation between overland flow signatures and aridity (PET/P) by 
country. 

Signature US GB AUS BR Total 

IE_effect [-] -0.34 -0.92 -0.18 0.03 -0.24 

SE_effect [-] 0.25 0.40 -0.25 0.04 -0.05 

IE_thresh_signif [-] 0.24 0.87 0.12 0.17 0.06 

SE_thresh_signif [-] 0.06 0.57 0.35 0.15 0.14 

IE_thresh [mm/d] 0.24 -0.79 -0.02 -0.12 0.17 

SE_thresh [mm] 0.26 -0.26 0.05 0.11 0.17 

SE_slope [mm/mm] -0.32 -0.73 -0.29 -0.54 -0.30 

Storage_thresh_signif [-] 0.19 0.61 0.50 0.12 0.23 

Storage_thresh [mm] 0.17 -0.51 -0.01 0.09 0.08 

 


