Source to Sink in the Easternmost Mediterranean: Insights from the Provenance of Oligo-Miocene Turbidites in the South Turkish Basins

Guohui Chen¹, Alastair Robertson², Osman Parlak³, and Fu-Yuan Wu¹

¹State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences
²University of Edinburgh
³Çukurova Üniversitesi

November 30, 2022

Abstract

South Turkish Neogene basins record post-collisional exhumation/erosion of Neotethyan basins. Facies and paleocurrent data indicate general northerly derivation of siliciclastic sediments. Provenance is further indicated by integrated detrital zircon U-Pb geochronology (29 samples; 2748 grains) of 7 mapped late Oligocene-Miocene basins (from E-W): 1. Hatay, 2. K.Maraş, 3. Adana, 4. Misis, 5. Mut, 6. Manavgat and 7. Köprü. 1-4 and 6-7 represent two separate tectonically active depocenters, whereas 5 was a relatively stable platform. The early-mid Miocene of Hatay Basin contains sparse zircons with Precambrian (570-900 Ma) and Cretaceous (73-99 Ma) populations that become prominent in the mid-late Miocene. The early Miocene of K.Maraş Basin has abundant Pan-African, Grenvillian and Eocene zircons; mid-Miocene exhibits scarce Neoproterozoic-Mesoproterozoic but abundant Cretaceous-Neogene zircons. The late Oligocene-early Miocene of Adana Basin has minor Cretaceous-Neogene zircons, becoming more abundant in the early Miocene. The Miocene of Misis Basin has abundant Precambrian grains, mainly restricted to the NE. The Miocene of Mut Basin has major zircon populations of 544-710 Ma, 730-990 Ma, and two subordinate 1700-2000 Ma and 2400-2700 Ma clusters. Early Miocene (17-19 Ma) zircons occur in some samples. The Manavgat Basin samples are similar to the Mut Basin ones but with more evidence of mid-late Miocene (8-14 Ma) zircons. Lastly, the Köprü Basin (E Isparta Angle) has Pan-African (540-640 Ma) and Grenvillian (810-1000 Ma) populations, and small Paleozoic clusters. The Pan-African and Grenvillian-aged material was probably supplied directly and/or recycled from rifted Gondwanan Cadomian 'basement' and its Paleozoic passive margin cover, as partly exposed in south/central Anatolia. Sparse Permian-Triassic zircons relate to Neotethyan rifting. Late Cretaceous-early Cenozoic grains were derived from adjacent Late Cretaceous ophiolitic, magmatic arc and related metamorphic units. Early Miocene zircons relate to local basaltic volcanism. The variable zircon abundances hint at differential exhumation/erosion. Two regional drainage system dominated, one through the K.Maras basin system (E) and the other through the Isparta Angle basin system (W).

Source to Sink in the Easternmost Mediterranean: Insights from the Provenance of Oligo-Miocene Turbidites in the South Turkish Basins Guohui Chen¹, Alastair H. F. Robertson², Osman Parlak³, Fu-Yuan Wu¹

¹ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, China (Corresponding author: Guohui.Chen@live.cn) ² School of GeoSciences, University of Edinburgh, UK; ³ Çukurova Üniversitesi, Jeoloji Mühendisliği Bölümü, Turkey

Introduction

- crustal units in S Turkey.
- water basin to the S.
- scale.

Specific objectives

- To determine the **detrital provenance** of seven related Oligocene-Miocene marine basins in S Turkey;
- To determine the **exhumation/erosional history** of key regional magmatic and/or metamorphic units;
- To test the existing paleontologically **assigned ages of depositional formations**;
- To improve understanding of the closure history of Tethyan ocean basin in the E Mediterranean region.

Methods

- Cathodoluminescence (CL) imaging: zircon morphology and internal microtexture
- U-Pb dating: Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
- Data reduction: GLITTER 4.0 (Griffin et al., 2008) and Iolite software package (Wu et al., 2018)
- Zircon age interpretation: for zircon <1000 Ma, ²⁰⁶Pb/²³⁸U ages preferred; for zircon >1000 Ma, ²⁰⁷Pb/²⁰⁶Pb ages preferred
- Data filtering: for zircon <200 Ma, discordance <20%; for zircon >200 Ma, discordance <10%

Hatay basin

L. Miocene: mainly high-level crustal input (little Precambrian 'basement');

M. Miocene: zircons become younger up-sequence; Pliocene: increased 'basement' input (probably from Arabia).

rchean	Kahramanmaraş basin
G20-58 (n=98/100) Mid to Late Miocene	• L. Miocene: major Precambria
G20-64 (n=90/100) Mid Miocene	 basement' input; M. Miocene: major La²
G20-67 (n=97/100) Early Miocene	Cretaceous input
0 3500 400	0
Archean	Adana basin
G20-11 (n=95/100) Late Miocene	
G20-28 (n=96/100) Mid Miocene (E lobe)	 Iwo (known) sedimentary lobes (turbidites) have contrasting late Cretaceous vs
G20-26 (n=97/99) Mid Miocene (W lobe)	 Eocene input; U. Oligocene-L. Miocene: Late
G20-23 (n=96/100) Oligocene-Early Miocene (W lobe)	Cretaceous input to the SW/W of the W lobe (from possible
G20-16 (n=95/100) Mid Miocene	dominant Eocene input nea the W lobe:
G20-18 (n=97/100) Early Miocene	• M. Miocene: consisten provenance as Late Oligocene
0 3500 400	Early Miocene; • U. Miocene : Precambrian 'basement' supply (probably
	from the Taurides)
rchean	Misis basin
G20-2 (n=98/100) Late Miocene	• Continuous input from Lat
G20-9 (n=98/100) Middle Miocene	• Evidence of Oligocen Miocene volcanism ;
G20-1 (n=93/100) Early to Mid Miocene	• Abundant input fro • 'basement' only in NE.
G20-3 (n=97/100) Mid to Late Miocene	
G20-4 (n=94/100) Middle Miocene	offshore -
G20-6 (n=95/100) Early Miocene	
0 3500 400	0
Archean	Mut hasin
G20-31 (n=99/100) Early Miocene	A Background input from
G20-32 (n=97/100) Early Miocene	Precambrian 'basement' (ultimately from Gondwana)
G20-34 (n=94/100) Early Miocene	 Miocene zircons from coeval volcanism (to the north).
G20-36 (n=82/100) Early Miocene	
00 3500 400	00
Archean	Manavgat basin
G20-37 (n=95/100) Late Miocene	
G20-42 (n=97/100) Mid to Late Miocene	 Late Cretaceous input relatively minor; M. Miocene: 'basemen
G20-39 (n=95/100) Mid Miocene	grains increase (probably fro the Taurides);
0 3500 400	• U. Miocene : renewe
Archean	Köprü basin

Provenance implications

- Carboniferous (350-310 Ma): recycled from Paleotethys (to N)
- Permian (290-280 Ma): early stage rifting of Neotethys

- Neogene: post-collisional magmatism

Unravelling sediment transport history

- Mut basins;
- Hatay and Adana basins);

Preliminary conclusions and further research

- to the S (subduction of S Neotethys).
- using the LA-MC (multi-collector)-ICP-MS.

Flecker, R., Poisson, A. and Robertson, A., 2005. Sedimentary Geology, 173: 277-314. Gökçen, S.L., Kelling, G., Gökçen, N. and Floyd, P.A., 1988. Sedimentary Geology, 59: 205-235. Gül, M., Cronin, B.T. and Gürbüz, K., 2012. Earth-Science Reviews, 114: 195-217. Gürbüz, K. and Kelling, G., 1993. Geological Journal, 28: 277-293. Kelling, G., Robertson, A. and Van Buchem, F., 2005. Sedimentary Geology, 173: 1-13. Şafak, Ü., Kelling, G., Gökçen, N.S. and Gürbüz, K., 2005. Sedimentary Geology, 173: 121-150.

Arche	ean	
G20 Mid t	-45 (n=91/100) to Late Miocen) e
3000	3500	4000

'basement'

Precambrian

rare.

grains dominate;

Discussion

• Precambrian-Cambrian (1.1-0.9 Ga, 750-500 Ma): NE Africa/Arabian-Nubian Shield origin • late Ediacaran-early Cambrian (570-520 Ma): Andean-type, Cadomian magmatism • Ordovician-Devonian (480-360 Ma): extensional pulses in N Gondwana margin (to N)

Triassic (240-210 Ma): major rifting to open Neotethyan oceans

• Jurassic (170-150 Ma): magmatism within Inner Tauride and/or N Neotethyan oceans

• Cretaceous (97-70 Ma): supra-subduction zone ophiolite and/or magmatic arc

• Paleogene: Eocene (arc magmatism); Oligocene (uncertain, little crustal record)

Paleocurrents → Late Oligocene Early Miocene Middle Miocene

----> Late Miocene

• Each basin has its own sediment transport pathways from its erosional hinterland;

• Late Oligocene: S Turkish basins are mainly non-marine in contrast to deep Mediterranean basin to S (e.g., Kyrenia Range, N Cyprus);

• Early Miocene: multiple feeder channels (e.g., Adana basin); drainage connection of Kahramanmaraş and Misis basins; southeastward transport of detritus in Adana and

• Middle Miocene: regional subsidence created deep-marine depocenters that sloped southwards into the E Mediterranean basin; increased 'basement' input in places (e.g.,

• Late Miocene: increased basement input related to uplift/exhumation of the Taurides.

• Variable zircon populations in the individual Neogene basins point to differing exhumation/erosion histories (related to closure of Neotethyan basins).

• Two main regional drainage system dominated, one through the Kahramanmaraş basin system (E) and the other through the Isparta Angle basin system (W).

Basement topography/characteristics influenced the basin development/provenance, e.g., the formation of two sedimentary lobes in the Adana basin.

• Erosion/exhumation history relates to an interplay between collisional processes to the N (Inner Tauride and N Neotethyan suture zones) and 'back-arc' extensional processes

• To further determine the provenance affinities, zircon Lu-Hf isotopes will be analyzed

References