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Abstract

Biomass burning is an important source of trace gases and particles, and can influence air quality on local, regional, and global

scales. With the threat of wildfire events increasing due to changes in land use, increasing population, and climate change, the

importance of characterizing wildfire emissions is vital. In this work we characterize trace gas emissions from 12 wildfires and 1

prescribed fire in California between 2013 and 2017, in some cases with multiple measurements performed during different burn

periods of a specific fire. Airborne measurements of carbon dioxide, methane, ozone, formaldehyde, water vapor, temperature

and 3-dimensional winds were made by the Alpha Jet Atmospheric eXperiment (AJAX) and [has been/will soon be] published

at NASA’s Airborne Science Data Center (doi:10.5067/ASDC/AJAX/wildfire). The majority of these measurements were made

as close as possible to each fire and represent fresh emissions from known fire sources. This set of observations from 13 different

fires offers the opportunity to explore trace gas emissions over a range of meteorology, fire conditions, and to a lesser extent,

vegetation type and drought, and adds to the body of knowledge collected by other investigators and field campaigns.
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• Several downwind legs and regional transits also included, making possible contributions 20 
to studies of human exposure at regional scales 21 
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Abstract 23 

Biomass burning is an important source of trace gases and particles, and can influence air quality 24 
on local, regional, and global scales. With the threat of wildfire events increasing due to changes 25 
in land use, increasing population, and climate change, the importance of characterizing wildfire 26 
emissions is vital. In this work we characterize trace gas emissions from 12 wildfires and 1 27 
prescribed fire in California between 2013 and 2017, in some cases with multiple measurements 28 
performed during different burn periods of a specific fire. Airborne measurements of carbon 29 
dioxide, methane, ozone, formaldehyde, water vapor, temperature and 3-dimensional winds were 30 
made by the Alpha Jet Atmospheric eXperiment (AJAX) and [has been/will soon be] published 31 
at NASA's Airborne Science Data Center (doi:10.5067/ASDC/AJAX/wildfire). The majority of 32 
these measurements were made as close as possible to each fire and represent fresh emissions 33 
from known fire sources. This set of observations from 13 different fires offers the opportunity to 34 
explore trace gas emissions over a range of meteorology, fire conditions, and to a lesser extent, 35 
vegetation type and drought, and adds to the body of knowledge collected by other investigators 36 
and field campaigns. 37 

 38 

Plain Language Summary 39 

Biomass burning is an important source of trace gases and particles which can influence air 40 
quality on local, regional, and global scales. This set of airborne observations of trace pollutants 41 
and winds from 13 different fires broadens the range of fire types and conditions for which 42 
observations have been made near the top of visible smoke plumes. Calibrated and quality-43 
controlled observations of methane, formaldehyde, ozone, carbon dioxide, water vapor and 3-D 44 
winds near to a variety of active fires offer the opportunity to explore emissions over a range of 45 
meteorology, fire conditions, and to a lesser extent, vegetation type and drought. This dataset can 46 
also be an asset for bridging the gap of knowledge between models and in situ data collected by 47 
other investigators and field campaigns. 48 

1 Introduction 49 

Wildfires in California can influence local, regional, and global air quality (Jaffe et al., 50 
2020, Gupta et al. 2018, McClure & Jaffe, 2018; Singh et al., 2010; Yates et al., 2016), and the 51 
duration and frequency of wildfires is increasing associated with increased human population 52 
and climate change (Holden et al., 2018; Radeloff et al., 2018; Westerling et al., 2006). The trend 53 
toward increasing area burned in recent decades is influenced by multiple factors that vary 54 
regionally, and thus relevant data is needed at a variety of spatial scales (Jaffe et al., 2020). With 55 
more than a quarter of California residents living under "very high" or "extreme" fire threat 56 
(CARB, 2021) and an increasing awareness of the toxicity of wildfire smoke (e.g., Aguilera et 57 
al., 2021), it is important to understand the range of conditions, emissions, and impacts from the 58 
variety of small and large fires that occur in California each year. 59 

Fixed-location surface sites offer multi-year archives of site-specific observations of 60 
aged, advected smoke (Buysse et al., 2019), and large field campaigns such as the recent Fire 61 
Influence on Regional to Global Environments and Air Quality (FIREX-AQ) and Western 62 
wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) missions 63 
can bring together multi-disciplinary teams with skills and tools applied across the fuel-fire-64 
smoke system for an intensive measurement period. 65 



manuscript submitted to Earth and Space Science 

 

We report here a different type of field campaign occurring over multiple years, sampling 66 
trace gases emitted by fires with a range of size, intensity, and meteorological conditions. In this 67 
way, the data set reported here is complementary to both other paradigms. By sampling near to 68 
the source, the AJAX project adds the perspective of fresh emissions for a variety of fires over 69 
both very active burning years and those which are less so. Measurements of fresh fire emissions 70 
are particularly needed because they represent the starting point in current global atmospheric 71 
chemistry models and smaller-scale photochemical plume models (Akagi et al., 2011). In 72 
particular, Liu et al. (2019) demonstrate the need for near-fire measurements of ozone, CO2, 73 
VOCs and winds. 74 

In this work we report observations of trace gases (ozone (O3),  carbon dioxide (CO2), 75 
methane, (CH4) and formaldehyde (HCHO)) and in situ temperature and winds, as well as 76 
derived analyses used to characterize emissions from 12 wildfires and 1 prescribed fire in 77 
California between 2013 and 2017, broadening the knowledge base of fire emissions available to 78 
the community. One example is presented in detail, and the application of the data to calculation 79 
of Emission Ratios (ERs) is presented. 80 

2 Data Set 81 

2.1 Airborne Trace Gas and Meteorological Measurements 82 

The Alpha Jet Atmospheric eXperiment (AJAX) has been making in situ airborne 83 
measurements of trace gases on a regular, long-term basis, with 229 flights between 2011 and 84 
2018. AJAX measures O3, CO2, CH4, HCHO, water (H2O),  and meteorological parameters 85 
(ambient pressure, temperature, and 3-D winds). A detailed description of AJAX and instrument 86 
placement can be found in Hamill et al. (2016). Measurements of CO2 and CH4 are taken with a 87 
cavity ring-down spectrometer (CRDS, Picarro G2301-m) (Tadić et al., 2014; Tanaka et al., 88 
2016). Measurements of O3 use a modified UV monitor (2B Technologies, Inc., model 205) 89 
(Yates et al., 2013). Airborne measurements of HCHO are taken with the Compact 90 
Formaldehyde Fluorescence Experiment (COFFEE) (St. Clair et al., 2017) beginning in 91 
December 2015.  92 

Figure 1 shows the location for each fire 93 
sampled by AJAX. Flights typically occurred during 94 
the early afternoon (12 – 2 PM local time), and most 95 
data were collected at altitudes near the top of the 96 
visible smoke plume. During analysis, fire plumes 97 
were identified by choosing sections of each flight 98 
when mixing ratios of trace gases were well above 99 
their background values, and when winds were coming 100 
from the general direction of the fire.  101 

The in situ trace gas measurements have been 102 
calibrated, screened for quality, and archived as 103 
comma separated variable (CSV) files in ICARTT 104 
format with a common time index. Ozone data have 105 
been post-processed with the results of an eight-point 106 
calibration (ranging from 0 to 300 ppbv) performed 107 
before and after each flight using a NIST-traceable 108 

Figure 1. A topographic map with the 
location of fires measured by AJAX, 
colored by year. 
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calibration source (2B Technologies, model 306) referenced to the WMO scale. Calibration 109 
settings for the O3 monitor were left at manufacturer default settings during flight, and 110 
corrections to account for linearity offset and zero offset have been applied during data 111 
processing and are documented in each data file. Data have been averaged to 10 seconds and the 112 
inlet delay (lag time) has been subtracted; uncertainty estimates are included and are generally on 113 
the order of 3 ppbv. Quality assurance methods focus primarily on instrument pump 114 
performance; instrument temperature is a secondary diagnostic which has been evaluated. Data 115 
have been discarded if either characteristic is out of specification. 116 

Ozone measurements were obtained with a commercial UV monitor with hopcalite 117 
scrubber and Nafion dryer. This technique has been shown to be free of interferences in aged 118 
wildfire plumes with £800 ppb CO (Gao & Jaffe, 2017). It is also the method found by Long et 119 
al. (2021) to have a relatively small interference (i.e., 1.5 – 3 ppb O3 (ppm CO)-1) compared to 120 
our calibration uncertainly (± 3 ppbv), indicating that a statistically robust interference would be 121 
present only in situations when sampling well in excess of 1000 ppb CO. Unfortunately CO 122 
measurements are not available in the AJAX payload, but the visibility, airspace, and safety 123 
limitations of the AJAX flight plans require operations outside the dense plume. Comparison 124 
with data collected by the chemiluminescence technique during the SEAC4RS campaign indicate 125 
that AJAX ozone measurements were not subject to significant interferences at least up to DCO2 126 
~40 ppm and DCH4  ~300 ppb  (Yates et al., 2016). 127 

CO2 and CH4 data have been post-processed to traceable standard scales by comparison 128 
to standards prepared by the Global Monitoring Division of the National Oceanic and 129 
Atmospheric Administration (NOAA). CO2 is given on the WMO mole fraction scale version 130 
X2007, and CH4 is tied to the NOAA04 and X2004A scales, with calibration factors and 131 
additional details given in the individual data files. Water vapor corrections determined by Chen 132 
et al. (2010) have been applied to calculate the dry mixing ratios of CO2 and CH4, and 133 
uncertainty estimates based on propagation of errors are documented. The most important quality 134 
assurance step for this data product evaluates instrument optical cavity pressure and temperature 135 
for nominal conditions. The inlet lag time has been accounted for, and data have been averaged 136 
to 3 seconds.  137 

Meteorological data (temperature, pressure and 3-dimensional winds) and formaldehyde 138 
observations are provided at 1 Hz in ICARTT-compliant text files. The root mean square 139 
accuracy of the pressure and temperature measurements from the Meteorological Measurement 140 
System (MMS) are ±0.3 hPa and ± 0.3 K, respectively. The 1-s uncertainty of the 3-D wind 141 
vector is ± 1.0 m/s. The overall measurement uncertainty for HCHO is estimated to be 20% of 142 
[HCHO] + 100 pptv (St. Clair et al., 2017). 143 

2.2 Additional Observations and Analyses 144 

For each flight, the age of each fire plume sampled was approximated by dividing the 145 
horizontal sampling distance from the fire source by the average wind speed at the altitude where 146 
the smoke was sampled. For the 3 flights when in situ wind speed and direction measurements 147 
were unavailable, average wind speeds were derived from hourly ERA5 reanalysis data 148 
(Hersbach et al., 2020). Specific findings from individual flights are presented in Tables 1-3.  149 

Parameters related to the fire properties were collected from multiple sources. Fire 150 
Radiative Power (FRP) data was obtained from NASA’s Visible Imaging Radiometer Suite 151 
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(VIIRS) 375 m fire data aboard the National Polar-orbiting Partnership (S-NPP) satellite 152 
(Earthdata, 2019). Burn scar areas for wildfires were obtained from the Geospatial Multi-Agency 153 
Coordination (GeoMAC) database (Walters et al., 2011). Land cover data was obtained from the 154 
US Geological Survey National Land Cover Database (NLCD). The type of vegetation burned in 155 
each fire of this study was obtained from the Fuel Characteristic Classification System (FCCS) 156 
developed by the US Forest Service (Ottmar et al., 2007; Riccardi et al., 2007).  157 

Meteorological conditions from nearby California Resource Board (CARB) ground sites 158 
were obtained from the CARB Air Quality and Meteorological Information System (AQMIS) 159 
website, compiled and analyzed, and are included in Tables 1-3. 160 

To illustrate the transport pathways and potential sources of airmasses measured along 161 
each flight, back trajectories were computed using the Hybrid Single-Particle Lagrangian 162 
Integrated Trajectory (HYSPLIT) model (Stein et al., 2015). 72-hour back trajectories were 163 
computed every one hour during the same time period as each AJAX fire flight based on the 164 
large-scale meteorological fields available from the National Oceanic and Atmospheric 165 
Administration (NOAA) Global Data Assimilation System (GDAS, 1° grid spacing). All of the 166 
back trajectories originated from the aircraft altitude along each point of the flight, and vertical 167 
transport was based on the mean vertical velocities from GDAS. These analyses were 168 
particularly useful for identifying segments of flights tracks which were influenced by nearby 169 
urban areas (e.g., Visalia and Bakersfield during portions of Flight 168) and for tracing the aged 170 
plume sampled from the Thomas fire (Flight 216). 171 

NOAA's Hazard Mapping System Fire and Smoke product was also used to verify the 172 
assignment of smoke origin on several flight days, particularly when a sampled plume was likely 173 
generated by more than one fire (e.g., Rough and Cabin fires in 2015, Flight 167). 174 

Collection of these relevant parameters and analyses into a single repository, along with 175 
the trace gas measurements, reduces the effort required in future studies of the variability among 176 
emissions from different fires. 177 

2.3 Example of Available Data for Individual Flights 178 

Each flight in the archive was analyzed in detail, and one example is shown in Figure 2. 179 
The Soberanes fire burned a total of 103,242 acres of Redwood and Tanoak forest from July 22 180 
through October 12, 2016, allowing the AJAX project to sample emissions from this fire on five 181 
separate flight days. 182 

As shown in Figure 2(k), Flight 197 on August 9 included several loops around the 183 
perimeter of the fire at a mean altitude of 2013 m, followed by a 91 km leg downwind of the fire 184 
at a mean altitude of 2129 m. The portions of the flight track edged in black correspond to the 185 
periods of time highlighted in gray in panels (a-f). Structured enhancements in CO2, CH4, O3, 186 
HCHO, and H2O are all evident when sampling to the east of the fire, consistent with both wind 187 
direction measured onboard and HYSPLIT analyses (not shown here but available in the 188 
archive). 189 

When sampling around the perimeter of the fire, the intercepted plume was estimated to 190 
be ~2 hr old (relatively fresh). When sampling downwind (pale blue edging in Figure 2(k) and 191 
pale blue bars in panels (a-f)), the smoke was estimated to be ~8.5 hours old, and the trace gas 192 
mixing ratios are considerably smaller and less structured. Background mixing ratios were 193 
determined during a section of flight upwind of the fire (cyan highlighting in panels (a-f)), and 194 
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maximum enhancements in the fresh fire plume relative to this background were observed to be 195 
∆CH4 = 619.1 ppb, ∆CO2 = 37.9 ppm, ∆O3 = 64.6 ppb, and ∆HCHO = 60.2 ppb (right hand axes 196 
in panels (b-e)). In the aged portion ∆CH4 = 38.4 ppb, ∆CO2 = 3.5 ppm, and ∆HCHO = 4.3 ppb 197 
were observed. 198 

 199 

Table 1. Information on each California fire measured by AJAX in 2013 and 2014. Units are in 200 
square brackets. "N/A" indicates data which are not available due to instrument failure. 201 
 202 

Fire Rim El Portal Bald Eiler Meadow 

Vegetation Types Live oak 
Blue oak woodland 

Jeffrey pine, Red 
fir, White fir / 

Greenleaf 
manzanita 

Snowbrush forest 

Scrub oak 
Chaparral 
shrubland 

Red fir 
forest 

Red fir 
forest 

Total Acres Burned 257,314 4689 39,736 32,416 4772 

Duration of Fire 8/17/13–10/27/13 7/26/14–8/4/14 7/30/14–
8/16/14 

7/31/14 
– 

8/24/14 

8/15/14–
9/29/14 

Flight Date (Flight #) 8/29/13 
(100) 

9/10/13 
(101) 7/29/14 (136) 8/6/14 (137) 9/9/14 

(141) 
Avg. RH at Ground Site 

[%] 59 39 39 100 46 

Max. Temperature at 
Ground Site [°C] 26 24 27 23 22 

Resultant Wind Speed at 
Ground Site (m/s) 12.1 10.1 7.8 2.2 8.2 

Avg. Fire Radiative Power 
(±1σ) (FRP) [MW] 

61.2 
(±73.0) 

14.2 
(±11.0) 13.5 (±6.3) N/A 21.1 (±8.8) 

Avg. GPS altitude in fire 
plume (±1σ) [km] 

4.4 
(±0.004) 3.8 (±0.1) 2.7 (±0.4) 1.7 (±0.3) 3.9 (±0.1) 

Age of fire plume [hr] 0.9 4.4 0.25 8.3 1.6 

Avg. Distance from Fire 
Source (±1σ) [km] 45.4 (±2.8) 37.0 

(±10.9) 13.2 (±6.5) 49.9 (±19.1) 12.4 (±5.5) 

Average H2O in plume 
(±1σ) [%v] 

0.26 
(±0.11) 

0.68 
(±0.19) 1.05 (±0.05) 1.29 (±0.19) 0.13 

(±0.11) 

Max ∆CH4 in plume [ppb] 312.0 159.0 145.0 89.3 68.8 

Max ∆CO2 in plume [ppm] 41.1 9.91 16.3 23.5 7.1 

Max ∆O3 in plume [ppb] 105 N/A 18.5 N/A - 

ERCH4 6.7 18.3 11.3 4.0 9.53 

ERO3 2.0 N/A 2.0 N/A - 

 203 
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Figure 2. AJAX measurements during the Soberanes fire on August 9, 2016 (Flight 197). The 204 
aircraft altitude and wind speed/direction are shown in plot (a) followed by mixing ratios of trace 205 
gases in plots (b-f) (left y-axes) and enhanced mixing ratios (right y-axes). The gray bars repre-206 
sent the main fire plume, and the purple bars are aged plume interceptions. Cyan bars indicate 207 
the portion of the flight track assigned as background conditions. Scatter plots are shown for en-208 
hancements in (g) CH4, (h) O3, (i) HCHO, and (j) H2O vs CO2. The AJAX flight path colored 209 
by time and fire burn area for the flight day are shown on topographic maps (k-l), with VIIRS 210 
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fire hot spots sized by FRP. Figures for additional AJAX flights are available at doi: 211 
10.5067/ASDC/AJAX/wildfire. 212 

 213 

3 Application: Emission Ratio Calculations 214 

The Emission Ratio (ER) of a trace gas, X, is calculated by finding the excess mixing 215 
ratio with respect to its average background mixing ratio (ΔX = Xplume – Xbkgd) and then dividing 216 
by the excess mixing ratio of a reference gas (RG), which is usually CO or CO2 (Andreae & 217 
Merlet, 2001), shown in Equation 1. Since the AJAX payload does not include CO, we use 218 
enhanced mixing ratios of CO2 (ΔCO2) to calculate ERs for various trace gases.   219 

  𝐸𝑅 =	 !!"#$%"!&'()
#$!"#$%"#$&'()

=	 %&
%'(

   (1) 220 

The ERs reported in this work were calculated as the slope between ΔX and ΔCO2 using 221 
an unconstrained linear orthogonal distance regression, forcing the intercept through zero (Akagi 222 
et al., 2012; Yates et al., 2016; Yokelson et al., 1999). Background mixing ratios were 223 
determined from sections of flights that were upwind of a specific fire, but for Flights 137, 200, 224 
and 216, there were not obviously clean periods to select. For these cases, the 10th percentile of 225 
seasonal data for a specific trace gas is used as the background. (When tested on other flights, 226 
this method resulted in values typically within 1σ standard deviation of the "upwind leg" value.) 227 
ER values for individual flight segments are presented in Tables 1-3. 228 

This application is demonstrated for Flight 197, shown in Fig. 2 (g-i). The excess mixing 229 
ratios of trace gases were higher in the fresh plume (data points outlined in black) compared to 230 
the aged smoke (indicated in purple). The slopes of these lines lead to ERs in the fresh fire plume 231 
of: 16.1 ppb CH4 (ppm CO2)-1, 2.4 ppb O3 (ppm CO2)-1, and 1.9 ppb HCHO (ppm CO2)-1. In the 232 
aged fire plume the ERs are lower: 9.4 ppb CH4 (ppm CO2)-1 and 1.1 ppb HCHO (ppm CO2)-1, 233 
and a strong linear correlation between ∆O3 and ∆CO2 was not observed in the aged fire plume.  234 

Ten fires were located in areas that burned primarily evergreen forests, and the other 3 235 
fires (i.e., Mineral, Thomas, and Rocky fire) were located in areas that burned primarily 236 
chaparral fuels. ERs ranged 6.1 – 26.8 ppb CH4 (CO2)-1, 2 – 8.3 ppb O3 (ppm CO2)-1, and 1.1 – 237 
2.7 ppb HCHO (ppm CO2)-1 from evergreen fires with plume ages ≤8 hr. For chaparral fires, 238 
only one ER associated with a plume age ≤ 8 hr was determined (Rocky fire); the methane ER 239 
value was consistent with those from evergreen fires, but the ozone ER was noticeably higher. 240 
Measurements from the Thomas fire represent aged smoke from a chaparral fire (66 hr), and the 241 
ERs are 7.12 ppb CH4 (ppm CO2)-1 and 0.61 ppb HCHO (ppm CO2)-1 (no O3 measurements).  242 

ERs were compared across different fires and correlated with meteorological parameters 243 
(daily maximum temperature, relative humidity and average wind speed, Fig. 3 (d-f)), 24-hour 244 
change in burn area (Fig. 3 (a)), FRP (Fig. 3 (b)) and the average approximated plume age (Fig. 3 245 
(c)) with no significant correlations evident with any variable. Indeed, the variability in 246 
emissions and conditions seen on five independent sampling days for a single fire (Soberanes, 247 
bar charts insets in Fig. 3) indicates the complexity and dynamic nature of wildfire smoke 248 
production and evolution, even within a single event. 249 
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Figure 3. Topographical map showing the wide variety of environmental and fire conditions as 250 
well as trace gas observations among the multi-year record.  (a) 24-hour change in acres burned; 251 
(b) fire radiative power (FRP) averaged for day and time of flight; (c) average plume age; (d) 252 
daily maximum temperature, (e) daily average relative humidity, and (f) daily average wind 253 
speed at nearby CARB monitoring stations; and (g-i) ERs. Multiple airborne measurements of 254 
same fire are shown with multiple circles (outer circle is earlier flight and inner circle is later 255 
flight), x markers signify no data, and white circles (ERs only) represent statistically insignifi-256 
cant Pearson’s r2 values between the respective trace gas and ∆CO2. In plots (c and g-i) fire 257 
locations with a circle and a triangle, represent fresh and aged emissions measured within one 258 
flight, respectively. Five flights were performed to measure the Soberanes fire, and results are 259 
shown in the bar graphs. 260 
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 262 

The Goliath fire was the only prescribed fire measured between 2013 and 2017, and it 263 
was by far the smallest and shortest lived fire in this dataset. The Goliath fire had ERs of 20.7 264 
ppb CH4 (ppm CO2)-1 and 1.5 ppb HCHO (ppm CO2)-1, with no significant correlation between 265 
excess mixing ratios of O3 and CO2. These ERs are within the ranges reported for similar 266 
evergreen forest wildfires measured in this study. 267 

 268 

Table 2. Information on each California fire measured by AJAX in 2015. Units are in square 269 
brackets.*Indicates that the fire source location is Rough fire due to more abundant VIIRS hot 270 
spots when compared to the Cabin fire. 271 
 272 

Fire Rocky Cabin Rough 

Vegetation Types Chamise chaparral 
shrubland 

Douglas fir 
Sugar pine 

Tanoak forest 

Douglas fir 
Sugar pine 

Tanoak forest 
Total Acres Burned 69,636 6980 151,623 

Duration of Fire 7/29/15–8/14/15 7/19/15–
09/05/15 7/31/15–11/5/15 

Flight Date (Flight #) 8/5/15 (166) 8/19/15 (167) 9/2/15 (168) 

Avg. RH at Ground Site [%] 89 63 30 54 

Max. Temperature at Ground 
Site [°C] 31 33 32 29 

Resultant Wind Speed at 
Ground Site (m/s) 5.0 2.2 4.5 4.5 

Avg. Fire Radiative Power 
(±1σ) (FRP) N/A 2.7 (±0) 46.7 (±69.3) 17.5 (±26.0) 

Avg. GPS altitude in fire plume 
(±1σ) [km] 2.7 (±0.6) 2.0 (±0.3) 

(fresh) 1.1 (±0.6) (aged) 4.5 (±0.7) 

Age of fire plume (±1σ) [hr] 0.5 4.3 17.4 3.3 

Avg. Distance from Fire Source 
(±1σ) [km] 23.4 (±6.5) 37.2 (±19.6)* 140.2 (±20.9)* 49.8 (±27.5) 

Average H2O in plume (±1σ) 
[%v] 0.51 (±0.23) 0.73 (±0.22) 0.89 (±0.24) 0.35 (±0.17) 

Max ∆CH4 in plume [ppb] 118.9 475.4 391.4 - 

Max ∆CO2 in plume [ppm] 7.2 32.8 9.0 - 

Max ∆O3 in plume [ppb] 89.9 148.7 - - 

ERCH4 22.1 22.9 72.1 - 

ERO3 16.4 4.3 - - 

 273 
 274 
  275 
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Table 3. Information on each California fire measured by AJAX in 2016 and 2017. Units are in 276 
square brackets. "N/A" indicates data which are not available due to instrument failure. 277 
 278 

 279 

Fire Goliath 
(prescribed) Soberanes Cedar Thomas 

Vegetation Types 

Douglas fir 
Sugar pine 

Tanoak 
forest 

Redwood 
Tanoak forest 

Jeffrey pine, 
Ponderosa 
pine Doug-

las fir, 
Black oak  

Coastal sage 
shrubland 

Total Acres 
Burned 759 103,242 29,322 281,893 

Duration of Fire 6/11/16 – 
6/17/16 7/22/16–10/12/16 8/16/16–

9/30/16 
12/04/17–
01/20/18 

Flight Date 
(Flight #) 

6/15/16 
(191) 

7/28/16 
(196) 8/9/16 (197) 8/12/16 

(198) 
8/24/16 
(199) 9/14/16 (200) 8/24/16 

(199) 12/13/17 (216) 

Avg. RH at 
Ground Site [%] 52 96 96 97 94 98 87 43 

Max. 
Temperature at 

Ground Site [°C] 
21 28 23 22 24 24 30 28 

Resultant Wind 
Speed at Ground 

Site (m/s) 
5.4 1.8 2.2 2.2 2.2 3.1 1.8 1.0 

Avg. Fire 
Radiative Power 

(±1σ) (FRP) 
N/A 36.7 

(±60.9) 13.4 (±8.0) 25.5 
(±19.8) 

14.2 
(±5.8) N/A 35.2 

(±24.8) 81.8 (±103.8) 

Avg. GPS altitude 
in fire plume 
(±1σ) [km] 

2.7 (±1.2) 3.0 
(±0.02) 

2.0 
(±0.2) 
(fresh) 

2.1 
(±0.1) 
(aged) 

1.4 
(±0.1) 

3.0 
(±0.1) 

Alt. 1: 
1.3 

(±0.4) 

Alt. 2: 
3.0 

(±0.03) 
3.8 (±0.3) 

0.9 (± 
0.1) 

(ocean) 

0.7 
(±0.2) 
(coast) 

Age of fire plume 
(±1σ) [hr] 1.0 0.5 2.0 8.5 3.9 3.0 2.7 3.5 0.6 66.0 

Avg. Distance 
from Fire Source 

(±1σ) [km] 
12.6 (±9.1) 5.0 

(±2.7) 
12.9 

(±2.3) 
70.3 

(±18.6) 
24.1 

(±4.6) 
7.6 

(±0.6) 
26.1 

(±7.0) 
19.3 

(±4.4) 6.1 (±3.0) 441.4 (±66.6) 

Average H2O in 
plume (±1σ) [%v] 

0.65 
(±0.21) 

1.00 
(±0.07) 

0.34 
(±0.08) 

0.47 
(±0.20) 

0.93 
(±0.06) 

0.70 
(±0.02) 

0.87 
(±0.15) 

0.12 
(±0.03) 

0.55 
(±0.09) 

0.15 (±0.08), 
0.43 (±0.15) 

Max ∆CH4 in 
plume [ppb] 559.6 1159.1 619.1 38.4 67.4 179.5 - - 2862.4 56.6 377.0 

Max ∆CO2 in 
plume [ppm] 38.8 90.5 37.9 3.5 3.9 27.2 - - 228.1 7.8 36.7 

Max ∆O3 in 
plume [ppb] - - 64.6 - - 38.5 - - - N/A N/A 

Max ∆HCHO in 
plume [ppb] 44.9 174.0 60.2 4.3 8.0 49.1 - - 282.8 8.1 2.2 

ERCH4 13.7 13.0 16.1 9.4 25.5 6.1 - - 12.9 7.1 9.3 

ERO3 - - 2.4 - - 2.1 - - - N/A N/A 

ERHCHO 1.3 2.3 1.9 1.1 2.7 2.1 - - 1.6 0.8 0.1 
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4 Conclusion   280 

This new calibrated and quality-controlled data set increases the number of observations 281 
of ozone, carbon dioxide, formaldehyde and winds near to a variety of active fires and broadens 282 
the range of fire types and conditions for which trace gases and winds were measured. Figure 3 is 283 
a visual representation of the variability of meteorological and fire conditions which generated 284 
the emissions sampled in situ, as well as the range of ERs obtained in the analysis of emissions 285 
from 12 wildfires and 1 prescribed fire in California over a 4+ year period. This work highlights 286 
the individuality and variability observed over multiple fires, over multiple years and seasons, 287 
and reinforces the difficulty in assigning a single emission factor to a certain fire type or 288 
condition. 289 

This data set and the associated preliminary analyses are available to be used in 290 
conjunction with satellite data for FRP or trace gas observations, as validation data for smoke 291 
plume modeling, or other aggregate studies of the evolution of fire emissions and impacts over 292 
decades influenced by climate change. Five flights were made to the Soberanes fire, providing a 293 
set of measurements throughout the lifetime of this prolonged incident. Downwind legs and 294 
regional transits are also included in the database, making possible contributions to studies of 295 
human exposure at regional scales. 296 
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