The X-discontinuity as a Tracer for Chemical Heterogeneity: Observations from East Africa

Stephen Pugh¹, Alistair Boyce¹, Ian Bastow², Cynthia Ebinger³, and Sanne Cottaar¹

¹University of Cambridge ²Imperial College London ³Tulane University of Louisiana

November 23, 2022

Abstract

Previous studies of the East African upper mantle have invoked one or more mantle upwellings with varying thermochemical nature to underly the distribution of surface volcanism. For example, Boyce and Cottaar (2021) suggest that a hot, chemically distinct upwelling beneath the southern East African Rift (EAR) is sourced from the African Large Low Velocity Province (LLVP), while magmatism in Ethiopia may lie above an additional purely thermal upwelling. Constraints on chemical heterogeneities in the upper mantle may be derived from studying the seismically observable impedance contrasts that they produce. Away from subduction zones, two causal mechanisms are possible to explain the X-discontinuity (X; 230-350km): the coesite-stishovite phase transition and/or carbonate silicate melting, both of which require entrainment of basalt from the lower mantle. Intriguingly, carbonate silicate melt was invoked by Rooney et al., (2012) to explain the discrepancy in upper mantle temperature anomalies predicted by seismic wavespeed and petrological estimates beneath East Africa. Further, active carbonatite magmatism occurs along the edge of the Tanzanian craton (Muirhead et al., 2020). Several recent regional to continental receiver function (RF) studies have identified potential observations of the X in East Africa. These studies are not focused on the presence of these upper mantle phases or lack the spatial sampling needed to robustly identify the X and its causal mechanism. Targeted high-resolution observations of the X are required to confirm the presence of exotic converted phases in the East African upper mantle and their relationship to mantle upwellings. We capitalise on the new TRAILS dataset from the Turkana depression (Bastow, 2019; Ebinger, 2018) and an adjacent network in neighbouring Uganda (Nyblade, 2017), to supplement our existing RF database and characterise the X across active continental rift setting in unprecedented detail. The prevalence of the X is mapped beneath East Africa, and subsequently compared to other areas of the African continent.

The X-Discontinuity as a Tracer for Chemical Heterogeneity: Observations from East Africa

Stephen Pugh^{1*}, Alistair Boyce¹,², Ian Bastow³, Cynthia Ebinger⁴ and Sanne Cottaar¹ *sdp43@cam.ac.uk, 1. University of Cambridge, 2. Université Claude Bernard, 3. Imperial College London, 4. Tulane University

1. Introduction

- Previous observations the discontinuity (~300 km depth) have demonstrated a link between surface hotspot volcanism (Pugh et al., 2021) and thermochemical anomalies in the mantle (Fig. 1).
- Surface volcanism across the African -20°continent (Fig. 2) has been linked to multiple mantle upwellings of varying thermochemical nature.
- Chemical heterogeneities result in seismically observable impedance contrasts meaning receiver functions (RFs) are employed to characterize the nature of the X-discontinuity beneath Africa.

Figure 1. Global distribution of Xdiscontinuity observations from Pugh et al. (2021) above a depth slice of SEMUCB-WM1 (French & Romanowicz, 2015) at 2800 km depth. Double X observations are marked with two rings.

locations of volcanoes in Africa adapted from Boyce et al. (2021). Black dashed areas mark inferred craton extents now covered by Phanerozoic sediments.

3. Method

- to S converted waves (Pds) are generated at seismic discontinuities. RF analysis reveals Pds phases by deconvolving the vertical from the radial seismogram (Fig. 4) using the iterative deconvolution method of Ligorria and Ammon (1999).
- RF are converted to depth using the SEMUCB-WM1 velocity model (French & Romanowicz, 2015).
- High-quality RF are stacked in the time-slowness and depth domains within equidistant bins of radius 111km (~1° at the equator) to reveal low amplitude Pds phases, which are discriminated from multiples by their negative slowness (Fig. 5).
- Depth and slowness stacks for each bin are assessed for the presence of the X-discontinuity (272 km; Fig. 6).

Figure 6. Depth and slowness stacks for 201, 461 and 132 RF with X-discontinuity classifications of a) Robust, b) Potential and c) Null. Symbols mark significant peaks from upper mantle discontinuities (Yellow: X, Green: 410, Purple: 660). Predicted time-slowness curves are shown for the direct (Pds) and multiple (PPvds) phases.

5. Potential Causes

- X-discontinuity depths (234-319 km) have significant overlap with previous studies (285-350 km; Rein et al., 2021, ~250-350km; Owens et al., 2000, 260 & 310 km; Deuss and Woodhouse, 2002) while being observed at shallower depths than before.
- The X-discontinuity has little-to-no correlation with dVs (as a proxy for temperature) suggesting multiple causal mechanisms (Fig. 10).
- In regions of elevated mantle temperatures, the coesitestishovite phase transition and the formation of carbonated silicate melt are the most plausible causes of the Xdiscontinuity.
- Whilst overlap occurs between X-discontinuity observations and surface carbonatite melt (Fig. 2), a relationship between the two is yet unconfirmed.
- Other possible causes include the transition of orthoenstatite to high pressure clinoenstatite, though the impedance contrast is expected to be weak.
- Shallow X-discontinuity observations may be associated with a change from anisotropic to isotropic structure linked to the shallower Lehmann discontinuity.

References

functions. Geophys. J. Int

Pugh, S., Jenkins, J., Boyce, A. and Cottaar, S., 2021. Global receiver function observations of the X-discontinuity reveal recycled basalt beneath hotspots. Earth Planet. Sci. Let ch, S.W. and Romanowicz, B.A., 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. nnan, J. and Cottaar, S., 2019. X-discontinuity and transition zone structure beneath Hawaii suggests a heterogeneous plume. Earth Planet. Sci. Lett ottaar, S., Kounoudis, R., Guilloud De Courbeville, J., Caunt, E. and Desai, S., 2021. AFRP20: New P-Wavespeed Model for the African Mantle Reveals Two

/hole-Mantle Plumes Below East Africa and Neoproterozoic Modification of the Tanzania Craton. Geochem. Geophys. Geosyst.

Deuss, A. and Woodhouse, J.H., 2002. A systematic search for mantle discontinuities using SS-precursors. Geophys. Res. Lett

, 1999. Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am

Owens, T.J., Nyblade, A.A., Gurrola, H. and Langston, C.A., 2000. Mantle transition zone structure beneath Tanzania, East Africa. Geophys. Res. Lett

istow. Ian and Avele. Atalay (2019) Northern Lake Abava Broadband Network [Data se

Cynthia Ebinger. (2018). Crust and mantle structure and the expression of extension in the Turkana Depression of Kenya and Ethiopia [Data set]. 2021. Insights Into Deep Mantle Thermochemical Contributions to African Magmatism From Converted Seismic Phases. Geochem. Geophys. Geosys Rein, T., Hannemann, K., Thomas, C. and Korn, M., 2020. Location and characteristics of the X-discontinuity beneath SW Morocco and the adjacent shelf area using P-wave receiver

Vertical and radial Jenkins.

Figure 5. Ray paths of Pds converted phases seismograms and their resultant and shallow bouncing PPvds multiples in the receiver function. *Courtesy of Jennifer* upper mantle. Blue = P-wave, red = S-wave.

Figure 10. Robust X-discontinuity depths plotted a) against average dVs between 200-400 km from SEMUCB-WM1 and b) spatially above a 300 km depth slice of SEMUCB-WM1.

6. Future Work

- Different tomography models can lead to ≤20 km of discrepancy in depth corrections. RFs corrected with recent highly sampled Africa specific tomographic models (e.g., AFRP20; Boyce et al., 2021) should provide the most robust depth estimates.
- >50% of potential stacks contain strong streaks (Fig. 6b) due to RFs from a narrow epicentral distance range. Incorporation of PP RF into our stacks should help to overcome this.
- Transverse component RFs may reveal the presence of, or lack of, anisotropy in the upper mantle associated with the Lehmann discontinuity.

Funding Statement

S. Pugh acknowledges support from Natural Environment Research Council grant number NE/L002507/1. A. Boyce and S. Cottaar are funded by Natural Environment Research Council grant NE/R010862/1, S. Cottaar is funded by the European Research Council under the EU's Horizon 2020 programme (grant 804071-ZoomDeep) and A. Boyce is supported by the **Centre National de la Recherche** Scientifique at unit UMR5276 (LGL-TPE). I. D. Bastow acknowledges support from Natural Environment Research Council grant number NE/S014136/1. C. Ebinger acknowledges National Science Foundation NSFGEO-NERC award 1824417. The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience (SAGE) Award of the National Science Foundation under Cooperative Support Agreement EAR-1851048.