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Abstract

The computational fluid dynamics of hurricane rapid intensification (RI) is examined through idealized simulations using two

codes: a community-based, finite-difference/split-explicit model (WRF) and a spectral-element/semi-implicit model (NUMA).

The focus of the analysis is on the effects of implicit numerical dissipation (IND) in the energetics of the vortex response to

heating, which embodies the fundamental dynamics in the hurricane RI process. The heating considered here is derived from

observations: four-dimensional, fully nonlinear, latent heating/cooling rates calculated from airborne Doppler radar measure-

ments collected in a hurricane undergoing RI. The results continue to show significant IND in WRF relative to NUMA with a

reduction in various intensity metrics: (1) time-integrated, mean kinetic energy values in WRF are ˜20% lower than NUMA

and (2) peak, localized wind speeds in WRF are ˜12m/s lower than NUMA. Values of the eddy diffusivity in WRF need to be

reduced by ˜50% from those in NUMA to produce a similar intensity time series.

Kinetic energy budgets demonstrate that the pressure contribution is the main factor in the model differences with WRF pro-

ducing smaller energy input to the vortex by ˜23%, on average. The low-order spatial discretization of the pressure gradient

in WRF is implicated in the IND. In addition, the eddy transport term is found to have a largely positive impact on the

vortex intensification with a mean contribution of ˜20%. Overall, these results have important implications for the research

and operational forecasting communities that use WRF and WRF-like numerical models.
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Key Points:8

• The WRF dynamic core dissipates ∼ 20% more kinetic energy than NUMA for9

a dry vortex forced by four-dimensional latent heating observations.10

• Values of the eddy diffusivity in WRF need to be reduced by ∼ 50% from those11

in NUMA in order to produce a similar intensity time series.12

• Budgets and sensitivity tests indicate that the low-order approximation of the pres-13

sure gradient is the source of the dissipation in WRF.14
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Abstract15

The computational fluid dynamics of hurricane rapid intensification (RI) is examined through16

idealized simulations using two codes: a community-based, finite-difference/split-explicit17

model (WRF) and a spectral-element/semi-implicit model (NUMA). The focus of the18

analysis is on the effects of implicit numerical dissipation (IND) in the energetics of the19

vortex response to heating, which embodies the fundamental dynamics in the hurricane20

RI process. The heating considered here is derived from observations: four-dimensional,21

fully nonlinear, latent heating/cooling rates calculated from airborne Doppler radar mea-22

surements collected in a hurricane undergoing RI. The results continue to show signif-23

icant IND in WRF relative to NUMA with a reduction in various intensity metrics: (1)24

time-integrated, mean kinetic energy values in WRF are ∼20% lower than NUMA and25

(2) peak, localized wind speeds in WRF are ∼12m/s lower than NUMA. Values of the26

eddy diffusivity in WRF need to be reduced by ∼50% from those in NUMA to produce27

a similar intensity time series.28

Kinetic energy budgets demonstrate that the pressure contribution is the main factor29

in the model differences with WRF producing smaller energy input to the vortex by ∼23%,30

on average. The low-order spatial discretization of the pressure gradient in WRF is im-31

plicated in the IND. In addition, the eddy transport term is found to have a largely pos-32

itive impact on the vortex intensification with a mean contribution of ∼20%. Overall,33

these results have important implications for the research and operational forecasting34

communities that use WRF and WRF-like numerical models.35

Plain Language Summary36

The intensity of a hurricane is primarily a balance between energy production and37

dissipation from various physical processes. Numerical models calculate this energy bal-38

ance by solving complicated equations that attempt to capture these physical processes.39

Previous research has shown that the methods used to solve these equations can intro-40

duce additional dissipation into the system that affects the prediction of the storm in-41

tensity. In this paper, we examine this “numerical dissipation” idea more closely by con-42

ducting carefully designed comparisons between the community numerical model (WRF)43

and an advanced, research model (NUMA). Using observational estimates of heating in44

clouds, which feed the production of energy, we find that the WRF model produces sig-45

nificantly more numerical dissipation relative to NUMA that results in a reduced inten-46

sity of the storm. Our analysis indicates that the reason for the anomalous numerical47

dissipation in WRF is due to how the pressure gradient is computed. These results can48

have potentially important consequences for operational forecasts, especially the rapid49

intensification process. For example, the under-prediction or low bias of rapid intensi-50

fication forecasts may be partly due to excessive numerical dissipation.51

1 Introduction52

The record-breaking 2020 Atlantic hurricane season and recent storms that leveled53

the Florida panhandle in 2018 (Hurricane Michael) and submerged parts of Texas in 201754

(Hurricane Harvey) illustrate the devastating impacts of these systems, even in the mod-55

ern era. Unfortunately, as the climate system continues to warm, recent research sug-56

gests that intense hurricanes will likely become more common, produce more flooding57

rainfall, and last longer even after landfall (Knutson et al., 2015, 2019; Li & Chakraborty,58

2020). As a result, hurricanes will likely place increasing stress on many sectors of so-59

ciety for various countries across the globe.60

Accurate forecasting of hurricane track, intensity, storm surge, and rainfall from61

dynamical models can mitigate losses by facilitating disaster preparations and evacua-62
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tions that can save lives and billions of dollars in damages. However, the operational pre-63

diction of hurricane intensity, especially rapid intensification (RI), has been mainly stag-64

nant (Marks & Shay, 1998; Rappaport et al., 2009), with large forecast errors still present65

today (DeMaria et al., 2014). As described in DeMaria et al. (2014), none of the deter-66

ministic models had RI forecasting capability from 1991 to around 2015. There has been67

some ability to forecast RI with both dynamical and statistical models since 2015, how-68

ever, a significant under-prediction or low bias in RI cases is still present today (DeMaria69

et al., 2021).70

The increase of kinetic energy in hurricane intensification, as well as RI, is driven71

by the vortex response to heating in convective clouds (e.g., Shapiro & Willoughby, 1982),72

where the source of moist enthalpy flux comes from the thermodynamic disequilibrium73

between the ocean and atmosphere, (e.g., Emanuel, 1986). Dissipation of energy occurs74

most prominently in the boundary layer through surface friction and a hierarchy of tur-75

bulent eddies of various scales. However, new research has shown that the hurricane bound-76

ary layer is not purely dissipative and contains coherent turbulent structures that can77

“backscatter” energy to larger scales (Sroka & Guimond, 2021). In numerical models,78

dissipation of energy can also occur implicitly through the algorithms used to solve the79

fluid-flow equations (“implicit numerical dissipation”) or explicitly through the addition80

of filters. Implicit numerical dissipation can occur from the use of low-order discretiza-81

tions of the governing equations in both space and time. For example, the use of second-82

order or upwind-biased spatial discretizations of the advective terms can result in sub-83

stantial numerical dissipation error when compared to high-order (e.g., fifth) or centered84

schemes (Hoffman & Frankel, 2001; Skamarock & Klemp, 2008)).85

In general, minimal numerical dissipation is desired in highly nonlinear computa-86

tional fluid dynamics problems, such as hurricanes, because errors incurred from exces-87

sive dissipation can quickly propagate through the system. Kravchenko and Moin (1997)88

examined numerical errors in spectral and finite difference codes as well as the effects89

of sub-grid scale models in turbulent channel flow. They demonstrated that the high wavenum-90

ber portion of the energy spectrum is severely damped by truncation errors in low-order91

(e.g., second) finite-difference schemes, and the contribution of the sub-grid scale model92

is small in this context. By increasing the order of the finite-difference approximations,93

the results of their large eddy simulations and the performance of the sub-grid scale model94

were enhanced. Larsson et al. (2007) found that maintaining low numerical dissipation95

was important for simulating shock/turbulence interactions, especially for coarse reso-96

lution simulations where the fields are under-resolved and a sub-grid model is required97

(this is also the case in mesoscale atmospheric modeling). In these under-resolved sim-98

ulations, the numerical dissipation was large enough to dampen or erase the smaller-scale99

motions on the grid and from the sub-grid model.100

Continuous Galerkin (CG) and discontinuous Galerkin (DG) numerical methods101

have several unique properties which distinguish them from low-order (i.e., the order of102

accuracy equal to or smaller than two) methods and other high-order methods, such as103

finite volume/difference schemes. These include: 1) possessing low dissipation and dis-104

persion errors for turbulent flows with highly disparate spatial and time scales; 2) achiev-105

ing arbitrary high-order discretization for all spatial derivatives; and 3) highly scalable,106

and efficient on massively parallel supercomputers, such as those accelerated by Graph-107

ics Processing Units (GPUs) (Abdi et al., 2017, 2019). These superior numerical prop-108

erties make high-order CG and DG methods attractive for hurricane research. The ad-109

vantages of high-order numerical methods over their low-order counterparts for low Reynolds110

number flow problems has been demonstrated through a workshop series, The Interna-111

tional Workshop on High-Order CFD Methods (Wang et al., 2013). However, when sim-112

ulating under-resolved problems that require a sub-grid turbulence model and problems113

with discontinuities, high-order numerical schemes can have issues with excessive grid114

scale noise, aliasing and stability (Honein & Moin, 2004; Gassner & Beck, 2013; Moura115

–3–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

et al., 2017). These issues can lead to errors in the simulated flow or a failure of the sim-116

ulation. To address these potential problems, de-aliasing techniques (Blaisdell et al., 1996;117

Gassner, 2013; Karamanos & Karniadakis, 2000; Fischer & Mullen, 2001; Gassner & Beck,118

2013), localized artificial viscosity (Persson & Peraire, 2006; Yu et al., 2015) and limiters119

(Cockburn & Shu, 1998; Qiu & Shu, 2005; Zhang & Shu, 2010) can be used to stabilize120

flow simulations. In this study, we rely on a combined approach that applies artificial121

viscosity based on output from a turbulent kinetic energy (TKE) sub-grid model for tur-122

bulent diffusion; see details in Section 2.3.123

Takemi and Rotunno (2003) studied the effects of sub-grid mixing and numerical124

filtering in squall line simulations using the Weather Research and Forecasting (WRF)125

model, which is a finite difference based code that can provide high order discretization126

for the advective (or flux divergence) terms only (Skamarock & Klemp, 2008). The au-127

thors found that using a fifth-order, upwind-biased advection scheme along with a stan-128

dard TKE sub-grid model resulted in many noisy, grid-scale convective cells. Rather than129

applying an explicit numerical filter, which could damage the physical modes, the au-130

thors tuned the TKE sub-grid model coefficient to produce reasonable convective struc-131

tures and energy scaling with wavelength. They also tested the inclusion of an explicit132

numerical filter and found that it had a much larger effect on the solutions than the sub-133

grid TKE model, which highlights the importance of analyzing numerical dissipation.134

It is clear that in order to ensure both high accuracy and stability of a simulated flow,135

a careful balance between signal and noise must be achieved.136

In a theoretical hurricane study, Guimond et al. (2016) showed that the vortex re-137

sponse to simple, impulsive, asymmetric thermal anomalies can produce significant dif-138

ferences in system intensity across models due to the amount of implicit numerical dis-139

sipation. The community atmospheric model (WRF) was shown to have anomalously140

large implicit numerical dissipation when compared to research atmospheric codes [the141

High-Gradient (HIGRAD) model and the Non-hydrostatic Unified Model of the Atmo-142

sphere (NUMA)], which resulted in a muted intensity response from asymmetric ther-143

mal anomalies. The HIGRAD and NUMA models produced a more energetic response144

due to much less numerical dissipation. Spectral kinetic energy budgets showed that the145

pressure gradient term was the dominant source of the anomalous dissipation in WRF146

with the flux of inertia-gravity wave energy describing most of the variance in the pres-147

sure term. Acoustic and inertia-gravity waves are considered fast modes in the equation148

set, which are split off from the slow modes in WRF. This understanding lead to the rec-149

ommendation that the time integration scheme was the main culprit for the numerical150

dissipation in WRF. Evidence for this hypothesis was shown through sensitivity tests151

with different time integration schemes in NUMA, which showed significant differences152

in the amount of energy and role of the pressure term.153

In this work, we study the response of a tropical storm-like vortex to time-dependent,154

3-D observational heating calculated from airborne Doppler radar measurements in the155

RI of Hurricane Guillermo (1997). The remainder of the paper is organized as follows.156

In Section 2, a detailed description of the numerical models and simulation setup is pre-157

sented. Therein, we introduce the WRF and NUMA models, vortex initialization and158

heating strategies, and eddy viscosity and diffusivity setup. Comparison of the wind field159

features, e.g., maximum and azimuthal mean wind speed as well as kinetic energy, from160

WRF and NUMA is discussed in Section 3. In this section, we also present kinetic en-161

ergy budget analyses to explain the wind field disparity between WRF and NUMA. Im-162

portant implications of this work in the hurricane research and operational fields are given163

in Section 4. Future work is also discussed in this section.164
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2 Description and setup of numerical models165

A comprehensive introduction of the governing equations and numerical methods166

used in the WRF-ARW (hereafter WRF) and NUMA models have been given in Guimond167

et al. (2016). For completeness, we briefly review them below.168

2.1 The WRF Model169

The WRF model solves the compressible, non-hydrostatic Euler equations in a con-170

servative form with a η mass vertical coordinate (Laprise, 1992; Skamarock & Klemp,171

2008). For comparisons with NUMA, all variables are interpolated to regular height lev-172

els in post-processing. Note that the differences between the η levels and height are very173

small for these idealized simulations. The simplified model equations for a dry atmosphere174

can be expressed as follows, using a Laplacian operator for explicit diffusion and η as the175

vertical coordinate:176

∂mu

∂t
+∇ · (muu) = −m

ρ

∂p̂

∂x
+ fmv +∇ · (mµ∇u) (1)177

∂mv

∂t
+∇ · (muv) = −m

ρ

∂p̂

∂y
− fµu+∇ · (mµ∇v) (2)178

∂mw

∂t
+∇ · (muw) = g

(
∂p̂

∂η
− m̂

)
+∇ · (mµ∇w) (3)179

∂mθ

∂t
+∇ · (muθ) = S +∇ ·

(
mκ∇θ̂

)
(4)180

∂m

∂t
+∇ · (mu) = 0. (5)181

Here u, v and w are the velocities in three dimensions, m = m(x, y) is the mass182

per unit area within a column, θ is the potential temperature, ρ is the dry air density,183

p̂ is the perturbation pressure, f is the Coriolis parameter, g is gravity, µ is the eddy vis-184

cosity, κ is the thermal diffusivity, S is the heating rate source term, and ∇ is the three-185

dimensional gradient operator. Variables with a hat denote perturbations from the hy-186

drostatically balanced reference state.187

A combined finite-difference/finite-volume spatial discretization of the governing188

equations is employed in WRF. In the horizontal and vertical directions, a spatially stag-189

gered Arakawa C grid is utilized where velocities are defined on the cell faces and scalars190

at the cell centers. For the nonlinear advective terms, a fifth-order, upwind-biased dis-191

cretization in the horizontal and a third-order scheme in the vertical are typically used.192

We have utilized these settings here, but also tested the impacts of the less diffusive, even-193

ordered schemes (sixth-order and fourth-order in the horizontal and vertical dimensions,194

respectively). The differences between the even-ordered and odd-ordered schemes were195

small (maximum values of +/- 0.5 m/s in the eyewall) and therefore, we utilize the odd-196

ordered formulations in all presented results. The WRF model relies on a split-explicit197

time integration process, where acoustic and gravity wave modes are calculated using198

a small time step and advection is computed on a larger time step (Klemp & Wilhelm-199

son, 1978; Wicker & Skamarock, 2002; Skamarock & Klemp, 2008). Horizontal modes200

are solved explicitly within the small time stage, while vertical modes are implicitly solved.201

The implicit solve is done with backward Euler. A third-order Runge-Kutta scheme is202

used to perform the overall time integration, including both the small- and large-time203

step equations. The small time step results are applied as a correction to the large time204

step calculations during the Runge-Kutta time integration. More details on WRF can205

be found in (Skamarock & Klemp, 2008). Finally, we seek to produce minimally dissi-206

pative WRF solutions and therefore, we have turned off all filtering/damping options:207
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explicit sixth-order numerical filtering, vertical velocity damping, divergence damping208

and external mode damping. Artificial viscosity is applied at the model top and through209

the Laplacian operators in the above equations are discussed further in Section 2.3.210

2.2 The NUMA Model211

The NUMA model is capable of using various forms of the Euler equations [e.g.,212

Giraldo and Restelli (2008), Giraldo et al. (2010)]. However, for this study, we use the213

non-conservative form using potential temperature as the thermodynamic variable [Kelly214

and Giraldo (2012), Giraldo et al. (2013)] to be consistent with Guimond et al. (2016).215

The choice of conservative or non-conservative equation set is not expected to make a216

significant difference because the error resulting from the non-conservative set is much217

lower than the temporal error (Giraldo & Restelli, 2008). Instead of the η mass verti-218

cal coordinate, physical height z is used in NUMA. The governing equations are expressed219

as:220

∂u

∂t
+ u · ∇u = −1

ρ

∂p̂

∂x
+ fv +∇ · (µ∇u) (6)221

∂v

∂t
+ u · ∇v = −1

ρ

∂p̂

∂y
− fu+∇ · (µ∇v) (7)222

∂w

∂t
+ u · ∇w = −1

ρ

∂p̂

∂z
− ρ̂

ρ
g +∇ · (µ∇w) (8)223

∂θ

∂t
+ u · ∇θ = S +∇ ·

(
κ∇θ̂

)
(9)224

∂ρ

∂t
+∇ · (ρu) = 0 (10)225

The spatial discretization of Eqs. (6)-(10) is carried out using the CG spectral el-226

ement method (CG-SEM) (Giraldo & Restelli, 2008; Giraldo et al., 2013; Giraldo, 2020).227

Specifically, the physical domain is decomposed into a set of non-overlapping hexahe-228

dral elements and inside each element, the state variables are represented by polynomial229

expansion using Lagrange basis functions of a chosen order. The continuous spatial deriva-230

tives are constructed in discrete form by analytically taking derivatives of the polyno-231

mials that approximate the solutions. The state variables in each element are collocated232

with each other and placed at unequally spaced Legendre-Gauss-Lobatto points. In this233

study, we utilize fifth-order polynomial basis functions in all three spatial dimensions,234

which also provides fifth-order accuracy for all spatial derivatives and is identical to that235

presented in Guimond et al. (2016). Note that the stencil for all polynomial orders in236

NUMA is symmetric about the element centroid, so upwind-biased diffusion for fifth-order237

polynomials is not present. For time integration, the three-dimensional semi-implicit method-238

ology (Giraldo et al., 2013) is used along with a second-order leapfrog scheme (LF2). A239

first-order Robert-Asselin time filter is applied to stabilize the LF2 scheme. The above240

description of NUMA comprises our control simulations. Several other time integration241

formulations are available in NUMA and we will note where sensitivity tests have been242

conducted. Interested readers are referred to Giraldo and Restelli (2008); Giraldo et al.243

(2013) for more details of the NUMA model.244

2.3 Details of Simulation Setup245

Careful analysis has been undertaken to setup WRF and NUMA nearly exactly the246

same to isolate any differences in the model solutions to the numerical schemes that com-247

prise the dynamic core. The computational domain is a box extending 800 km in the248

horizontal directions and 20 km in the vertical direction. In WRF, 2 km grid spacing249
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in the horizontal is chosen to match that of the radar observations used as forcing and250

to be consistent with Guimond et al. (2016). The first model level is found at 167 m with251

constant vertical spacing of 333 m up to the model top (60 levels). To match the hor-252

izontal and vertical grid spacing in WRF, we have used 80 elements in each horizontal253

direction and 12 elements in the vertical direction along with fifth-order polynomials in254

all dimensions for the NUMA grid, as described in Section 2.2. These settings yield an255

element-averaged grid spacing in NUMA of ∼ 2 km in the horizontal and ∼ 333 m in256

the vertical. A time step of 2 seconds is used in each model.257

Periodic boundary conditions are used in both horizontal directions in each model.258

A gravity wave absorbing zone (sine-squared function) is imposed at the top of the com-259

putational domain with the WRF zone occupying the top 4 km along with a small co-260

efficient (0.00833) and the NUMA zone representing the top 1 km with a large coeffi-261

cient (1.0). The differences in the absorbing zones are due to stability issues and sen-262

sitivity tests show the results are not sensitive to these choices. The free-slip boundary263

condition is applied at the bottom of the computational domain in each model, which264

disables fluxes of quantities (such as heat) from the surface and prevents a frictional bound-265

ary layer from developing. These idealizations enable the focus to be on the vortex dy-266

namic response to the imposed heating. The simulations are run without moisture, but267

instead, four-dimensional latent heating/cooling rates derived from airborne Doppler radar268

observations are used to force the model as described below.269

In post-processing, both WRF and NUMA fields are interpolated to a uniform, col-270

located grid at the horizontal/vertical grid spacings listed above. Linear interpolation271

is used to post-process the WRF results. To post-process NUMA results, a high-order272

interpolation based on Lagrange polynomials is applied, which is facilitated by the spec-273

tral element method (since by construction the solution exists everywhere in the element).274

To ease interpolation, any hexahedral element in the physical space (x, y, z) can be trans-275

formed into a standardized space (α, β, γ) ∈ [−1, 1]× [−1, 1]× [−1, 1] . Thus, for any276

Nth-order standard hexahedral element, there are N+1 Legendre-Gauss-Lobatto points,277

namely, (αi, βi, γi), i = 1, . . . , N+1, in each direction α, β and γ. The Lagrange poly-278

nomial basis LIJK(α, β, γ), I, J,K = 1, . . . , N + 1, can be constructed using the ten-279

sor product as280

LIJK(α, β, γ) =

 N+1∏
i=1,i6=I

α− αi
αI − αi

 N+1∏
j=1,j 6=J

β − βj
βJ − βj

 N+1∏
k=1,k 6=K

γ − γk
γK − γk

 . (11)281

Then, any value of the flow variables V (α, β, γ), such as the wind speed, inside a282

hexahedral element can be interpolated from the solutions VIJK , I, J,K = 1, . . . , N+283

1, on the Legendre-Gauss-Lobatto points as284

V (α, β, γ) =

N+1∑
I=1

N+1∑
J=1

N+1∑
K=1

LIJK(α, β, γ)VIJK . (12)285

The initial conditions are identical in each model. The hydrostatic and gradient-286

wind balanced, tropical storm-like vortex with axisymmetric tangential winds described287

in Eq. (10) of Guimond et al. (2016) is utilized here, which is similar to the study of Nolan288

and Grasso (2003). The tangential velocity field in the radius–height plane for this ini-289

tial vortex is shown in Fig. 1. On top of this vortex, four-dimensional latent heating/cooling290

rates derived from airborne Doppler radar measurements in rapidly intensifying Hurri-291

cane Guillermo (1997) described in Guimond et al. (2011), are added as a source term292

in the potential temperature equation in both WRF and NUMA. These heating fields293
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are computed on a grid covering the inner-core of the system out to a radius of ∼ 60 km294

with a grid spacing of 2 km and 0.5 km in the horizontal and vertical dimensions, re-295

spectively. There are ten heating snapshots covering ∼ 5.7 h with a time step of ∼ 34296

minutes. The peak heating is located at a radius of 25 - 30 km, which is well inside the297

radius of maximum wind (RMW) of the initial vortex (∼ 50 km). This heating and vor-298

tex configuration represents the rapid intensification process well, where convective bursts299

are the main driving force, e.g., (M. Montgomery et al., 2006; Reasor et al., 2009; Gui-300

mond et al., 2010; Rogers et al., 2013). Guimond et al. (2011) conducted an extensive301

uncertainty analysis of the latent heat retrievals and found they were reasonably accu-302

rate, especially for convective bursts with randomly distributed errors in the heating mag-303

nitudes of ∼ 16% for updrafts greater than 5 m/s. In addition, Guimond and Reisner304

(2012) inserted the heating retrievals into realistic forecasts of Guillermo and found very305

good agreement in the predicted wind fields relative to observations.306

Figure 1: Axisymmetric tangential velocity (m/s) in the radius-height plane for the ini-
tial vortex used in each model.

Starting from the initial conditions, the first heating snapshot is introduced into307

the model over a 30 minute period using a hyperbolic tangent function. Then, the re-308

maining heating snapshots are linearly interpolated to the next observation time over309

a 34 minute period. After the last observation time, the heating is kept constant up to310

6 hours, which is the end of our simulations. Fig. 2 shows the three-dimensional struc-311

ture of the heating for three snapshots and the time evolution function used to control312

the forcing in the models. Note that we have also added an exponentially decaying func-313

tion at the upper-edge of the observational domain (10 km) to smoothly transition the314

data into the model grid, which helps maintain numerical stability.315

Both models are also supplied the same explicit diffusion settings. While we can316

utilize the same sub-grid scale turbulence scheme in WRF and NUMA for our compar-317

isons, the differences in the dynamic core of each model and associated dissipation char-318

acteristics will likely produce different eddy viscosity values during the course of the sim-319

ulations. To isolate the model differences to the numerical formulation, we developed a320

simple height-dependent eddy viscosity model based on output from the WRF 3D tur-321

bulent kinetic energy (TKE) sub-grid turbulence scheme. Initially, we conducted a WRF322

simulation with the 3D TKE scheme to get an idea of the eddy viscosity and diffusiv-323

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 2: Three-dimensional isosurfaces of latent heating (red; 100 K/h) and cooling
(blue; −100 K/h) retrieved from airborne Doppler measurements in rapidly intensifying
Hurricane Guillermo (1997). Three example snapshots of this heating are shown with
the storm-centered volume extending 120 km on a side in the horizontal and 20 km in
the vertical. The time evolution function used to force the heating into the model is also
shown with units of minutes, unless noted otherwise.

ity values produced from the vortex and heating. Following a parcel, the sources and sinks324

of TKE in this scheme depend on the shear, buoyancy and dissipation. Details describ-325

ing the implementation of this scheme in WRF, including the parameterization for dis-326

sipation, can found in Skamarock et al. (2021). The observational heat forcing will gen-327

erate TKE from both the buoyancy and shear terms, but we only focus on the output328

eddy viscosities and diffusivities, which are calculated as329

Kh,v = Cklh,v
√
e (13)330

where e is the TKE, Ck is a constant of 0.15, and l is a length scale, which is around 2000331

m in the horizontal and 375 m in the vertical. Figure 3 shows plots of the horizontal eddy332

viscosity from the 3D TKE scheme at 0.50 km and 9.80 km height at 6 h . The eyewall333

is visible in the figures with viscosity values of ∼ 240 m2s−1 or larger in a thin ring at334

0.5 km height and a broader region of 500− 750 m2s−1 values at 9.80 km height.335

Localized regions of higher viscosity values near 400 m2s−1 and 1500 m2s−1 at lower336

and upper levels, respectively, are connected to large, vertically coherent heating pulses337

from convective bursts. Note that we have set the turbulent Prandtl number in WRF,338

which has a default value of 1/3, to 1 which enables the same eddy viscosity/diffusivity339

values for momentum and scalars. There are areas of the WRF software where the de-340

fault value is hard coded and we have taken careful steps to maintain values of 1 through-341

out the code. The turbulent Prandtl number is set to 1 in NUMA as well.342

Fig. 4 shows the maximum horizontal and vertical eddy viscosity values produced343

over the 6 h WRF simulation as a function of height. Both curves have relatively small344

values at lower levels, but they increase sharply at middle levels with some additional345

oscillations up to ∼ 16 km height. The large values found at middle to upper levels are346

from the strong heating pulses associated with convective bursts as seen in Fig. 3. The347

values drop off sharply at ∼ 16 km height because that is where the gravity wave sponge348

is introduced into the model. The maximum horizontal viscosity values are about five349
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Figure 3: Eddy viscosity values output from the WRF 3D TKE scheme at 6 h and 0.5
km height (left panel) and 9.8 km height (right panel).

Figure 4: Maximum eddy viscosity values from the 3D TKE scheme in WRF as a func-
tion of height. The maximum values are taken over the 6 h simulation.

times larger than the vertical values. Overlaid on top of the maximum viscosity curves350

are high-order polynomial fits that approximate the general structure and values of the351

eddy viscosity data. These fits take the following form352

visc(z) = ãz5 + b̃z4 + c̃z3 + d̃z2 + ẽz + f̃ (14)353

where z is the geometric height in meters and the coefficients of the fifth-order polyno-354

mial are found in Table 1. To stabilize the NUMA code, an extra constant was added355

to the f̃ coefficient for both the horizontal and vertical polynomial fits. The f̃ coefficient356

is shown in Table 1 and the curves in Fig. 4 include this offset. Finally, these height-dependent357

eddy viscosity values are used in both WRF and NUMA for momentum and scalar dif-358

fusion in the comparison simulations. This simple explicit diffusion model is intended359

to both stabilize each numerical model and also represent, to some degree, realistic sub-360

grid scale turbulent diffusion from the TKE scheme.361
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Table 1: Coefficients for the horizontal and vertical viscosity polynomial fits. Both WRF
and NUMA use the exact same values.

Coefficients ã b̃ c̃ d̃ ẽ f̃

Horizontal -0.012760 0.6946 -11.57 53.28 255.90 1003.90
Vertical -0.004572 0.2150 -3.29 15.05 43.16 357.65

3 Results362

3.1 Time Series and Windspeed Structure363

In this section, we compare the solutions from the WRF and NUMA control sim-364

ulations in terms of time series of horizontal wind speed and kinetic energy as well as365

the structure of windspeed perturbations. Here, perturbation is defined as the total wind366

speed at a particular time minus the wind speed of the initial condition, which helps iden-367

tify the wind structures produced from the observational heating.368

Figure 5: Time series of maximum windspeed for the control WRF and NUMA simula-
tions. The dashed lines show WRF sensitivity tests where the eddy viscosity values were
set to a certain percentage of the default values.

Fig. 5 shows the maximum windspeed output every 30 minutes for the control WRF369

and NUMA simulations with solid red and green lines, respectively. The maximum winds370

increased by about 45 m/s in 6 h, which is a very large RI rate. The reason for this high371

rate, besides the idealized setup, is the much larger (and weaker) initial vortex compared372

to that which occurred in nature, which drives a large inward movement of angular mo-373

mentum and associated increase in winds. Guimond and Reisner (2012) considered the374

same observational heating as the present study, but used an initial vortex based on radar375

observations of Hurricane Guillermo (1997) that had a much smaller RMW (∼ 30 km)376

compared to the vortex used here (∼ 50 km). Guimond and Reisner (2012) found that377

the minimum pressure dropped by about 12 - 15 hPa in 6 h with the realistic initial vor-378

tex, which compared more favorably with observations than the present vortex. Never-379
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theless, the goal of this study is to analyze the idealized vortex response to heating pulses380

derived from observations in a RI system and examine the effects of implicit numerical381

dissipation in this process. We do not intend to simulate and reproduce the Guillermo382

case study. Thus, the current initial vortex and model setup are sufficient for the goals383

of this work.384

Fig. 5 also shows that after ∼ 2 h, the NUMA winds begin to increase relative to385

WRF and during the last couple of hours of the simulations, the maximum windspeed386

is 2 - 7 m/s or 4 - 12% higher in NUMA compared to WRF. In an attempt to more closely387

match the time series of WRF and NUMA, three sensitivity tests were conducted with388

WRF where the eddy viscosity values were set to 25%, 50% and 75% of the default val-389

ues. The 75% tests still show significantly reduced maximum winds relative to NUMA,390

while the 25% tests generally seem too high, especially before 3.5 h. In general, the 50%391

tests show a much closer match to NUMA, especially up to and including 3.5 h, despite392

the anomalously high value at 2.5 h. There is some larger variability between 4 - 6 h,393

but smoothing through that variability indicates a reasonable match to NUMA. There-394

fore, these results indicate that in order to produce a similar intensity time series to NUMA,395

the explicit diffusion in WRF must be turned down significantly, with a reduction in eddy396

viscosity values of ∼ 50% relative to those in NUMA.397

Additional time series diagnostics for azimuthal mean quantities were also calcu-398

lated. While the environment surrounding the vortex has no mean flow, the observational399

heat forcing has an azimuthal wavenumber-one structure as can be seen in Fig. 2, which400

produces a wavenumber-one flow asymmetry that slowly moves the vortex to the south-401

east. The storm center is computed through a simple iterative method that finds the po-402

sition which maximizes the azimuthal mean windspeed. The data are interpolated onto403

a cylindrical grid with this storm center and the azimuthal mean quantities are calcu-404

lated.405

Figure 6: Time series of maximum azimuthal mean windspeed for the control WRF and
NUMA simulations.

Figs. 6 and 7 show the times series of azimuthal mean windspeed and mean kinetic406

energy, respectively. These figures show a similar qualitative pattern as the maximum407

windspeed with NUMA producing larger mean windspeeds and kinetic energy values rel-408

ative to WRF, with those differences growing over time. In the last couple of hours, the409
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maximum azimuthal mean windspeed is about 4 m/s or 8% higher in NUMA compared410

to WRF. The mean kinetic energy follows a very similar pattern to the windspeed and411

will be used as a reference for a dynamical budget analysis, presented in Section 3.2, to412

explain the reasons behind the model differences. While the differences between WRF413

and NUMA are not large for these mean quantities, there is more substantial variabil-414

ity on local space and time scales, which is demonstrated next. In addition, it is impor-415

tant to keep in mind the short time period of these simulations (dictated by the avail-416

able observations) and the idealized nature of the setup, both of which will limit the vari-417

ability in the models.418

Figure 7: Time series of azimuthal mean kinetic energy averaged over the eyewall (∼ 10 -
50 km radius) and height (∼ 0.19 - 1.5 km) for the control WRF and NUMA simulations.

Snapshots of perturbation wind speed in WRF and NUMA are shown for the 4,419

5 and 6 hour time periods in Figs. 8 and 9. At 4 h and 0.19 km height in Fig. 8, the per-420

turbation windspeed shows a tight inner-core in both models with the windspeed max-421

imum occurring in the North or North-East section of the vortex, reflecting the asym-422

metric heating input. The NUMA windspeeds are visibly larger than WRF by about 5423

m/s averaged over the eyewall region with peak differences of 6 - 7 m/s in localized re-424

gions, such as the larger band in the Eastern eyewall. The majority of the model differ-425

ences are concentrated in the center part of the eyewall, but there are also also regions426

of positive differences in some banded structures to the North and North-East of the cen-427

ter. The low wind region in the eye is larger in NUMA when compared to WRF, which428

creates a larger radial windspeed gradient when accounting for the larger values in the429

eyewall. Outside of the strongest winds in the eyewall and a few banded areas, the model430

differences are smaller with some regions positive and other regions negative. At higher431

levels (4.83 km height) in Fig. 8, the model differences are smaller with peak positive432

values of 4 - 5 m/s in smaller regions. More significant negative values (WRF winds stronger433

than NUMA) are occurring at the eye-eyewall interface and also indicate stronger ra-434

dial gradients as found at lower levels.435

At 5 h and 6 h, the vortex has reached peak intensity with perturbation windspeeds436

of ∼ 60 m/s found on the Northeast and Northern side of the storm as shown in Fig. 9.437

At these time periods, the RMW of the vortex is 15 - 20 km with NUMA on the lower438

side and WRF on the higher side of that interval. The RMW of the initial vortex was439

∼ 50 km and this large, rapid contraction rate is consistent with the rapid increase in440

winds from conservation of angular momentum.441
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WRF NUMA NUMA - WRF

Figure 8: Horizontal wind speed perturbations and differences at 4 h for WRF and
NUMA. Panels (a) and (b) show results from WRF at 0.19 km and 4.83 km heights,
respectively, while panels (c) and (d) show results from NUMA at the same levels. Panels
(e) and (f) show the differences (NUMA - WRF) at the same heights.

WRF NUMA NUMA - WRF

Figure 9: The same as in Fig. 8, only showing the 0.19 km height level at 5 h and 6 h in
WRF in panels (a) and (b), respectively and NUMA in panels (c) and (d). Panels (e) and
(f) show the differences (NUMA - WRF) at the same corresponding time periods.
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At 5 h, NUMA shows significantly stronger winds than WRF by 7 - 8 m/s within442

large portions of the northern eyewall including peak differences of up to +12 m/s. Sim-443

ilar to the previous time period, the low-wind eye of NUMA is a bit wider than WRF,444

which produces large negative differences in the eye and a larger radial wind gradient.445

Some thin bands of higher wind differences can also be seen to the North and Northeast446

of the storm, which may be related to vortex Rossby wave dynamics. At 6 h, the local447

wind differences are smaller, but still significant in that much of the eyewall has posi-448

tive differences of ∼ 5 m/s with larger values on the Eastern side of the vortex.449

3.2 Budget Analyses450

The previous section established clear differences between the two numerical mod-451

els with NUMA producing a larger intensity response. How can this be given that each452

model was set up exactly the same with the same initial conditions and same heat forc-453

ing? The answer to this question lies in the design of the numerical schemes that make454

up the dynamic core of each model and in this section, we analyze how the intensity dif-455

ferences are produced and highlight parts of the numerical scheme that are driving this456

effect.457

The horizontal kinetic energy for the azimuthal mean vortex in cylindrical coor-458

dinates (r,θ,z) is expressed as459

K̄ =
1

2
(ū2 + v̄2) (15)460

where u is the radial windspeed, v is the tangential windspeed and the overbar indicates461

an azimuthal mean quantity. After azimuthally averaging, these variables and those be-462

low are functions of radius (r) and height (z) unless noted otherwise. After multiplying463

the radial and tangential equations of motion by their corresponding velocity, summing464

the two equations and applying Reynolds decomposition in the azimuthal direction (the465

over bar and prime notations below indicate azimuthal mean and eddy variables, respec-466

tively), we arrive at the transport equation for azimuthal mean kinetic energy,467

∂K̄

∂t
= M + E + P +D (16)468

where,469

M = −
(

1

r

∂

∂r
(ūK̄r) +

1

ρ̄

∂

∂z
(w̄K̄ρ̄)

)
,470

471

E = −
(
ū

r

∂

∂r
(u′u′r) +

ū

ρ̄

∂

∂z
(u′w′ρ̄) +

v̄

ρ̄

∂

∂z
(v′w′ρ̄) +

v̄

r

∂

∂r
(u′v′r)− ūv′v′

r
+
v̄u′v′

r

)
,472

473

P = − ū
ρ̄

(
∂ ¯̂p

∂r

)
, and D =

(
ūD̄r + v̄D̄θ

)
.474

In Eq. (16), M defines the mean kinetic energy transport terms, E defines the eddy475

transport terms which represent the Reynolds stress contributions in the azimuthal di-476

mension, P defines the pressure gradient term and D defines the total explicit diffusion477

term.478

Fig. 10 shows a times series of azimuthal mean kinetic energy budget tendencies479

from both WRF and NUMA after averaging the fields over the eyewall (∼ 10 - 50 km480

radius) and height (∼ 0.19 - 1.5 km). The largest term is the pressure gradient, which481

contributes positively to the increase in mean kinetic energy of the vortex shown in Fig. 7.482

This large positive contribution is from the input heating, which leads to significant in-483

tegrated warming in the storm core and an associated increase in the radial pressure gra-484

dient between the undisturbed outer regions and lowered pressures in the core region.485
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This larger radial pressure gradient drives strong inflow at low levels, which transports486

high angular momentum from the outer regions of the storm towards the center, increas-487

ing the tangential velocity of the vortex. Large differences between WRF and NUMA488

are present in the pressure gradient term, especially beyond 2 h with NUMA larger than489

WRF by ∼ 25% on average with a maximum of ∼ 40%.490

Figure 10: Time series of azimuthal mean kinetic energy budget tendencies from both
models after averaging the fields over the eyewall (∼ 10 - 50 km radius) and height (∼
0.19 - 1.5 km). The black dashed line highlights zero tendency and all other lines are
denoted in the key.

The second largest contribution is the mean transport term, which shows largely491

negative values that increase with time as the mean flow intensifies. The vertical mean492

transport dominates over the horizontal transport, which is dictated by the heating pro-493

file that is maximized near middle levels. Therefore, there is a significant positive flux494

of kinetic energy out of the lower levels of the vortex, which results in a net sink of en-495

ergy. However, the differences between WRF and NUMA are much smaller for the mean496

transport term, relative to the pressure gradient, by a factor of ∼ 4.5. The eddy trans-497

port term oscillates around zero tendency up until ∼ 3.5 h after which a clear positive498

contribution to the mean kinetic energy is visible. After summing all the budget terms,499

the eddy transport contributes up to 15 - 40% to the increase in mean KE of the vor-500

tex over the 6 h period. When integrating the budget terms over time, the eddy trans-501

port contributes 18% to the mean kinetic energy with no notable differences between the502

models. At these later time periods, the vertical divergence of the vertical tangential mo-503

mentum flux (the third term in the E contribution in Eq. (16)) has the largest values504

and provides a positive tendency to the mean kinetic energy in our analysis domain.505

For the total explicit diffusion term, the values are very similar before ∼ 1 h, but506

after that time the values from NUMA start to slowly increase relative to WRF with con-507

sequential differences at later times into the simulation (NUMA larger than WRF by ∼508

36% when averaged from 2 - 6 h). The reason for this is that while the eddy viscosity509

values are fixed, the velocity gradients in NUMA are larger than WRF (described in the510

previous section), which produces a larger magnitude in the Laplacian operator. This511

is not a truly fair comparison of the dynamic cores and a simple diagnostic calculation512

that accounts for this effect is outlined below.513
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Figure 11: Time series of the summation of terms that control the time tendency of
azimuthal mean kinetic energy on the RHS of Eqn (16). The dashed lines represent all
terms on the RHS of Eq. (16), while the solid lines include only the M , E and P terms.
After summation, the fields are averaged over the eyewall (∼ 10 - 50 km radius) and
height (∼ 0.19 - 1.5 km) as is done in Fig. 10.

Fig. 11 shows a times series of the summation of all terms on the RHS of Eq. (16)514

for WRF and NUMA (dashed lines). This figure represents the slope of the curves dis-515

played in the time series of mean kinetic energy in Fig. 7. Clearly, there is intensifica-516

tion throughout the simulation with the exception of the last output time at 6 h, but517

note that this weakening is not shown in Fig. 7 because the last output time is right at518

6 h. The intensification rate hovers between 0.03 - 0.05 m2/s3 over most of the simu-519

lation with the exception of a large spike at 4.5 h. After integrating these time series curves520

with the trapezoidal rule over 6 h with the 30-minute output interval, we find that NUMA521

has a larger mean (azimuthal mean and averaged over r = 10 - 50 km and z = 0.19 -522

1.5 km) kinetic energy than WRF by ∼ 8%. However, this difference does not account523

for the larger explicit diffusion in NUMA mentioned above, which obscures the ability524

to isolate the effects of implicit numerical dissipation. To correct for this, we re-calculated525

the integrated mean kinetic energy with the explicit diffusion term (D) removed and we526

find that NUMA has larger values than WRF by ∼ 18%. Note that the same percent-527

age difference would be found if we used the exact same explicit diffusion term from ei-528

ther WRF or NUMA (see Fig. 10) in each model. However, there is a coupled, nonlin-529

ear evolution of the fields whereby differences in the explicit diffusion affect the other530

terms in the mean kinetic energy during the simulations. This is difficult to control, and531

we do not address this issue here.532

In summary, the main differences in the mean vortex intensity between WRF and533

NUMA is due to the radial pressure gradient contribution to the mean kinetic energy534

with smaller effects from the transport terms and explicit diffusion. However, even the535

transport and explicit diffusion terms are controlled, for the most part, by the pressure536

gradient term because the differences in each model’s response to the input heating, via537

the pressure gradient, results in different velocities even very early (e.g., 1 h) into the538

simulations (see Fig. 10). Thus, differences in the calculation of the nonlinear advective539

terms in each model is not a significant source of diffusion and this result is consistent540

with Guimond et al. (2016). In addition, this result follows from the fact that both WRF541
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and NUMA utilize high-order discretization of the advective terms and WRF showed no542

tangible differences when switching from the 5th order to 6th order stencil.543

Guimond et al. (2016) also identified the pressure gradient term as the controlling544

factor in dynamic core comparisons between three different models (including WRF and545

NUMA) for the same vortex analyzed here. However, Guimond et al. (2016) only con-546

sidered idealized potential temperature perturbations to the initial state of the model547

as opposed to the time-dependent, 3-D observational heating used here. Guimond et al.548

(2016) conducted sensitivity tests with different order time integration schemes and found549

significant differences in the solutions, which led to the conclusion that the diffusion in550

WRF was due to the temporal discretization. Similar sensitivity tests were conducted551

in this work by comparing the control NUMA run (essentially a first-order in time method)552

to a second-order in time Runge-Kutta method, which is very similar to WRF. These553

sensitivity tests in NUMA revealed small differences with peak absolute values of ∼ 1.5554

m/s (not shown) indicating that the temporal discretization is not significantly affect-555

ing the solutions in either NUMA or WRF. For the spatial discretization of the pressure556

gradient term, WRF uses second-order finite differences while NUMA is utilizing 5th-557

order polynomials, which also provides fifth-order accuracy for the pressure gradient eval-558

uation. Given the kinetic energy budgets and sensitivity tests described above, we as-559

sess that the low-order spatial approximation of the pressure gradient term in WRF is560

the source of the significant diffusion in the vortex intensity identified in this paper.561

Given the large model differences in the pressure gradient contribution to the mean
kinetic energy demonstrated in Fig. 10, it is imperative to examine the full structure of
this term to identify any potential localized signals. The components of the horizontal
pressure gradient contribution to the kinetic energy in cylindrical coordinates are given
as

−u
ρ

∂p̂

∂r
and

−v
ρ

∂p̂

∂θ

where u and v are the radial and tangential wind speed, respectively. Figs. 12 and 13562

show horizontal cross sections of these terms, averaged over low-levels (∼ 0.19 - 1.5 km),563

at 4 h and 5 h into the simulations, respectively. In addition, select height-averaged (over564

the full column) heating inputs to the models leading up to these time periods are also565

shown in Figs. 12 and 13.566

Figs. 12a, 12b show the heating inputs at 3.33 h, 4 h, which represent the heating567

snapshots leading up to the 4 h mark in the simulations. The 4 h heating has the larger568

weight in the model results, but there is still some “memory” of the heating from ear-569

lier times. The radial component of the pressure term in WRF (Fig. 12c) and NUMA570

(Fig. 12e) shows an azimuthal wavenumber-2 structure in the eyewall region, which is571

connected to the input heating structure most closely at 4 h. The heating at 4 h shows572

localized regions of large positive and negative heating rates (see, for example, the fea-573

ture to the West of the storm center in Fig. 12b), which are correlated with the positive/negative574

couplet in the radial pressure term in a similar region. Note that due to the vortex drift575

to the South-East over time, the heating input and radial pressure term are not exactly576

aligned. Comparing the radial pressure term from WRF and NUMA shows that NUMA577

has larger values than WRF, especially in the localized positive regions. This is the rea-578

son why the azimuthal average of these fields (see Fig. 10) shows NUMA with much larger579

values than WRF. This result indicates that strong, localized heating regions associated580

with convective bursts are producing a concomitant, enhanced pressure gradient response581

in NUMA that is driving the differences in the intensification of the vortex. The reduced,582

localized pressure gradient values in WRF are due to diffusion from the low-order spa-583

tial discretization of this term, as described above.584

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Observational Heating 3.33 h Observational Heating ∼ 4.0 h

WRF NUMA

Figure 12: Panels (a) and (b) show the height-averaged, observational heating inputs to
the models for time periods 3.33 h and ∼ 4 h, respectively. Panels (c) and (d) show the
horizontal pressure gradient contributions to kinetic energy in WRF for the radial and
tangential components, respectively. Panels (e) and (f) are the same as in (c) and (d),
only for NUMA. Panels (c) - (f) are at 4 h into the simulations.

The azimuthal component of the pressure term for this time period in both WRF585

(Fig. 12d) and NUMA (Fig. 12f) shows a clear azimuthal wave structure with an aver-586

age wavelength of ∼ 20 km and ∼ wavenumber-5 structure. These waves are very likely587

convectively forced vortex Rossby waves (M. T. Montgomery & Enagonio, 1998), but are588
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not discussed in detail. The anticipated vortex Rossby waves in NUMA have a larger589

amplitude than those in WRF and this can be seen most clearly to the south of the vor-590

tex center.591

Observational Heating ∼ 4.5 h Observational Heating ∼ 5.0 h

WRF NUMA

Figure 13: Panels (a) and (b) show the height-averaged, observational heating inputs to
the models for time periods ∼ 4.5 h and ∼ 5.0 h, respectively. All other panels are the
same as in Figure 12, only for 5 h into the simulations.
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Fig. 13 shows the same fields as Fig. 12, only at 5 h into the simulations. Similar592

results to those at 4 h are observed, including larger magnitude, localized positive anoma-593

lies in the radial pressure term in NUMA (Fig. 12e) compared to WRF (Fig. 12c) that594

are connected to the heating snapshots at this time (Figs. 13a and 13b). The azimuthal595

pressure term also continues to show evidence of vortex Rossby waves with clearly larger596

amplitude features to the North and East of the vortex center. The heating input at 5597

h (Fig. 13b) shows that the majority of the heating is on the eastern side of the vortex598

with large, localized regions to the north-east of the center, which is consistent with the599

larger amplitude waves in NUMA.600

4 Summary and Conclusions601

In this paper, we have studied the computational fluid dynamics of the hurricane602

rapid intensification (RI) process by considering idealized simulations of the vortex re-603

sponse to time-dependent, 3D latent heating estimates derived from airborne radar mea-604

surements collected in the RI of Hurricane Guillermo (1997). Two types of numerical605

models were considered: a community-based, finite difference and split-explicit model606

called WRF and an advanced, spectral element and semi-implicit model called NUMA.607

The models are carefully analyzed and setup to ensure the differences can be isolated608

to the numerical schemes that comprise the dynamic core. This includes explicit diffu-609

sion settings, which are parameterized based on output from a 3D TKE subgrid model610

experiment.611

Prior studies used simple thermal perturbations to the initial conditions to repre-612

sent the effects of convective heating and found that the WRF model had significant im-613

plicit numerical dissipation when compared to advanced research codes, including NUMA614

(Guimond et al., 2016). The current study also finds significant implicit numerical dis-615

sipation in WRF with a reduction in several intensity metrics over a 6 h period: (1) max-616

imum wind speeds in WRF are ∼ 12% lower than NUMA when matching the eddy dif-617

fusivity values, (2) time-integrated, mean kinetic energy values in WRF are ∼ 20% lower618

than NUMA when accounting for differences in the LaPlacian diffusion operator and (3)619

peak, localized wind speed differences in WRF are ∼ 12 m/s lower than NUMA. Sen-620

sitivity studies show, that in order to achieve a similar intensity time series to NUMA,621

the explicit diffusion in WRF must be reduced drastically, with eddy viscosity values set622

to 50% of those in NUMA. In the control simulations, the NUMA windspeeds are vis-623

ibly larger than WRF by roughly 5 m/s when averaged over the eyewall with local re-624

gions exceeding 10 m/s. In addition, NUMA’s low wind region in the eye is slightly wider625

than WRF’s, resulting in larger velocity gradients (and larger Laplacian diffusion) when626

accounting for the enhanced values in the eyewall.627

To understand the nature of the differences between the models, the azimuthal mean628

kinetic energy budget was examined. At all time periods in the 6-hour simulation, the629

pressure gradient force contribution to the kinetic energy is significantly higher in NUMA630

compared to WRF by ∼ 23% in the mean and ∼ 40% in the maximum. Examination631

of the horizontal components of the pressure term reveal that NUMA produces localized632

pressure gradient anomalies that are larger in magnitude when compared to WRF. These633

localized regions are tied into the observational heating inputs that contain the presence634

of convective bursts, which are prevalent during the RI process. In addition, the pres-635

ence of azimuthal waves in the pressure gradient term are visible in the simulations, likely636

vortex Rossby waves, with larger amplitudes in NUMA. While the axisymmetric trans-637

port of kinetic energy, especially by vertical fluxes, is substantially larger than the asym-638

metric transport, we find that these eddy processes contribute 15 - 40% at 30-minute out-639

put intervals over the 6 h period and ∼ 18% when integrating the terms over time.640

Sensitivity tests with different time integration schemes in NUMA were conducted641

to identify the root numerical causes of the model differences. However, employing a second-642
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order in time scheme, compared to an essentially first-order in time method for the con-643

trol run, did not produce any notable differences in the NUMA solutions. This is in con-644

trast to the results in Guimond et al. (2016), where higher order time integration schemes645

produced even more energetic solutions. The reason for the discrepancy is likely due to646

the nature of the problem: Guimond et al. (2016) analyzed a freely evolving vortex ini-647

tialized with a perturbation while the present study considered strong, 4-D forcing. There-648

fore, the significant diffusion in WRF is controlled by a spatial discretization error and649

this is consistent with the fact that WRF relies on a diffusive, second-order approxima-650

tion to the pressure gradient force while NUMA utilized a fifth-order accurate approx-651

imation.652

We do not know which model solution is correct in the absolute sense and numer-653

ical convergence studies are ongoing. However, excessive numerical dissipation is not a654

desired aspect of a modeling system because it reduces the effective resolution of the sim-655

ulations and can damage the effects of physics-based sub-grid models and observations656

used to initialize the model in data assimilation practices. The simulations in this pa-657

per were for a short time period (6 h) to accommodate the available observational heat-658

ing and longer-term simulations that have multiple, episodic convective burst events will659

likely increase the disparity between the two dynamic cores. Furthermore, the positive660

feedback loop involving moist physics was not operating in these simulations and cou-661

pling of the enhanced windspeeds in NUMA to surface fluxes, microphysical heating and662

pressure responses will likely add additional divergence in the models. Nevertheless, this663

paper makes an important step forward in an attempt to develop a holistic, thorough664

investigation of the computational fluid dynamics of the hurricane RI process.665
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methods. Comptes Rendus de lÁcadémie des Sciences - Series I - Mathemat-709

ics, 332 , 265–270.710

Gassner, G. J. (2013). A skew-symmetric discontinuous galerkin spectral element711

discretization and its relation to sbp-sat finite difference methods. SIAM Jour-712

nal on Scientific Computing , 35 , A1233–A1253.713

Gassner, G. J., & Beck, A. D. (2013). On the accuracy of high-order discretizations714

for underresolved turbulence simulations. Theor. Comput. Fluid Dyn., 27 ,715

221—237.716

Giraldo, F. X. (2020). An introduction to element-based galerkin methods on tensor-717

product bases: Analysis, algorithms, and applications. doi: 10.1007/978-3-030718

-55069-1719

Giraldo, F. X., Kelly, J. F., & Constantinescu, E. M. (2013). Implicit-explicit formu-720

lations of a three-dimensional nonhydrostatic unified model of the atmosphere721

(numa). SIAM J. Sci. Comput., 35 .722

Giraldo, F. X., & Restelli, M. (2008). A study of spectral element and discontinuous723

Galerkin methods for the Navier Stokes equations in nonhydrostatic mesoscale724

atmospheric modeling: Equation sets and test cases. Journal of Computational725

Physics, 227 (8), 3849-3877. doi: 10.1016/j.jcp.2007.12.009726
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