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Abstract

The usefulness of satellite multi-sensor precipitation (SMP) and other satellite-informed precipitation products in water resources

modeling can be hindered by substantial errors which vary considerably with spatiotemporal scale. One approach to cope

with these errors is by combining SMPs with ensemble generation methods, such that each ensemble member reflects one

plausible realization of the true—but unknown—precipitation. This requires replicating the spatiotemporal autocorrelation

structure of SMP errors. The climatology of this structure is unknown for most locations due to a lack of ground reference

observations, while the unique anisotropy and nonstationarity within any particular precipitation system limit the relevance of

this climataology to the depiction of error in individual storm systems. Characterizing and simulating this autocorrelation across

spatiotemporal scales has thus been called a grand challenge within the precipitation community. We introduce the Space-Time

Rainfall Error and Autocorrelation Model (STREAM), which combines anisotropic and nonstationary SMP spatiotemporal

correlation structures with a pixel-scale precipitation error model to stochastically generate ensemble precipitation fields that

resemble “ground truth” precipitation. We generate STREAM precipitation ensembles at high resolution (1-hour, 0.1@) with

minimal reliance on ground-reference data, and evaluate these ensembles at multiple scales. STREAM ensembles consistently

“bracket” ground-truth observations and replicate the autocorrelation structure of ground-truth precipitation fields. STREAM

is compatible with pixel-scale error/uncertainty formulations beyond those presented here, and could be applied globally to

other precipitation sources such as numerical weather predictions or “blended” products. In combination with recent work in

SMP uncertainty characterization, STREAM could be run without any ground data.
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Abstract 22 

The usefulness of satellite multi-sensor precipitation (SMP) and other satellite-informed 23 

precipitation products in water resources modeling can be hindered by substantial errors which 24 

vary considerably with spatiotemporal scale. One approach to cope with these errors is by 25 

combining SMPs with ensemble generation methods, such that each ensemble member reflects 26 

one plausible realization of the true—but unknown—precipitation. This requires replicating the 27 

spatiotemporal autocorrelation structure of SMP errors. The climatology of this structure is 28 

unknown for most locations due to a lack of ground reference observations, while the unique 29 

anisotropy and nonstationarity within any particular precipitation system limit the relevance of this 30 

climataology to the depiction of error in individual storm systems. Characterizing and simulating 31 

this autocorrelation across spatiotemporal scales has thus been called a grand challenge within the 32 

precipitation community. We introduce the Space-Time Rainfall Error and Autocorrelation Model 33 

(STREAM), which combines anisotropic and nonstationary SMP spatiotemporal correlation 34 

structures with a pixel-scale precipitation error model to stochastically generate ensemble 35 

precipitation fields that resemble “ground truth” precipitation. We generate STREAM 36 

precipitation ensembles at high resolution (1-hour, 0.1˚) with minimal reliance on ground-37 

reference data, and evaluate these ensembles at multiple scales. STREAM ensembles consistently 38 

“bracket” ground-truth observations and replicate the autocorrelation structure of ground-truth 39 

precipitation fields. STREAM is compatible with pixel-scale error/uncertainty formulations 40 

beyond those presented here, and could be applied globally to other precipitation sources such as 41 

numerical weather predictions or “blended” products. In combination with recent work in SMP 42 

uncertainty characterization, STREAM could be run without any ground data. 43 

1 Introduction 44 

Accurate, timely, high-resolution, and reliable precipitation data is critical for a range of 45 

water modeling contents including floods, droughts, crop yields, and landslide hazards. Interest in 46 

deploying such models at continental-to-global scales has grown in recent years. Examples include 47 

the Famine Early Warning System (FEWS; Funk et al., 2019), the Global Land Data Assimilation 48 

System (GLDAS; Rodell et al., 2004), the Global Flood Monitoring System (GFMS; Wu et al., 49 

2014), the Global Flood Awareness System (GloFAS; Alfieri et al., 2013), and the Landslide 50 

Hazard Assessment for Situational Awareness (LHASA; Kirschbaum & Stanley, 2018). This 51 

interest has been driven in part by increasing availability and accuracy of global precipitation 52 

datasets to “fill in” where no ground-based sensors (e.g., rain gages or weather radar) exist. These 53 

datasets include satellite multisensor precipitation (SMP) products, satellite-assimilating 54 

numerical weather models, and “blended” options that combine the prior two, oftentimes with rain 55 

gages (see Beck et al., 2017, Nogueira, 2020, and Sun et al., 2018 for recent reviews). While these 56 

datasets share a common set of advantages–namely, global coverage at increasingly high 57 

resolutions and ever lower latencies– and have improved in accuracy over time (Gebregiorgis et 58 

al., 2018; Maggioni et al., 2016; Tang et al., 2020), they also share a general tendency towards 59 

high systematic biases and random errors in both precipitation occurrence and rate (e.g., Nogueira, 60 

2020; Tian & Peters-Lidard, 2010; Wright, 2018). 61 

Errors in SMPs can arise from a variety of causes, including variable sensor accuracy and 62 

sampling error from infrequent satellite overpasses, and are modulated by retrieval conditions 63 

(e.g., Tan et al., 2016, 2018; Tian & Peters-Lidard, 2007). Validation studies have demonstrated 64 

that errors tend to grow with latitude, precipitation intensity, terrain complexity, and in frozen or 65 
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mixed-phase precipitation conditions (e.g., Aghakouchak et al., 2011; Shige et al., 2013). Spatial 66 

and temporal autocorrelation among SMP errors exists because the retrieval conditions and 67 

sampling limits that impact a precipitation estimate at a given location and time tend to also impact 68 

estimates that are nearby in space or time. This autocorrelation means that error properties vary 69 

according to the level of spatial or temporal aggregation of the data (Quintero et al., 2016; Sarachi 70 

et al., 2015; Tang et al., 2016); specifically, errors tend to diminish with increasing aggregation as 71 

errors tend to cancel.  72 

When used to force water prediction models, errors in precipitation products lead to errors 73 

in model estimates of key variables such as streamflow, soil moisture, and groundwater storage 74 

(e.g., Falck et al., 2015; Hossain et al., 2004; Maggioni et al., 2011; Schreiner-McGraw & Ajami, 75 

2020; Serpetzoglou et al., 2010). Precipitation uncertainty and error also depend on spatial and 76 

temporal resolution, with random errors tending to diminish with aggregation in space or time (P. 77 

Kirstetter et al., 2018; Quintero et al., 2016; Sarachi et al., 2015). The same is true when erroneous 78 

precipitation is used to predict streamflow, since river networks serve to aggregate rainfall-runoff 79 

errors over spatial and temporal scales (Maggioni et al., 2013; Nikolopoulos et al., 2010). Because 80 

of these issues and the limits they impose on large-scale water modeling, characterizing the space-81 

time autocorrelation structure of SMP error at arbitrary space-time scales has been called a “grand 82 

challenge” for the precipitation community (Huffman et al., 2019). This work takes aim at this 83 

grand challenge by attempting to model the space-time autocorrelation of SMP error; the proposed 84 

approach could be applied to precipitation estimates from satellite-assimilating numerical weather 85 

models or blended datasets due to the aforementioned broad similarities in their error/uncertainty 86 

characteristics. 87 

A significant challenge in addressing the space-time correlation structure of SMP error is 88 

the nonstationarity and anisotropy of SMP error structures, which this study hypothesizes are 89 

closely linked to the nonstationarity and anisotropy of rainfall fields themselves. For example, the 90 

spatiotemporal structure of SMP error is likely very different during an elongated frontal storm 91 

than during an isolated convective event or a highly-coherent tropical cyclone. This suggests that 92 

it would likely prove very challenging to develop robust characterizations of these structures based 93 

on a climatology of past storms, at least in a way that could be used operationally to supply 94 

uncertainty information to end users. As will be seen, we avoid such an approach, diverging from 95 

previous attempts to address this challenge. 96 

It should be noted that the findings from the numerous validation studies that have assessed 97 

SMP accuracy relative to ground-reference data (e.g., Asong et al., 2017; Gadelha et al., 2019; N. 98 

Li et al., 2016; Tian et al., 2009 to name just a few) are not directly useful for SMP-based water 99 

modeling applications. This is because the metrics they calculate—such as mean squared or 100 

absolute errors, biases, and probabilities of detection and false alarms—do not readily translate 101 

into “new” (i.e., better) precipitation fields that are needed as model inputs. They do, however, 102 

highlight the challenge of providing better inputs by showing the prevalence, complexity, and 103 

magnitudes of such errors. In recognition of this, Gebremichael et al. (2011) called for a shift in 104 

SMP error characterization work towards “converting deterministic satellite rainfall estimates to 105 

probabilistic form by overlaying an estimated error distribution around the deterministic rainfall 106 

estimate.” In addition to our work presented here, several earlier efforts—detailed in Section 2—107 

have answered this call by introducing techniques that can generate distributions to characterize 108 

the uncertainty of a specific SMP estimate. 109 
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While precipitation uncertainty is a random variable that can be described 110 

probabilistically—typically via a probability distribution describing the possible “true” (but 111 

unknown) precipitation rate at a given location and time—virtually all water prediction models are 112 

formulated to ingest deterministic precipitation estimates. This disconnect between probabilistic 113 

precipitation uncertainty and the need for deterministic input can be bridged by ensemble methods, 114 

in which multiple realizations of possible precipitation can be generated which, in their totality, 115 

reflect the range of uncertainty. These can be used to force an ensemble of water model simulations 116 

that then hopefully provide useful estimates of hydrologic modeling uncertainty. Ensemble 117 

methods are well-developed in the numerical weather prediction community, since members can 118 

be created by perturbing the initial conditions, boundary conditions, or parameters of a numerical 119 

atmospheric model (Cuo et al., 2011). Ensemble methods are much less developed in the SMP 120 

community, for reasons that are difficult to summarize and beyond the scope of this work. 121 

Nonetheless, a relatively limited set of studies have used ensemble approaches to assess 122 

propagation of SMP error through hydrological and land surface models (Falck et al., 2015; 123 

Gottschalck et al., 2005; Hossain & Anagnostou, 2005; Nijssen & Lettenmaier, 2004; 124 

Serpetzoglou et al., 2010; Shrestha et al., 2020). These studies relied on ground reference data both 125 

to characterize SMP uncertainty and to simulate the space-time correlation structure of SMP error. 126 

This work introduces the Space-Time Rainfall Error and Autocorrelation Model 127 

(STREAM), which combines the simulated nonstationary, anisotropic space-time autocorrelation 128 

structure of precipitation error with pixel-scale estimates of precipitation uncertainty (Figure 1). 129 

STREAM uses an ensemble-based approach, generating realizations of “reference-like” 130 

precipitation fields—that is, fields that individually represent plausible realizations of the true 131 

(unknown) precipitation based on satellite precipitation estimates, and together represent the range 132 

of possible true rainfall (Figure 1). While not demonstrated here, the output from STREAM can 133 

be ingested by hydrologic or land surface models without requiring any modification to these 134 

models’ structures. Uniquely, STREAM’s space-time autocorrelation component is calibration-135 

free and requires no ground-reference data. This capability, demonstrated below, rests on the 136 

hypothesis—which appears to be confirmed by our results—that the known space-time structure 137 

of SMP fields themselves provides a useful approximation of the unknown space-time structure of 138 

SMP error fields. This paper is organized as follows: Past error modeling work is summarized in 139 

Section 2. Section 3 describes the study region and data. The methodologies for STREAM and a 140 

previous error modeling approach, SREM2D, are covered in Section 4. Model results are shown 141 

and discussed in Sections 5 and 6, respectively, and the contributions of this work are summarized 142 

in Section 7. 143 
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 144 

2 Background—Satellite Precipitation Error Modeling 145 

Although the terms “error” and “uncertainty” are sometimes used interchangeably in the 146 

literature, in this paper we use error to refer to quantifiable differences between specific 147 

precipitation estimates and higher accuracy “ground truth” precipitation estimates, while using 148 

uncertainty to refer to the distribution of the possible true values relative to a precipitation estimate. 149 

For instance, the error for a given precipitation estimate is a deterministic value which can be 150 

calculated provided that high-quality ground truth data is available. In the absence of ground truth, 151 

this error is unknowable, and thus the best we can hope for is to know the uncertainty for that 152 

estimate—e.g. a range or distribution of plausible values which could be estimated through a 153 

variety of methods including those reviewed here. Regardless of our preferred terminology, the 154 

past literature uses the term “error model” to describe a method that provides an estimated 155 

distribution or range of possible true values based on an SMP observation. We keep with that 156 

terminological convention throughout this study. 157 

Error models for SMP data can be placed in two categories: 1) pixel-scale error models, 158 

which characterize the SMP uncertainty associated with a single SMP estimate for a single control 159 

volume (invariably a grid cell) and time-step but do not consider the space-time autocorrelation 160 

structures between times and control volumes; and 2) space-time error models, which attempt to 161 

model the autocorrelation of SMP error. Both types, and the latter one in particular, have relied on 162 

extensive ground reference data for calibration. Additionally, space-time models have thus far 163 

neglected the nonstationarity and anisotropy in SMP error fields. Both categories face the 164 

challenge of representing the diversity of possible SMP errors—namely false alarms, missed 165 

precipitation, and hit errors (when a SMP estimate correctly detects rainfall but incorrectly 166 

estimates the magnitude). Some error models have focused entirely on hit cases while neglecting 167 

false alarms and missed cases (Reichle et al., 2007; Sarachi et al., 2015), while others handle 168 

rainfall detection and magnitude separately, resulting in either disjointed or overly complex model 169 

frameworks (Maggioni et al., 2014). 170 

In pixel-scale error models, the uncertainty associated with a specific SMP estimate is 171 

described by a probability of precipitation and distribution of nonzero precipitation values which 172 

Figure 1. (left) Simple STREAM schematic and (right) study area highlighted in green in the 

central Continental United States (CONUS). 
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are conditional on the value of a particular SMP observation. It is worthy to note that some pixel-173 

scale error models consider only hit cases and neglect the probability of precipitation component. 174 

Pixel-scale error models in literature include the Censored Shifted Gamma Distribution (CSGD; 175 

Wright et al., 2017), Precipitation Uncertainties for Satellite Hydrology (PUSH; Maggioni et al., 176 

2014), and Probabilistic QPE using InfraRed Satellite Observations (PIRSO; Kirstetter et al., 177 

2018), among others (Gebremichael et al., 2011). Sarachi et al. (2015) utilized a generalized 178 

normal distribution to model SMP uncertainty across scales by interpolating pixel-scale model 179 

parameters across various space-time resolutions. This approach considered hit cases only and 180 

required calibration at several scales. Pixel scale error models are advantageous in that they are 181 

trained using co-located timeseries of SMP and ground reference data and are therefore well suited 182 

to calibration using available rainfall records from sparse rain gage networks. Pixel-scale error 183 

models can also be “regionalized” by pooling together available training data from across a region 184 

to calibrate a regional error model (Hartke et al., 2020; Khan & Maggioni, 2020; Li et al., 2021). 185 

However, pixel-scale error models have no depiction of space-time autocorrelation; i.e. no way to 186 

relate the uncertainty of an SMP estimate in one pixel to the uncertainty in nearby pixels in space 187 

and time. 188 

Space-time error models thus far have used calibration to characterize the climatological 189 

autocorrelation structure of precipitation error. The Two-Dimensional Satellite Rainfall Error 190 

Model (SREM2D) was developed by Hossain & Anagnostou (2006) in order to generate 191 

ensembles of SMP-like rainfall fields which preserve the error characteristics of SMP fields. 192 

Though SREM2D models the spatial correlation structure of SMP error fields as isotropic, these 193 

error fields often exhibit substantial anisotropy, reflecting the anisotropy inherent in real storm 194 

structures (Niemi et al., 2014; Zawadzki, 1973). Furthermore, SREM2D was not designed to 195 

represent differences in spatial autocorrelation of SMP error across a study area (i.e., spatial 196 

nonstationarity) and assumes that the average spatial correlation length calculated for a study 197 

region is representative of that region for all locations and time steps. Since the spatial correlation 198 

structure of SMP and SMP error can vary greatly at regional scales, this precludes SREM2D from 199 

application to large (i.e. subcontinental-to-global) scales. Because SREM2D relies on a 200 

climatological depiction of error autocorrelation, the model training and calibration process 201 

requires a gridded (or at least spatially extensive) ground-based precipitation dataset. Such datasets 202 

are lacking in many parts of the world (Kidd et al., 2017), further limiting is general applicability. 203 

Though applied to radar rainfall rather than SMP, Villarini et al. (2009) introduced an error-driven 204 

generator to stochastically perturb radar fields while accounting for the spatial correlation of 205 

multiplicative error. However, that error model considered hit cases only, neglected temporal 206 

correlation and anisotropy in error correlation structures, and used a computationally intensive 207 

method to generate Gaussian noise (Villarini et al., 2009). Space-time error models that rely on 208 

climatologically-calibrated parameters to simulate space-time correlation are not designed to 209 

simulate the unique correlation structure – i.e. varying degrees of anisotropy and correlation 210 

distances in space and time – of precipitation error that is associated with each new storm system. 211 

The STREAM framework introduced in this article utilizes a calibration-free approach to 212 

modeling the space-time autocorrelation structure of precipitation error and provides a way to 213 

leverage pixel-scale estimates of precipitation uncertainty in space and time. Although this work 214 

utilizes a subcontinental study area, STREAM’s approach of reproducing the local spatial 215 

autocorrelation structures of SMP fields enables continental- to global-scale application.  216 
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3 Study Region and Data 217 

3.1 Study Region 218 

The study area covers the central U.S. (Figure 1; 100° to 85° W, 35° to 45° N), a region 219 

known for high agricultural production (Prince et al., 2001) and also marked by flood events often 220 

caused by heavy, long-lasting precipitation that severely impact local communities (e.g. the 1993 221 

Mississippi River and 2008 Iowa flood events; Budikova et al., 2010; Najibi et al., 2016; Nakamura 222 

et al., 2013; Smith et al., 2013). Intense events provide a significant portion of the region’s annual 223 

precipitation total, and convective storm systems are frequent during the warm summer period. 224 

The topography of this region is fairly uniform (Andresen et al., 2012). 225 

3.2 Rainfall Data 226 

The NASA Integrated MultisatellitE Retrievals for Global Precipitation Measurement 227 

(IMERG) Version 06 product is available globally at a 30-minute, 0.1˚ resolution and consists of 228 

three latency options (Huffman et al., 2019): IMERG Early (4-hour latency; lacks some data 229 

sources and data processing elements of longer latencies), IMERG Late (12-hour latency), and 230 

IMERG Final product (approximately 2.5-month latency; includes a gage-based correction). 231 

IMERG precipitation estimates are calculated by merging data from passive microwave (PMW) 232 

sensors, intercalibrating PMW estimates with a dual-frequency precipitation radar aboard the 233 

Global Precipitation Measurement (GPM) Core Observatory satellite, and interpolating (or 234 

“morphing”) the resulting estimates in time using water vapor motion vectors from MERRA-2 and 235 

GEOS-5 (see Huffman et al., 2019; Tan et al., 2016 for more details). This study uses IMERG 236 

Early, aggregated to the hourly scale to match the radar-gage ground reference product; the 237 

approach could be readily applied to other IMERG latencies, as well as to other SMP products.  238 

The NEXRAD Stage IV radar-gage product, available over CONUS at an hourly, roughly 239 

1/24˚ resolution (Lin, 2011), is used as the ground reference in this study. Although NEXRAD’s 240 

Stage IV product contains errors stemming from issues such as beam blockage and range from the 241 

nearest radar, we assume that the errors in this product are infrequent and negligible relative to 242 

IMERG, consistent with previous SMP studies (e.g. Aghakouchak et al., 2011) and consistent with 243 

our own prior experience using the dataset in this region. We upscaled Stage IV to IMERG’s native 244 

0.1˚ resolution using bilinear interpolation. 245 

IMERG-Early (hereinafter IMERG) and Stage IV data from 2005-2007 were used for 246 

calibration of all models, while data from 2008-2013 for validation. To minimize issues related to 247 

frozen precipitation and maintain an accurate ground-reference during model calibration and 248 

validation, Stage IV and IMERG data were used only for March through October, excluding 249 

months with greater likelihood of frozen precipitation in the study area (November-February). This 250 

is admittedly a limitation of our study that should be addressed in the future. For both Stage IV 251 

and IMERG, the threshold for precipitation detection was set to 0.1 mm/hr, below which all hourly 252 

estimates were set to zero. This detection threshold is consistent with previous SMP studies 253 

(Germann & Zawadzki, 2002; Li et al., 2021). 254 

3.3 Wind Data 255 

As an approximation of the “steering winds” that govern the motion of storm systems, 850 256 

mb wind fields were retrieved from the global MERRA-2 reanalysis product (Gelaro et al., 2017) 257 

at a hourly 0.5˚ by 0.625˚ resolution. These were regridded to 0.1˚. These wind fields were used 258 
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together with IMERG fields to simulate the temporal evolution and autocorrelation structure of 259 

SMP error in STREAM (described in Section 4.2). Other sources of motion vectors could be used, 260 

including potentially those used in IMERG’s aforementioned “morphing” space-time interpolation 261 

scheme. Those motion vectors are not publically available, however, so were not considered here. 262 

This point is discussed further in Section 6.4. 263 

4 Methods 264 

4.1 Censored Shifted Gamma Distribution Error Model 265 

The Censored Shifted Gamma Distribution Error (CSGD) model framework was 266 

introduced by Scheuerer and Hamill (2015) to model uncertainty in numerical weather forecasts, 267 

and was adapted in Wright et al. (2017) to characterize pixel-scale SMP error across CONUS. The 268 

CSGD is an adaptation of the two-parameter gamma distribution (here written in terms of its mean 269 

and standard deviation, but which can be reparametrized in terms of shape and scale parameters) 270 

with an additional “shift” parameter δ that shifts the probability density function (PDF) leftward 271 

(Figure 2a). The density left of zero represents the probability of zero precipitation, while the 272 

density at any value greater than zero represents the likelihood of that amount of precipitation 273 

(Figure 2a, 2b). The shifted distribution is then left-censored at zero, replacing all negative values 274 

with zero. While previous precipitation error models either focused only on hit errors or required 275 

separate components to model rainfall occurrence and magnitude (see Section 2), the CSGD error 276 

model characterizes both the discrete and continuous components of satellite precipitation error 277 

using this single distribution. A regression model is trained based on contemporaneous co-located 278 

SMP and ground-truth observations to produce model parameters α1, α2, α3, α4, … and, at any time 279 

t, unique “conditional” CSGD parameters μ(t), σ(t), and δ(t) as a function of those parameters and 280 

the SMP estimate Rs(t): 281 

𝜇(𝑡) =
𝜇𝑐

𝛼1
log1p {expm1(𝛼1) [𝛼2 + 𝛼3

𝑅𝑠(𝑡)

�̅�
]}  Eq. 1 282 

𝜎(𝑡) =  𝛼4𝜎𝑐√
𝜇(𝑡)

𝜇𝑐
    Eq. 2 283 

𝛿(𝑡) =  𝛿𝑐    Eq. 3 284 

where �̅� is the mean of the SMP timeseries during the training period and (𝜇𝑐, 𝜎𝑐 , 𝛿𝑐) are the 285 

parameters of the climatological CSGD, a CSGD fit to the SMP time series. The regression model 286 

defined by Equations 1-3 allows the model to capture nonlinear behavior of SMP error across 287 

increasing precipitation rates. A simpler linear regression system can also be used in the CSGD 288 

error model framework by altering Eq. 1 (not shown; Scheuerer et al., 2015; Wright et al., 2017). 289 

The regression framework can also incorporate additional contemporaneous covariates C1(t), 290 

C2(t),.., Cn(t), such as temperature or precipitable water, that could help to further characterize 291 

SMP uncertainty. These covariates are incorporated into the regression framework using an 292 

adjusted version of Eq. 1: 293 

𝜇(𝑡) =  
𝜇𝑐

𝛼1
log1p {expm1(𝛼1) [𝛼2 + 𝛼3

𝑅𝑠(𝑡)

�̅�
+ 𝛼5

𝐶1(𝑡)

𝐶1̅̅ ̅
+ 𝛼6

𝐶2(𝑡)

𝐶2̅̅ ̅
+ ⋯ ]}  Eq. 4 294 

For more information on the CSGD error model framework, see Scheuerer and Hamill 295 

(2015) and Wright et al. (2017). 296 
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In this study, we use wetted area ratio (WAR) 297 

for the first time as a covariate in the CSGD error 298 

model. WAR for any IMERG estimate Rs(t) at a given 299 

pixel is the proportion of pixels within a distance of r 300 

pixels that record nonzero rainfall at time t. WAR 301 

ranges from a value of 0 when no pixels within radius 302 

r have a nonzero precipitation rate, to 1, when all 303 

pixels within radius r have precipitation. Because 304 

WAR captures the spatial “context” of an IMERG 305 

observation, it is a useful covariate for predicting 306 

detection/non-detection performance within the 307 

CSGD framework. Figure 2c demonstrates that the 308 

probability of an IMERG estimate of nonzero rainfall 309 

being a correct detection is much greater if the 310 

associated WAR is high (i.e. close to 1.0) than if it is 311 

low. Likewise, the probability of IMERG correctly 312 

not detecting rainfall is highest when WAR is close 313 

to 0 (Figure 2c). A radius of r = 10 pixels was used 314 

to calculate WAR in this work; higher and lower 315 

values of r did not significantly alter CSGD error 316 

model performance (results not shown). 317 

In this study, CSGD error model parameters 318 

are trained using timeseries “pooled” together from 319 

25 co-located IMERG and Stage IV pixels (i.e. a 320 

0.5˚×0.5˚ area). CSGD error model training for each 321 

0.5˚×0.5˚ window in the study area is performed 322 

using the regression system defined in Equations 1-3 323 

with the WAR covariate. The parameter estimation is 324 

completed via mean continuous ranked probability 325 

score (CRPS) minimization methods described in 326 

Scheuerer et al. (2015). Using timeseries from 327 

multiple pixels reduces sampling error and generates 328 

a more robust error model than model training using 329 

timeseries from a single IMERG pixel (not shown). 330 

This approach is suitable for the relatively 331 

homogenous terrain in the study area but may not be 332 

appropriate in more complex terrain where IMERG 333 

error characteristics are more closely tied to terrain 334 

heterogeneity. 335 

Figure 2. (a) Probability density 

function (PDF) and (b) cumulative 

density function (CDF) of two 

hypothetical censored shifted gamma 

distributions (CSGDs). (c) Observed 

probability of IMERG correct 

detection of nonzero rainfall (green) 

and probability of IMERG correct 

non-detection of rainfall (purple) as a 

function of the wetted area ratio 

(WAR) covariate. (c) uses data from 

entire study area for the period 2005-

2007. 
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4.2 The Space-Time Rainfall Error and Autocorrelation Model (STREAM) 336 

4.2.1 Nonstationary anisotropic stochastic noise from pySTEPS 337 

Nerini et al. (2017) introduced a non-stationary stochastic generator for radar precipitation 338 

fields using the short-space Fourier transform (SSFT). The Fourier power spectrum of a 339 

precipitation field (e.g. from weather radar or SMP) is convolved with Gaussian white noise to 340 

generate correlated Gaussian noise fields and ultimately produce an ensemble of precipitation 341 

forecasts which maintain the anisotropy and spatial correlation structure of observed radar rainfall 342 

fields. This methodology reproduces both the global and local power spectra of radar fields by 343 

using a moving window scheme. This moving window can thus capture spatial nonstationarity in 344 

field properties, since at any particular location the correlated noise is based on properties within 345 

the window. This SSFT-based non-stationary noise generator has since been incorporated into the 346 

pySTEPS Python library for short-range probabilistic precipitation forecasting, as a tool for 347 

generating ensemble nowcasts (Pulkkinen et al., 2019). While Nerini et al. (2019) used this tool to 348 

generate stochastic precipitation fields that replicate the local spatial correlation structure of 349 

observed radar rainfall fields, the authors emphasized that it could be applied to other applications 350 

involving complex non-stationary fields. Notably, this approach requires no calibration against 351 

ground truth measurements or parameterization of long-term precipitation behavior. 352 

4.2.2 Correlated noise ensemble generation 353 

In the first step of STREAM, the pysteps noise generator described in Section 4.2.1 is 354 

applied to stochastically generate Gaussian noise that replicates the local spatial correlation 355 

structure of an IMERG field, including anisotropy (Figure 3). After the initial noise field has been 356 

created for each ensemble member, each noise field is advected at an hourly time step via steering 357 

winds (described in Section 3.3) using a semi-Lagrangian scheme. In such a scheme, a time 358 

derivative (in this application, 850 mb wind vectors) is used to calculate where the value arriving 359 

at a grid cell, termed the arrival point, originated from in the previous time step (Lauritzen et al., 360 

2011; Staniforth & Cote, 1991). This semi-Lagrangian scheme is advantageous over a strictly 361 

Lagrangian one because it does not allow individual parcels (in our case, noise values) to all advect 362 

into a single region and leave some regions without parcels. Our semi-Lagrangian scheme also 363 

incorporates a new instance of correlated noise, or a “shock term” (Nerini et al., 2017) which is 364 

the second term on the righthand side of Equation 5: 365 

𝑛𝑡,𝑖,𝑗 =  𝛼𝑛𝑡−1,𝑖−𝑣𝑡,j−𝑢𝑡
+ √1 − 𝛼2�̃�𝑡,𝑖,𝑗    Eq. 5, 366 

where 𝑛𝑡,𝑖,𝑗 is a noise value to be calculated at time t and position (i, j) in the field and 𝑛𝑡−1,𝑖−𝑣𝑡,j−𝑢𝑡
 367 

is the noise value that has been advected by north-south and east-west wind vectors 𝑣𝑡 and 𝑢𝑡 from 368 

position (𝑖 − 𝑣𝑡, j − 𝑢𝑡) at time step 𝑡 − 1 to position (𝑖, 𝑗) at time step t. 𝑣𝑡 and 𝑢𝑡 are obtained by 369 

multiplying MERRA2 wind vectors, originally in units of m/s, by 3600 seconds and dividing by 370 

11,000 m, the approximate width of an IMERG pixel, to obtain units of 0.1˚ pixel hr-1. �̃�𝑡 is a new 371 

correlated Gaussian noise field based on the structure of IMERG at time t. The shock term is used 372 

to perturb the noise field and to incorporate the current IMERG spatial correlation structure, �̃�𝑡, 373 

into the noise field at each time step. This allows the noise field to evolve over time and to reflect 374 

the nonstationary spatial correlation structure of IMERG and IMERG error. We assume that the 375 

error fields are first order autoregressive in time, calculating 𝛼 as the Pearson correlation 376 

coefficient between IMERG fields at time 𝑡 and 𝑡 − 1 (Figure 3). Analysis of the temporal 377 



manuscript submitted to Water Resources Research 

 

 

autocorrelation function of IMERG error fields supports this autoregressive assumption (results 378 

not shown). After the noise ensemble has been generated for all time steps in the study period, the 379 

correlated Gaussian noise ensemble N(0,1) is transformed to uniform noise U(0,1) using the error 380 

function: 381 

𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 0.5 [1 + erf (
𝑛𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛

√2
)]    Eq. 6. 382 

where 𝑛𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is the noise field described in Equation 5. 383 

Note that correlated noise fields 𝑟𝑛𝑡 and temporal coefficient 𝛼 are only calculated based on 384 

IMERG at time t when the IMERG field is “rainy,” defined as when at least 5% of the study area 385 

registers rainfall (Figure 3). During time steps with non-rainy fields, which are frequent at the 386 

hourly scale, the spatial correlation structure from the most recent rainy field is used to generate 387 

𝑟𝑛𝑡. In either case, no parameters depend on a long-term climatology. 388 

4.2.3 Precipitation ensemble generation 389 

In the final step of STREAM, the correlated uniformly-distributed noise ensemble is 390 

combined with the CSGD error model. The CSGD model and training scheme methodology were 391 

briefly described in Section 4.1. The standard uniform noise values from the semi-Lagrangian 392 

scheme (Section 4.2.2) are inputted to the inverse CDF of the conditional CSGD generated at each 393 

time step and pixel. Thus, each noise value corresponds to a value of possible true precipitation 394 

Figure 3. Schematic of STREAM methodology 
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conditional on a given IMERG estimate and associated WAR (Section 4.1), correlated with 395 

surrounding pixels. The uniform noise ensemble is censored at 0.995 to guard against 396 

unrealistically extreme precipitation values generated when very high noise values are used to 397 

select a precipitation value from conditional CSGDs with long tails. The output of STREAM 398 

consists of an ensemble of three-dimensional (north-south, east-west, time) precipitation fields, 399 

with each ensemble member representing one realization of the possible true precipitation across 400 

the study region for all time steps in the study period. 401 

We also generated “uncorrelated” precipitation ensembles by using white (uncorrelated) 402 

noise as input to the inverse CDF of conditional CSGDs, thus neglecting spatial and temporal 403 

correlation of errors. The precipitation ensemble generated in this way is henceforth referred to as 404 

the uncorrelated ensemble, though they are not strictly uncorrelated since the resulting 405 

precipitation fields will inevitably exhibit some autocorrelation stemming from the IMERG 406 

precipitation rates (albeit much weaker than that of the ground-reference, IMERG, or 407 

autocorrelated noise fields).  408 

4.3 SREM2D 409 

The SREM2D error model was designed to generate ensembles of “satellite-like” fields 410 

that replicate the error properties of an SMP dataset relative to a ground-reference (Hossain et al., 411 

2006). SREM2D separately accounts for the spatial correlation of detection errors and precipitation 412 

rate errors, and uses the Turning Bands algorithm (Mantoglou & Wilson, 1982) to generate 2-D 413 

Gaussian noise with correlation lengths matching that of the conditional error of SMP fields. In 414 

this work, SREM2D is run “in reverse” to generate reference-like rainfall fields that are closer to 415 

the ground-reference by replicating the error properties of Stage IV relative to IMERG Early. 416 

SREM2D has been used in this fashion previously in Falck et al. (2015) and Maggioni et al. (2013) 417 

to improve model-simulated streamflow estimates compared against hydrographs from SMPs. 418 

SREM2D parameters are trained using Stage IV and IMERG data for the 2005-2007 training 419 

period detailed in Section 3.2 and are listed in Table S1. Consistent with earlier SREM2D studies, 420 

additional trial-and-error calibration is needed (specifically, adjustment of the mean parameter) to 421 

minimize bias in SREM2D-perturbed fields. Note that these error parameters are calculated for the 422 

reference, Stage IV, relative to IMERG, highlighting SREM2D’s need for ground reference data 423 

to characterize not only pixel-scale errors (akin to the CSGD approach) but also the spatiotemporal 424 

autocorrelation process (unlike STREAM, which doesn’t require ground reference for this 425 

purpose). 426 

4.4 Ensemble performance metrics  427 

STREAM, SREM2D, and the uncorrelated ensembles were run at an hourly time step with 428 

an ensemble size of 50 for the evaluation period 2008-2013, excluding winter months (November–429 

February). The spatial autocorrelation function (ACF), temporal ACF, probability of detection 430 

(POD), probability of false alarm (POFA), root mean square error (RMSE), and Containing Ratio 431 

were used to evaluate the performance of IMERG, the STREAM ensemble, the uncorrelated 432 

ensemble, and the SREM2D ensemble. The Containing Ratio (CR) is the proportion of observed 433 

data bracketed by the range of an ensemble, and has been used within the forecast verification  and 434 

runoff modeling community to assess ensemble accuracy (Franz & Hogue, 2011; Xiong & 435 

O’Connor, 2008). 436 

𝐶𝑅 =  
1

𝑛
∑ 𝐼[𝑅𝑜𝑏𝑠(𝑡)]𝑛

𝑡=1     Eq. 7. 437 
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where 𝐼[∙] is an indicator function that equals 1 when the observed rainfall 𝑅𝑜𝑏𝑠(𝑡) falls between 438 

the lowest and highest values of the ensemble at time t and that equals 0 when the observation falls 439 

outside ensemble bounds. For deterministic evaluation metrics, including RMSE, POD, and 440 

POFA, the mean of the ensemble was evaluated. 441 

Spatial and temporal linear autocorrelation functions were calculated for each ensemble 442 

member to assess the ability of STREAM to generate reference-like precipitation fields in space 443 

and time. We note that assessing the space-time correlation structure of precipitation ensemble 444 

fields is not equivalent to assessing the space-time correlation structure of the SMP error 445 

introduced to create these fields; however, the correlation structures of SMP error fields can vary 446 

depending on the specific mathematical definition of SMP error. Since precipitation fields that 447 

resemble a ground-reference are the ultimate objective of an ensemble-based SMP error model, 448 

we chose to evaluate the ability of STREAM ensemble members to replicate the space-time 449 

correlation structures of Stage IV. 450 

The above metrics were calculated for all precipitation datasets and ensembles at four 451 

space-time resolutions: 1-hour 0.1º, 1-hour 0.25º, 24-hour 0.1º, and 24-hour, 0.25º. Precipitation 452 

fields were regridded to coarser spatial resolutions using bilinear interpolation. 453 

5 Results 454 

Figure 4 shows IMERG, Stage IV, and outputs from the uncorrelated ensemble, STREAM 455 

autocorrelated noise and ensemble, and SREM2D ensemble for a six-hour period during a storm 456 

event in 2008 that led to heavy flooding in Cedar Rapids and Iowa City. Ensemble members shown 457 

in Figure 4 were chosen at random. While the uncorrelated ensemble fields do not resemble 458 

precipitation structures observed by Stage IV, STREAM and SREM2D fields visually resemble 459 

realistic precipitation structures from Stage IV, and STREAM also reproduces the observed 460 

anisotropy. The spatial correlation features generated in the STREAM noise fields clearly translate 461 

to similar spatial correlation features in STREAM precipitation fields. SREM2D fields exhibit less 462 

fine-scale anisotropic detail than STREAM, presumably due to its isotropic formulation.  463 

Figure 5 provides additional event-scale analysis of STREAM, showing cumulative hourly 464 

precipitation and daily precipitation rates for a heavy rainfall event in June 2013 in southcentral 465 

Wisconsin. Area-averaged precipitation was calculated for the inset area in Figure 5a. The spatial 466 

autocorrelation function of precipitation within the inset area was also calculated to assess 467 

STREAM ensemble performance during this event, confirming STREAM ensemble members’ 468 

ability to replicate the spatial structure of Stage IV rainfall (Figure 5c). The STREAM ensemble 469 
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brackets the observed cumulative precipitation over the course of the event, reducing IMERG’s 470 

stark overestimation (Figure 5b), and generally brackets observed precipitation rates at the daily 471 

scale, with the exception of two days (Figure 5d). Note that the uncertainty described by the range 472 

of the STREAM ensemble is small on days with low IMERG estimates, but widens when IMERG 473 

Figure 4. Example output of STREAM and other error modeling approaches. From left column to 

right column: IMERG, Stage IV, uncorrelated ensemble member, correlated noise ensemble 

member generated by STREAM, STREAM precipitation ensemble member, and SREM2D 

ensemble member during heavy rainfall event in study area on June 12, 2008. Ensemble members 

were chosen at random. 
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observes nonzero rainfall, reflecting the greater range of random error in nonzero IMERG 474 

estimates (Figure 5d). 475 

Figure 6 presents a seasonal-scale analysis of STREAM results, showing cumulative area-476 

averaged spring precipitation (March–May) over eastern Iowa for all years in the validation period. 477 

The ensemble spread brackets the cumulative precipitation at the end of May in all years, 478 

regardless of whether IMERG over- or underestimates spring cumulative precipitation, except 479 

2008, a year in which IMERG significantly underestimated cumulative precipitation. Precipitation 480 

in 2008 was well above the climatological average for all months shown in Figure 6, due in part 481 

to unprecedented rainfall occurring in the end of May and early June —conditions that likely pose 482 

a particular challenge for error modeling. 483 

Figure 7 presents RMSE, POD, and POFA calculated over the entire study area and 484 

validation period for IMERG and all ensemble products at four space-time resolutions. The RMSE 485 

of IMERG and all ensemble means increases sharply for extreme hourly rainfall rates (> 8 mm/hr). 486 

The STREAM ensemble mean and uncorrelated ensemble mean exhibit reduced RMSE at all 487 

scales and across all rain rates, with the exception of heavy rain rates at an hourly scale. The 488 

SREM2D ensemble mean has a very similar RMSE to IMERG at all scales. The higher RMSE of 489 

the SREM2D ensemble mean relative to the STREAM ensemble aligns with results from Maggioni 490 

et al. (2011), who found that the relative RMSE of SREM2D-perturbed rainfall was slightly greater 491 

than that of the original satellite product. 492 

The STREAM ensemble mean and uncorrelated ensemble mean exhibit higher POD across 493 

all space-time scales. Notably, the STREAM ensemble mean and uncorrelated ensemble mean are 494 

Figure 5. STREAM ensemble performance during 2013 flooding event in southcentral Wisconsin. 

(a) Area average precipitation is calculated over inset area in southcentral Wisconsin, denoted by 

yellow box (b) Hourly cumulative precipitation over course of event (c) Spatial autocorrelation 

function (ACF) calculated for precipitation in inset area over course of event (d) Daily precipitation 

rate over course of event. 
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able to simultaneously increase the POD 495 

while reducing the POFA at the hourly 496 

scale for precipitation rates greater than 1 497 

mm/hr. The POFA of the STREAM and 498 

uncorrelated ensemble means are slightly 499 

higher than IMERG at the daily scale. 500 

The spatial autocorrelation 501 

functions in the x- and y-directions (east-502 

west and north-south, respectively) and 503 

the temporal autocorrelation function of 504 

IMERG, Stage IV, and ensemble fields are 505 

shown in Figure 8. Only ten members of 506 

each ensemble from STREAM, 507 

SREM2D, and the uncorrelated ensemble 508 

are displayed for clarity; since the ACFs 509 

are calculated over a long validation 510 

period, the ACFs of individual members 511 

within each error modeling method are 512 

nearly identical. 513 

The correlation structure of 514 

STREAM ensemble fields nearly matches 515 

that of Stage IV at every scale (Figure 8), 516 

although the spatial ACF of ensemble 517 

fields—both in the x- and y-directions—is 518 

slightly lower than the spatial ACF of 519 

Stage IV. The uncorrelated ensemble 520 

members exhibit much lower spatial and 521 

temporal autocorrelation than Stage IV at 522 

the hourly scale, with the greatest 523 

difference at the finest spatial resolution. 524 

Once ensemble fields are aggregated to a coarser resolution (24-hr, 0.25˚), all error model 525 

ensembles roughly replicate the average spatial and temporal autocorrelation functions of Stage 526 

IV. SREM2D ensemble members exhibit lower temporal autocorrelation than Stage IV at the 527 

hourly scale. 528 

The Containing Ratios (CR) of the STREAM ensemble, SREM2D ensemble, and 529 

uncorrelated ensemble as a function of precipitation rate across four resolutions are presented in 530 

Figure 9. The STREAM ensemble consistently maintains a high CR (generally >0.8) across scales, 531 

though it dips at extreme rain rates. The STREAM ensemble brackets approximately 50% (70%) 532 

of the instances when ground-reference rainfall is greater than 8 mm/hr (35 mm/day) at an hourly 533 

(daily) resolution. SREM2D has a high containing ratio for Stage IV observations of zero 534 

precipitation but experiences a sharp decrease for nonzero values. The SREM2D ensemble fails to 535 

capture many of the nonzero ground-reference observations that the STREAM ensemble and 536 

uncorrelated ensemble successfully bracket. The performance of the uncorrelated ensemble 537 

degrades with increasing scale; at a daily, 0.25˚ scale, the uncorrelated ensemble fails to capture 538 

over 60% of the instances when the ground-reference observes rain rates greater than 30 mm/day. 539 

Figure 6. Cumulative area average rainfall over 

eastern Iowa subregion (green box in upper left 

inset map) estimated by IMERG (blue), Stage IV 

(black) and the STREAM ensemble (red). 
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 540 

Figure 7. RMSE (top row), probability of detection (POD; middle row), and probability of false 541 

alarm (bottom row) for IMERG (blue), mean of STREAM ensemble (red), mean of uncorrelated 542 

ensemble (dashed pink),  and mean of SREM2D ensemble (light blue)  across four space-time 543 

resolutions. Metrics are calculated using study area-wide data for 2008-2013. STREAM ensemble 544 

and uncorrelated ensemble means are essentially identical (and are therefore difficult to distinguish 545 

from one another in the above plots). 546 

 547 

  548 
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Figure 9. Containing ratio (CR) of simulated ensembles at four resolutions. 549 

Figure 8. (Top) Spatial autocorrelation function (ACF) in the y-direction, (Middle) Spatial ACF 

in the x-direction, and (Bottom) Temporal ACF calculated for IMERG, Stage IV and 10 simulated 

rainfall ensemble members each from STREAM, SREM2D, and the uncorrelated ensemble at four 

resolutions. 
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6 Discussion 550 

6.1 Performance of STREAM across multiple spatio-temporal scales 551 

While the full STREAM ensemble at any given point in time and space represents the range 552 

of random error associated with IMERG, the ensemble mean represents the IMERG estimate 553 

adjusted only for systematic bias. Therefore, the mean of the ensemble will outperform individual 554 

ensemble members in terms of RMSE by strictly addressing systematic bias, but cannot capture 555 

the range of IMERG uncertainty on its own. The mean of the STREAM ensemble consistently 556 

reduces RMSE relative to IMERG across scales and rain rates except for hourly intensities greater 557 

than 10 mm/hr (Figure 7). This is likely due to the difficulty of predicting missed cases associated 558 

with heavy ground-reference rainfall. The STREAM ensemble mean has a higher or similar 559 

probability of detection relative to IMERG across rain rates and scales, with the greatest 560 

improvements achieved at lower precipitation rates (Figure 7). A portion of this improvement is 561 

due to the incorporation of the wetted area ratio (WAR) in the pixel-scale CSGD error model, 562 

which helps predict IMERG missed cases based on the presence or absence of nearby IMERG 563 

rainfall (Supplemental Figure S1). The probability of false alarm is slightly higher for the 564 

STREAM ensemble mean relative to IMERG at rates below 1 mm/hr at the hourly scale and below 565 

10 mm/day at the daily scale. At the hourly scale (at both 0.1° and 0.25° resolutions), the 566 

probability of false alarm is significantly lower for the STREAM ensemble mean than for IMERG 567 

(Figure 7). At the hourly scale, the STREAM ensemble mean shows both a higher POD and lower 568 

POFA due to the use of the WAR covariate in the pixel-scale CSGD error model (Supplemental 569 

Figure S1). By removing the censoring of uniform noise greater than 0.995, the POD of STREAM 570 

can be slightly increased for low rain rates at the expense of a slight increase in POFA 571 

(Supplemental Figure 2). However, removal of this censoring component in STREAM can lead to 572 

‘INF’ values in the precipitation ensemble when extremely high noise values are ingested by the 573 

inverse CDF of conditional distributions. The STREAM ensemble’s ability to bracket ground-574 

reference observations at event and seasonal scales (Figures 5 and 6) suggests that STREAM 575 

would be well-suited to creating inputs to hydrologic, land surface, or drought monitoring 576 

models—a direction that will be pursued in follow-on work. 577 

We reran ensemble generation and analysis using Stage IV in place of IMERG in the 578 

correlated noise generation scheme (Figure 3) to understand if applying the ground-reference 579 

spatial correlation structure significantly improves ensemble performance; it does not (results not 580 

shown). This indicates that IMERG, although imperfect, provides valuable information about error 581 

correlation structures, on par with the information available through a ground-reference product. 582 

STREAM was run for a 50-member ensemble in this work. Although performance metrics 583 

at our data’s native pixel resolution (1-hr, 0.1°) are not impacted by an increase in ensemble size 584 

past 25, performance metrics at coarser resolutions (24-hr, 0.25°) improve with increasing 585 

ensemble size until a size of roughly 50 (results not shown). This reflects the increasing number 586 

of permutations of native resolution errors and error correlation structures that are combined during 587 

rescaling to coarser resolutions, leading to a greater range of possible precipitation estimates at 588 

coarse resolutions; the implications of this for water resources modeling are unclear and will be 589 

explored in future work. It is likely that at resolutions coarser than 24-hr and 0.25°, a larger 590 

STREAM ensemble could be beneficial. 591 

Although an ensemble-based approach is currently the most feasible way to incorporate 592 

precipitation uncertainty into applications that ingest deterministic data, a large number of 593 
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ensemble members may be required to accurately represent precipitation uncertainty. This may 594 

require prohibitive computing resources for the storage of precipitation outputs and the 595 

computational demands of hydrologic or land surface models. Although this study does not address 596 

this challenge, we note that very little work has been done in attempting to adapt the structure of 597 

environmental models to probabilistic precipitation inputs. As summarized in Nogueira (2020), 598 

large-scale precipitation estimates involve substantial uncertainties; thus, the adaption of models 599 

to ingest probabilistic precipitation data is an appropriate way to account for precipitation 600 

uncertainty (e.g. Hartke et al., 2020). 601 

6.2 Comparison with SREM2D model 602 

The STREAM ensemble meets or exceeds the performance of the SREM2D ensemble at 603 

all resolutions and rain rates except for the most extreme hourly rain rates (>10 mm/hr) when 604 

SREM2D exhibits a slightly higher containing ratio (Figure 9). SREM2D shows a particularly low 605 

containing ratio for light rainfall rates, meaning that SREM2D-perturbed IMERG fields often fail 606 

to bracket observed light rainfall rates. Visually, SREM2D fields exhibit more isotropic structure 607 

than IMERG, Stage IV, or STREAM ensemble fields (Figure 4). The noticeable drop in CR that 608 

occurs when observed rain rate shifts from zero to nonzero (Figure 9) is likely due to the separate 609 

handling of rainfall occurrence and hit errors in SREM2D. Even in the presence of plentiful ground 610 

data, a climatologically-trained approach to space-time correlation modeling, such as that used in 611 

SREM2D, is potentially problematic: each storm system is unique, so properties will deviate from 612 

a climatological training. The STREAM approach, in contrast, infers properties directly from each 613 

storm and thus foregoes the need for calibration or ground-reference data. STREAM’s ability to 614 

outperform SREM2D suggests that the use of observed SMP space-time correlation is an attractive 615 

and practical alternative to the calibration-based simulation of error correlation.  616 

6.3 Comparison with uncorrelated error modeling approach 617 

The briefest visual analysis of the uncorrelated ensemble fields reveals that they do not 618 

resemble real precipitation, instead exhibiting scattered precipitation and little structure (Figure 4). 619 

The mean of the uncorrelated ensemble performs identically to the STREAM ensemble mean 620 

(Figure 7) because both ensemble means reflect a bias-corrected version of IMERG, but the range 621 

of the STREAM ensemble at coarser resolutions is much greater (compare Supplemental Figure 622 

S3 to Figure 5). At coarser space-time scales, the STREAM ensemble incorporates error 623 

correlation structures which allow ensemble members to simulate regional over- and 624 

underestimation by IMERG, ensuring greater variability among ensemble members. Meanwhile, 625 

the uncorrelated ensemble aggregates adjacent pixels with randomly simulated under and over-626 

estimation, averaging out random errors and preventing any simulation of regional over- or 627 

underestimation. The uncorrelated ensemble’s ability to bracket observed precipitation rates in fact 628 

worsens as the ensemble is aggregated to coarser resolutions (Figure 9). The improved 629 

performance of STREAM relative to the uncorrelated ensemble emphasizes the central importance 630 

of simulating the space-time correlation structure of precipitation error. 631 

6.4 STREAM Future Adaptions 632 

Although the demonstration of STREAM in this work uses the CSGD error model, other 633 

pixel-scale error models, such as PUSH (Maggioni et al., 2014) or PIRSO (Kirstetter et al., 2018) 634 

could likely be used within STREAM to represent IMERG uncertainty across arbitrary space-time 635 
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scales. The CSGD error model is uniquely useful within STREAM, however, due to its ability to 636 

incorporate an arbitrary number of covariates to constrain pixel-scale uncertainty estimates. 637 

The 850 mb steering winds from MERRA2 that are used here have a latency of several 638 

weeks. These data were chosen for illustrative purposes only; steering wind data could be obtained 639 

from lower-latency datasets such as from data-assimilating numerical weather forecasts or from 640 

the motion vectors used in the IMERG morphing scheme (Tan et al., 2019). This latter option 641 

would increase the consistency between how errors propagate over space and time within IMERG 642 

and how the correlated noise is propagated in STREAM’s semi-Lagrangian advection scheme. 643 

This option was not pursued here since the IMERG motion vectors are not publically available; 644 

this may be pursued in future work. 645 

7 Conclusions 646 

The potential of satellite multi-sensor precipitation (SMP) products—and other large-scale 647 

precipitation sources with similar error/uncertainty properties, such as satellite-assimilating 648 

numerical weather models (NWM) and “blended” datasets that combine NWM and SMP data—649 

in water resources modeling is limited by their uncertainties, which can mischaracterize both 650 

precipitation occurrence and intensity. Uncertainty during extreme precipitation events is 651 

particularly problematic for applications which assess hazards such as flooding or landsliding (e.g. 652 

Hartke et al., 2020; Jia et al., 2020; Prakash et al., 2016). Precipitation uncertainty and error vary 653 

according to spatial and temporal resolution, with random errors tending to “cancel out” when 654 

aggregated in space and time. SMP errors are autocorrelated in space and time, however, leading 655 

to regional (i.e. watershed scale) over- or underestimation by satellite-based products. This 656 

problem can be remedied using ensemble generation techniques that produce multiple plausible 657 

realizations of the unknown true precipitation field conditioned on the SMP observations. To 658 

incorporate precipitation uncertainty into applications which consider accumulated precipitation, 659 

such as flood prediction or drought monitoring, ensemble members must replicate the space-time 660 

correlation structure of precipitation error. This has been called a grand challenge within the 661 

precipitation community (Huffman et al., 2019), while the usability of other large-scale 662 

precipitation datasets would benefit from breakthroughs.  663 

The Space-Time Rainfall Error and Autocorrelation Model (STREAM) combines space-664 

time correlation structures with a pixel scale precipitation error model to generate precipitation 665 

ensembles that can “bracket” the magnitude and replicate the correlation structure of higher-666 

accuracy “ground truth” rainfall fields. SMP-based STREAM ensembles are generated at high 667 

resolution (1-hour, 0.1˚) and are shown to outperform the satellite product IMERG at several 668 

spatiotemporal scales. STREAM requires no ground-reference data to run and relies minimally on 669 

ground-reference data during calibration. Specifically, the approach taken to model spacetime 670 

correlation does not require any ground data and does not even require a “training period,” since 671 

all necessary properties are inferred from IMERG and wind fields. STREAM ensembles generated 672 

at a high resolution can be aggregated to arbitrary space-time scales for use in hydrologic or land 673 

surface models while preserving the characteristics of real precipitation at these scales. The 674 

ensemble output of STREAM can be ingested in water modeling applications with no modification 675 

to those models’ structures. This enables water resource predictions that reflect input precipitation 676 

uncertainty, though the computational demands of ensemble simulations may become 677 

burdensome. 678 
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Pixel-scale uncertainty (i.e. the probabilistic uncertainty surrounding a satellite-based 679 

precipitation estimate at a single pixel and time step) is the most feasible way to characterize SMP 680 

uncertainty around the world. In data-limited regions, pixel-scale precipitation error models can 681 

leverage available ground-reference data (i.e. sparse rain gage records), and pixel-scale uncertainty 682 

estimates can also be obtained via other approaches (i.e. Kirstetter et al., 2018a; Li et al., 2021). 683 

Taken alone, however, pixel scale uncertainty is of limited value in water resources applications 684 

because it offers no help in connecting or extending uncertainty estimates to nearby locations in 685 

space and time. STREAM allows users to combine pixel-scale precipitation uncertainty in space 686 

and time while accounting for nonstationary SMP error correlation structures. While not explored 687 

here, it appears that any pixel-scale uncertainty model—and not just the CSGD approach used 688 

here—can fit into the STREAM framework.  689 

To be applicable to continental-to-global scale applications, a space-time SMP error model 690 

must rely minimally or not at all on ground-reference data. STREAM is shown to outperform a 691 

previous rainfall error model (SREM2D), which utilized extensive gridded ground-reference data 692 

for training SMP error and correlation properties. This work demonstrates that the anisotropic, 693 

nonstationary space-time correlation structure of SMP errors can be modeled using only SMP 694 

fields and atmospheric motion vectors. Meanwhile, ongoing work has demonstrated that the GPM 695 

Dual Precipitation Radar (DPR) instrument, which is quite accurate relative to other space-based 696 

microwave and infrared sensors, can be used to train pixel-scale error models (Khan et al., 2018; 697 

Li et al., 2021). Combining that approach with STREAM would completely eliminate the need for 698 

ground reference data, providing tools that could be used anywhere around the globe—though not 699 

without some shortcomings (Z. Li et al., 2021). In addition, the nonstationary and computationally 700 

efficient nature of the STREAM ensemble generation means that it could be applied at a global 701 

scale. Thus, while challenges remain, we believe that this work constitutes a meaningful step 702 

toward solving the grand challenge of characterizing precipitation error across arbitrary space-time 703 

scales. 704 
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