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Abstract

Sorghum is an important cereal crop grown across the globe for its grain and biomass value. It can also efficiently use resources
such as nitrogen, and multiple varieties that are nitrogen-use and light-capture efficient are constantly being developed. This
study focuses on using the spectral signature of sorghum varieties to predict flowering days, which could be used as a proxy
for plants’ growth/productivity and development trends, thus helping breeders make quick decisions about what varieties to
move to the next stage. Multiple sorghum varieties from the sorghum association panel were planted in a replicate-design
field experiment with the variable supply of nitrogen. The flowering days were monitored and recorded. The hyperspectral
reflectance data were collected and used to build a sorghum flowering days predictive model. Although regression models such
as partial least square have been used to predict plants’ phenotypes, the non-parametric ensemble machine learning model

turned out to perform better on flowering days with an accurate model up to 5 days.
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ABSTRACT

Sorghum is an important cereal crop grown across the globe for its grain and biomass value. It can also
efficiently use resources such as nitrogen, and multiple varieties that are nitrogen-use and light-capture efficient
are constantly being developed. This study focuses on using the spectral signature of sorghum varieties to
predict flowering days, which could be used as a proxy for plants’ growth/productivity and development trends,
thus helping breeders make quick decisions about what varieties to move to the next stage. Multiple sorghum
varieties from the sorghum association panel were planted in a replicate-design field experiment with the variable
supply of nitrogen. The flowering days were monitored and recorded. The hyperspectral reflectance data were
collected and used to build a sorghum flowering days predictive model. Although regression models such as
partial least square have been used to predict plants’ phenotypes, the non-parametric ensemble machine learning
model turned out to perform better on flowering days with an accurate model up to 5 days.
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1. INTRODUCTION

Sorghum (Sorghum bicolor is the six most widely cultivated crop, grown in approximately 40M hectares (approx-
imately 100M acres) around the globe. In Africa and Asia, sorghum is mainly used direct human consumption.!
In the United States, sorghum is employed for for biofuel production and animal feed.? On most parts of the
world, sorghum has been widely adopted due to its nitrogen use efficiency and productivity under low nitro-
gen conditions.? Sorghum also has striking ability to maintain high levels of photosynthesis, transpiration and
chlorophyll in the most extreme drought conditions, which has been one of the primary reason for its adoption
in the United States. However, to maximize the yield and minimize the reliance on nitrogen fertilizers, more
nitrogen-use efficient varieties will still be needed to curb the detrimental effects of nitrogen to the environment
while producing enough to feed the growing global population.® Flowering time, amount of time between plant-
ing and anthesis varies significantly among sorghum lines. Changes in flowering time have pleiotopic effects on
plant height, leaf number, root architecture, grain yield, and resource use efficiency.” Measuring flowering time
across multiple environments is a critical component of evaluating potential new sorghum varieties. Obtaining
flowering time by conventional means requires a researcher to walk the field each day to evaluate which new
varieties have flowered. Because plant breeders typically evaluate between 1,000 and 100,000 new genotypes for
each new variety released manual evaluation can be labor intensive or impossible, particularly when poor weather
restricts access to field sites during flowering season. Approaches to predict flowering time in advance have the
potential to accelerate plant breeding and improve the rate of genetic gain for both yield, resource use efficiency,
and resilience to extreme weather events.

Scientists have used multiple approaches to predict flowering days. For example, Elroy et al. have used genetic
models with phenotype input such as temperature, rate of photoperiod change and daily irradiance to predict the
flowering time, from which they achieved r-squared = 0.84-0.91.8 Chauhan et al have used crop growth model
fitted with temperature, photoperiod, and soil water content in the top soil layer, 0-60, to predict flowering time
of wheat(Lin’s concordance correlation coeffiecient, Lin’s CCC 0.91-0.94) and chickpea (Lin’s CCC= 0.97).
However, building genetic and crop growth models can be time-consuming, labor-intensive, and difficult due



to exhaustive field and lab experiments’ measurements which need to be collected. However, the advances in
spectroscopy has made it possible to collect hyperspectral reflectance data from plants at high throughput under
field conditions.'® These patterns of hyperspectral reflectance data have been successfully used to train models to
predict a wide range of physical and biochemical plants properties (as reviewed'!). Hyperspectral reflectance data
has also been successfully employed to predict more complex traits with less direct mechanistic links to reflectance
including predicting end of season yield in wheat and soybean. Yoosefzadeh-Najafabadi et al have used stacking
ensemble model with random forest as a base metaclassifier and reflectance data for yield prediction in soybean,
and they achieved 0.93 prediction accuracy.'?> Also Montesino-Lopez et al have used conopy hyperspectrarl
reflectance to predict grain yield in wheat where they achieved prediction accuracy (measured as the average
of the ten-fold cross-validation of the Pearson correlation) of 0.45 - 0.65 with their functional-B-Spline model
and Fourier model.'® This study uses a version of ensemble model, Extra Trees Regressor'# to predict sorghum
flowering days using hyperspectral information collected in the sorghum field experiment in 2020. This models
fits multiple decision trees and the final prediction comes to be an arithmetic average of all fitted decision trees.
The root mean squared error, and 3-fold validation pearson’s correlation coefficient were used to evaluate the
model’s prediction accuracy on the validation dataset (30% of entire dataset).

2. RESULTS AND DISCUSSION
2.1 Exploratory Data Analysis

The dataset used for this study contained 341 sorghum genotypes whose flowering days were collected in a
replicate-design field experiment in 2020 under two different nitrogen conditions, low (no nitrogen applied) and
high nitrogen (80lbs/acres applied). During the same experiment, hyperspectral reflectance data was collected,
corresponding to 2151 leaf reflectance for 350-2500nm wavelengths. After a series of data cleaning process, which
involved removing outliers and missing values in both dataset, we end up working with a dataset containing
831 samples with 2151 explanatory variables and flowering days a predictor variable. The number of days to
flowering reported for sorghum varieties under the two nitrogen treatments are normally distributed with a mean
of 67 (std = 6) and 63 (std = 6) days for low and high nitrogen, respectively (Figure 1-A). Sorghum varieties
showed relatively low variance of reflectance across the entire light spectrum in high nitrogen as compared to
low nitrogen (Figure 1-B). Principal component analysis was used as a dimension reduction technique,'® where
50 principal components were calculated out of 2151 reflectance variables per variety. The first 15 components
summarize the vast majority (99.7%) of the spectra variation among all the varieties (Figure 2). Therefore,
the ExtraTree ensemble model was then fitted with the first 15 principal components and five reflectance-
derived indices. Among these derived indices, there includes Enhanced Vegetation Index (EVI),'6 Red-edge
Normalized Difference Resistant Vegetation Index (RNDVI),!” Atmospherically Resistant Vegentation Index
(ARVI),'® Vogelmann Red Edge Index (VRE),! and Normalized Difference Vegetation Index (NDVT).2"
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Figure 1. Descriptive summary of flowering days and reflectance among 341 sorghum varieties. Normal distribution of
flowering days (Figure 1-A). High variance of reflectance values across 350-2500 wavelengths in low nitrogen conditions
(Figure 1-B).



2.2 Extra Trees Ensemble Model

The dataset was split into 70:30 proportions for training and testing using Scikit-learn’s Extra Trees model.?!
The base model was fitted with default parameters (n_estimators = 100). The model achieved validation r?
of 0.23 (rmse = 5.5). We tuned hyperparameters of the model using RandomSearchCV and GridSearchCV.
These are implemented using python’s scikit-learn library,?! and they are cross-validation hyperparameter-tuning
optimization techniques. The resulting model (n_estimators = 150, min_samples_split = 15, max_depth = 45)
achieved the pearson correlation coefficient of 0.55 (Root Mean Squared Error or RMSE = 5).
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Figure 2. Observed vs. Predicted flowering days using Extra Tree ensemble model. The model achieved pearson’s
correlation of coefficient of 0.55 when both conditions, high (HN) and low (LN) nitrogen,

3. CONCLUSION

The sorghum varieties in low nitrogen supply will tend to flower later, which is expected since developing new
plant structures would require enough nitrogen supply (Figure 1-A). With abundant nitrogen and light source,
plants can carry out photosynthesis at a higher rate and thus build new structures such as flowers to complete their
development. This might explain why sorghum plants in abundant nitrogen conditions developed flowers earlier.
Since light capture efficiency?? depends on a plant’s leaf structure, particularly its light-capturing pigments like
chlorophyll and carotenoids, we could predict flowering days by monitoring leaves’ reflectance. In this study, our
model achieved a Pearson’s correlation between the actual and predicted flowering days 0.50 - 0.57. This model
shows that by simply collecting non-destructive hyperspectral data of various sorghum varieties, we can predict
flowering days with accuracy levels up to one week. Therefore, breeders will not need to wait until flowering time
to conclude what sorghum varieties should be carried into the next breeding stage. The model has the potential
to reduce the length of the breeding period significantly.

However, the model was built on a small dataset of only 831 samples, and its generalizability in the real-
world application could be uncertain. The next step is to collect more samples or add more explanatory variables
such as genotype-specific data to build a robust, generalizable model. Other models such as convolutional and
recurrent neural networks and others should also be evaluated to develop the best-performing model that improves
validation scores.



4. METHODS
4.1 Data Collections

A set of 347 sorghum lines drawn from the sorghum association panel?® were planted at the University of
Nebraska-Lincoln’s Havelock farm on June 08, 2020. Each plot consisted of a single row, with thirty inch
(0.762 meter) spacing between rows and 30 inch (0.762 meter) alleyways between sequential plots. The field was
arranged in a randomized complete block design with repeated checks, with three blocks of low nitrogen treatment
(0 Ibs/acre) and two of high nitrogen treatment (80 lbs/acre). The field was walked daily, weather permitting,
and flowering time was scored on the day 50% of extant plants within a plot had reached anthesis. Hyperspectral
reflectance data was collected from a subset of plots followering the protocol of?* using a FieldSpec4 (Malvern
Panalytical Ltd., Formerly Analytical Spectral Devices) resulting in 2,150 total measured reflectance intensity
values between 350 to 2500 nanometers.

The two datasets were merged using their plot number identification tags resulting in a final dataset flowering
time and reflectance data from 831 unique plots representing one or more independent observations of 341 unique
sorghum varieties under the two nitrogen conditions.

4.1.1 Principal Component Analysis

The leaf spectral data was reduced from 2151 variables to 15 variables by using the principal component analysis
(PCA) technique. The PCA is a widely used dimension reduction approach that enables the extraction of critical
information from datasets and avoids redundancies without losing any valuable details per sample data point.
Initially, 50 principal components were computed using python’s scikit-learn library (Version-1.0.1).2! However,
only 15 principal components were used since they were found to explain over 99% of the variation in our spectral
dataset.
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Figure 3. Principal Components Analysis. 50 components were calculated, from which 15 components were selected and
used in the downstream analysis since they explained over 99% of the variance in the dataset.

4.1.2 Ensemble Machine Learning Models

Python scikit-learn’s Extra Trees Regressor (version-0.22)'* was used to fit individual decision trees with training
data (70% of entire dataset) and ensemble the results for the final prediction of flowering time (days)( in sorghum.
Extra Trees was used instead of a widely used Random Forest (RF) since the dataset was very small, and it did
not make sense to build decision trees using bootstrapped subsamples as it is implemented with RF. Instead
Extra Trees uses the entire training samples to fit multiple decision trees and ensemble for final prediction. In
addition, Extra Trees Regressor differ from other ensemble models in that it adds randomization in both selecting
attributes and cut-point when splitting a tree node.?® In multiple applications, Extra Trees Regressor has been
shown to outperform other ensemble models,?% it restricts the issue of overfitting,2?® and it is a bit faster than
other regression ensemble models.?7
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