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Abstract

Mechanical discontinuity embedded in a material plays an essential role in determining the bulk mechanical, physical, and

chemical properties. This paper is a proof-of-concept development and deployment of a reinforcement learning framework to

control both the direction and rate of the growth of fatigue crack. The reinforcement learning framework is coupled with an

OpenAI-Gym-based environment that implements the mechanistic equations governing the fatigue crack growth. Learning

agent does not explicitly know about the underlying physics; nonetheless, the learning agent can infer the control strategy by

continuously interacting the numerical environment. The Markov decision process, which includes state, action and reward, is

carefully designed to obtain a good control policy. The deep deterministic policy gradient algorithm is implemented for learning

the continuous actions required to control the fatigue crack growth. An adaptive reward function involving reward shaping

improves the training. The reward is mostly positive to encourage the learning agent to keep accumulating the reward rather

than terminate early to avoid receiving high accumulated penalties. An additional high reward is given to the learning agent

when the crack tip reaches close enough to the goal point within specific training iterations to encourage the agent to reach

the goal points as quickly as possible rather than slowly approaching the goal point to accumulate the positive reward. The

reinforcement learning framework can successfully control the fatigue crack propagation in a material despite the complexity of

the propagation pathway determined by multiple goal points.
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Abstract 13 

Mechanical discontinuity embedded in a material plays an essential role in determining the 14 

bulk mechanical, physical, and chemical properties. This paper is a proof-of-concept development 15 

and deployment of a reinforcement learning framework to control both the direction and rate of 16 

the growth of fatigue crack. The reinforcement learning framework is coupled with an OpenAI-17 

Gym-based environment that implements the mechanistic equations governing the fatigue crack 18 

growth. Learning agent does not explicitly know about the underlying physics; nonetheless, the 19 

learning agent can infer the control strategy by continuously interacting the numerical environment. 20 

The Markov decision process, which includes state, action and reward, is carefully designed to 21 

obtain a good control policy. The deep deterministic policy gradient algorithm is implemented for 22 

learning the continuous actions required to control the fatigue crack growth. An adaptive reward 23 

function involving reward shaping improves the training. The reward is mostly positive to 24 

encourage the learning agent to keep accumulating the reward rather than terminate early to avoid 25 

receiving high accumulated penalties. An additional high reward is given to the learning agent 26 

when the crack tip reaches close enough to the goal point within specific training iterations to 27 

encourage the agent to reach the goal points as quick as possible rather than slowly approaching 28 

the goal point to accumulate the positive reward. The reinforcement learning framework can 29 

successfully control the fatigue crack propagation in a material despite the complexity of the 30 

propagation pathway determined by multiple goal points. 31 

Keywords: Reinforcement learning; DDPG; Discontinuity; Fatigue; Propagation; Control 32 
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1. Introduction 33 

1.1.Study on the mixed-mode fatigue crack growth 34 

Under cyclic loading, fatigue in a material leads to the initiation and propagation of cracks. 35 

In general, when a fatigue occurs after about 10000 cycles, it is called a high cycle fatigue (stress-36 

based) that can be characterized by elastic deformation, whereas a low cycle fatigue (strain-based) 37 

can be characterized by plastic deformation in each cycle. In linear elastic fracture mechanics, the 38 

fatigue crack growth can be divided into two periods, namely initiation and propagation 39 

(McBagonluri and Soboyejo, 2005). In the initiation period, the microcracks form with 40 

preference in regions of high stress concentration. The propagation period can be further divided 41 

into two stages, namely stage I and II. The stage I fatigue crack growth is characterized by low 42 

stress intensity factors, whereas the fatigue crack growth in stage II is characterized by large stress 43 

intensity factor range and long crack length. In stage II, the fatigue crack growth rate has a power 44 

law relationship with respect to the stress intensity range, which is generally described by the 45 

Paris–Erdogan formulation. 46 

Mixed-mode fatigue crack growth is widely studied. Various criteria for the prediction of 47 

mixed-mode fatigue crack growth direction and rate have been proposed. For example, maximum 48 

tangential stress criterion, minimum strain energy density criterion, J-criterion for the prediction 49 

of fatigue crack growth direction, while the effective stress intensity factors, strain energy density 50 

factors, and J-integral approach for the prediction of fatigue crack growth rate (Qian and Fatemi, 51 

1996). Sander and Richard (2006) conducted both experimental and numerical investigations to 52 

understand the influence of loading direction on the mixed-mode fatigue crack growth in the 53 

Compact Tension Shear specimen. Their experimental results show that the retardation effect 54 

decreases with increasing Mode II overload. The fatigue crack growth rate decreases and the 55 

direction changes due to the block loading. Their numerical simulation in ABAQUS suggests 56 

plastic deformations occur and the stress distribution changes due to mixed-mode overloads. 57 

Alegre et al. (2007) performed numerical simulation of mixed-mode fatigue crack growth in an 58 

anti-return valve using ANSYS. The simulation result agrees well with experimental observation, 59 

which validates the use of the maximum circumferential stress criterion for predicting the fatigue 60 

crack growth direction. Ding et al. (2007) proposed a method based on the detailed elastic–plastic 61 



3 

 

stress analysis to predict both fatigue crack growth rate and direction in 1070 steel. The predictions 62 

match the experiment result. 63 

Fatigue crack also exists in quasi-brittle materials. Le et al. (2014) conducted a set of 64 

experiments on fatigue crack kinetics for Berea sandstone. They developed a model that accounts 65 

for the size effect of the specimens based on the experimental observations. They concluded that 66 

the model is also applicable to other quasi-brittle materials including concrete and ceramics. Ray 67 

and Kishen (2011) proposed an analytical dimensionally homogeneous model for fatigue crack 68 

growth in concrete using dimensional analysis. Their model considers the effect of structural size, 69 

loading ratio, initial crack length, tensile strength, and fracture toughness. 70 

Being able to control the growth of crack demonstrates the human understanding and 71 

capability of manipulating the bulk mechanical, chemical and physical properties. In this paper, 72 

we focus on the stage II fatigue crack growth for high cycle fatigue with crack length higher than 73 

10µm, such that the fatigue crack propagation honors the Paris–Erdogan law. We propose a 74 

reinforcement learning technique that is capable of controlling both the fatigue crack growth rate 75 

and direction. 76 

1.2. Application of the DDPG reinforcement learning algorithm 77 

Reinforcement learning (RL) is a machine learning technique developed specifically for 78 

solving the sequential decision-making and control problems. Unlike the supervised and 79 

unsupervised learning, reinforcement learning learns from the experience obtained through 80 

dynamically interacting with the environment by taking actions, observing the state of the 81 

environment, and receiving rewards based on the action and state. The supervised and 82 

unsupervised learning aim to learn certain representations by exploiting the existing dataset, 83 

whereas reinforcement learning agent learns to develop the optimal control policy for a particular 84 

problem by focusing on the maximization of the expected cumulative long-term reward and 85 

balancing exploration and exploitation (Li and Misra, 2021). The reinforcement learning models 86 

the continuous interaction with environment as a Markov decision process (MDP), where the next 87 

state of the environment depends only on the current state of the environment and the action taken 88 

by the agent. The MDP assumption is useful for modeling many real-world sequential decision-89 

making problems because it eliminates the need for storing the entire history of states and actions, 90 
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which tremendously reduce the memory and computation requirement. However, the MDP 91 

assumption is not necessarily true for all systems and processes. 92 

In off-policy reinforcement learning, the RL agent evaluates a target policy based on the 93 

actions generated by following a behavior policy that is different from the target policy. Deep 94 

deterministic policy gradient (DDPG) algorithm is an off-policy reinforcement learning algorithm 95 

introduced by Lillicrap et al. (2015). This algorithm combines the ideas from deterministic policy 96 

gradient method, deep Q-learning, and actor-critic techniques. By implementing deep neural 97 

networks in both actor and critic models, DDPG algorithm is suitable for control problems with 98 

continuous state and action space. Kendall et al. (2019) proposed the first application of DDPG 99 

algorithm in self-driving. By taking a single image as input, their model learned a policy for lane 100 

following task in tens of training episodes. Qiu et al. (2019) proposed an energy management 101 

algorithm based on DDPG in energy harvesting wireless networks. The algorithm achieves better 102 

performance compared with other algorithms in terms of long-term average net bit rate. Ma et al. 103 

(2019) applied several deep reinforcement learning algorithms on the waterflooding optimization 104 

problem to find the optimal water injection rate under geological uncertainties by maximizing the 105 

net present value. They found the DDPG algorithm requires the least training episodes and 106 

converges the fastest. But it can stuck into the local optimum solution due to inferior exploration-107 

exploitation implementation. Li and Misra (2021) applied the DDPG algorithm to develop an 108 

automated history matching technique that improves the forecast of hydrocarbon production. The 109 

technique works well for data generated using a multi-stencil fast marching reservoir simulator. 110 

Jin and Misra (2021) demonstrated a successful control of crack propagation in material under 111 

biaxial stress.  112 

1.3. Novelty and significance of the work 113 

The paper is a proof-of-concept development and deployment of a DDPG reinforcement 114 

learning framework for controlling both the fatigue crack growth rate and direction. To ensure 115 

computational tractability of this proof-of-concept development, we assumed a 2D material 116 

containing an initial linear crack. The RL agent is trained by interacting with a numerical 117 

environment, which implements mechanistic equations for 2D mixed-mode fatigue crack growth 118 

under sinusoidal biaxial stress. The RL agent does not explicitly know about the underlying 119 

physics of fatigue crack growth; nonetheless, it can infer the control policy by continuously 120 
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interacting the numerical simulation within a training environment that is developed based on the 121 

OpenAI Gym environment. The following scientific questions are investigated and answered in 122 

this paper: 123 

 Is the deep deterministic policy gradient (DDPG) reinforcement learning algorithm capable 124 

of controlling both the fatigue crack growth rate and direction? 125 

 How to design generalizable reward function that facilitate the training of the RL agents 126 

on the desired control problem? 127 

 How do the design of reward function and the size of neural network affect the training 128 

outcome and efficiency of the reinforcement-learning-based control of discontinuity? 129 

 130 

Figure 1. Illustration of the DDPG algorithm developed by Lillicrap et al. (2015) that is adapted and 131 
modified for the proposed reinforcement-learning-based control of fatigue crack growth. (a) The 132 

interaction between the RL agent and environment to generate transitions and the use of replay buffer. (b) 133 
The procedure for updating the critic network that approximates the expected return. (c) The procedure 134 

for updating the actor network that maximizes the expected return. In the subplots (b) and (c), the 135 
parameter in the parentheses indicates that it is sampled from the replay buffer. 136 
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2. Methodology 137 

2.1. DDPG reinforcement learning algorithm 138 

In this paper, the DDPG algorithm developed by Lillicrap et al. (2015) is implemented for 139 

the optimal control task. DDPG is a model-free, off-policy algorithm that combines the ideas from 140 

deterministic policy gradient method, deep Q-learning and actor-critic techniques. It aims to 141 

maximize the action-value (Q-value) function that evaluates the performance of the control policy. 142 

Q-value is the expected return (also known as the expected cumulative discounted rewards) after 143 

taking a specific action for a specific state and thereafter following that policy. By implementing 144 

deep neural networks as function approximator in both actor and critic models, DDPG algorithm 145 

is able to handle control problems with high-dimensional, continuous state and action space, thus 146 

suitable for the fatigue crack growth control problem investigated in this paper. The DDPG 147 

algorithm is illustrated in Figure 1 and explained in the following paragraphs. A more in-depth 148 

discussion is available in author’s open-source documentation archived on ESSOAr website (Jin 149 

and Misra, 2021).   150 

As shown in Figure 1(a), for each time step 𝑡 within the same episode, the actor network 151 

𝜇(𝑠|𝜃𝜇) predicts an action 𝑎𝑡 that should be taken given the current state 𝑠𝑡, where the parameter 152 

𝜃  represents the weights in the deep neural network and the superscript 𝜇  denotes the actor 153 

network. The systematic learning of the optimal control policy includes an update in the weigths 154 

of the connections in the actor network 𝜃𝜇. The action is chosen by adding an Ornstein-Uhlenbeck 155 

noise 𝒩𝑡 (Uhlenbeck and Ornstein, 1930) to the prediction. The random noise 𝒩 is reinitialized 156 

at the beginning of each episode to control the balance between exploration and exploitation. After 157 

the RL agent is trained, the noise will be removed during the deployment stage. Given 𝑠𝑡 and 𝑎𝑡, 158 

the RL environment returns the reward value 𝑟𝑡  and the next state 𝑠𝑡+1 . The transition 159 

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is then stored in a replay buffer 𝑅. For each time step, a minibatch of 𝑁 random 160 

transitions (𝑠𝑖, 𝑎𝑖 , 𝑟𝑖, 𝑠𝑖+1) are sampled from 𝑅 to update the weights of the connections in the critic 161 

and actor network, where the subscript 𝑖 denotes each transition in the minibatch selected from the 162 

replay buffer. The assumption of independently and identically distributed samples in 163 

reinforcement learning no longer holds if the samples are generated from exploring sequentially 164 

in the environment. The use of replay buffer breaks the temporal correlations between the samples 165 
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and make sure that rare experiences are used more than once, which significantly enhances the 166 

performance of reinforcement learning. 167 

Figure 1(b) shows the procedure for updating the weights of connections 𝜃𝑄 in the critic 168 

network 𝑄(𝑠, 𝑎|𝜃𝑄), where the superscript 𝑄 denotes the critic network. The critic network aims 169 

to predict the action-value (Q-value) 𝑄𝑖, which represents the expected value of an action 𝑎𝑖 taken 170 

at state 𝑠𝑖 . The critic network is updated by minimizing the mean squared loss 𝐿, so that its 171 

prediction 𝑄𝑖 is close to the moving target 𝑦𝑖. The difference between the prediction 𝑄𝑖 and the 172 

moving target 𝑦𝑖 is also called temporal difference (TD) error and the moving target 𝑦𝑖 is also 173 

known as TD target. The loss 𝐿 is defined as 174 

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑁

𝑖

(1) 175 

The moving target 𝑦𝑖 is the expected cumulative reward as indicated by the target critic network 176 

𝑄′(𝑠, 𝑎|𝜃𝑄′
) calculated as 177 

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (2) 178 

where 𝑄′ denotes the target critic network and 𝜇′ denotes the target actor network. The target critic 179 

network predicts the Q-value 𝑄𝑖+1
′  with respect to the next state 𝑠𝑖+1 and the action 𝑎𝑖+1

′ , which is 180 

predicted by the target actor network 𝜇′(𝑠|𝜃𝜇′
) given the next state 𝑠𝑖+1. 𝛾 is a discount factor for 181 

future rewards. The use of target networks enhances the learning stability in the cost of learning 182 

speed. If the episode ends at the current state 𝑠𝑖, the TD target 𝑦𝑖 should instead be calculated as 183 

𝑦𝑖 = 𝑟𝑖 (3) 184 

Figure 1(c) shows the procedure for updating the actor network. The actor network 185 

represents the current deterministic policy by mapping the state to the specific action 186 

deterministically. The actor network is updated using the policy gradient theorem, so that the 187 

action it predicts given the current state 𝑠𝑖 leads to a high Q-value 𝑄𝑖 as predicted by the critic 188 

network. The following equation describes the sampled policy gradient (implies that the gradient 189 

is calculated based on the samples drawn from the replay buffer) to update the actor network: 190 
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∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ((∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖|𝜃𝜇))(∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑖

))

𝑁

𝑖

(4) 191 

where 𝐽 denotes the expected return from the start distribution/state. In this paper, the weight 192 

updates for critic and actor networks are accomplished in the Tensorflow with Adam optimizer. 193 

The initial weights for the target critic/actor networks are the same as the critic/actor networks. 194 

For each time step, both the target networks are updated slowly (also referred to as “soft” update) 195 

according to rate 𝜏, where 𝜏 ≪ 1: 196 

𝜃𝑄′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

(5) 197 

𝜃𝜇′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

(6) 198 

It is observed that Q-learning with neural networks tends to be unstable. The use of soft update 199 

ensures stability in learning by making the moving target 𝑦𝑖 change slowly. Q-learning finds an 200 

optimal policy in the sense of maximizing the expected value of the total reward over any and all 201 

successive steps, starting from the current state. 202 

2.2. Architectures of the actor and critic networks 203 

 204 

Figure 2. Architecture of the actor network that predicts an action 𝑎𝑡 that should be taken given the 205 
current state 𝑠𝑡. Bias units are not shown in this architecture. The inputs to the network are the crack half-206 
length 𝑙, the direction of the current goal point 𝜃𝑑, and the distance between crack tip and the current goal 207 

point 𝑑. The network generates the action that includes the stress angle 𝛽 and stress frequency 𝑓. 208 
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 209 

Figure 3. Architecture of the critic network that predicts to predict the action-value (Q-value) 𝑄𝑖, which 210 
represents the expected return after taking action 𝑎𝑖 at state 𝑠𝑖, where 𝑖 represents a transition from the 211 
minibatch of 𝑁 transitions selected from the replay buffer. Bias units are not shown in this architecture. 212 

The critic network takes all the actions and states as input. 213 

Four deep neural networks are used as the learning agents in the reinforcement learning 214 

framework: actor network 𝜇 , target actor network 𝜇′ , function approximator for the Q-value 215 

function, referred as the critic network 𝑄, and target critic network 𝑄′. In this paper, the neural 216 

networks were built in the Keras platform. Figure 2 and Figure 3 depicts the architectures of the 217 

actor and critic networks, respectively. The impact of the size of neural networks on the training 218 

results will be discussed in the appendix. The target critic/actor networks have the same 219 

architecture as the critic/actor networks with the same initial weights. The weights of target 220 

networks are updated as shown in equations 5 and 6. The actor network takes state (𝑙, 𝜃𝑑 , 𝑑) as 221 

input and then deterministically computes the specific action (𝛽, 𝑓), while the critic network takes 222 

both the state (𝑙, 𝜃𝑑 , 𝑑) and action (𝛽, 𝑓) as inputs and then computes a scalar Q-value. The “tanh” 223 



10 

 

activation is used in the output layer in the actor network to bound the action to ensure the action 224 

is within a proper range, no activation is used in the output layer in the critic network, whereas all 225 

the other layers in both networks use the “ReLU” activation. 226 

 227 

Figure 4. Three distinct and independent fatigue crack growth paths in a 2D infinite material for 3 228 
different training episodes. Only half of the material is shown assuming centrosymmetric about the center 229 
of the initial crack. The reinforcement learning scheme will train the learning agent to control the mixed-230 

mode fatigue crack growth to track each of the 3 paths during each training episode. The growth of 231 
mixed-mode fatigue crack is under the influence of a sinusoidal uniaxial stress field with a maximum 232 

magnitude of 𝜎. The initial crack with length 𝑙0 is located at the center. The RL agent needs to learn to 233 
control the stress angle 𝛽 and the stress frequency 𝑓, so that the crack growth on the right half can track 234 

the 5 discrete goal points. 235 

2.3. Numerical environment used by the learning agents 236 

The training environment was specifically developed for the growth of mixed-mode fatigue 237 

crack in an infinite 2D material under sinusoidal biaxial stress field based on the OpenAI Gym 238 

environment. In these trainings, the crack growth starts from the middle of an infinite plate 239 

containing an initial crack in a sinusoidal biaxial stress field, as shown in Figure 4. The initial 240 

crack half-length is 𝑙0. The maximum magnitude of the sinusoidal stress field is 𝜎. The angle 241 
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between initial crack and the direction that is perpendicular to the stress is 𝛽 . The crack 242 

environment is centrosymmetric at the center of the initial crack. For the purpose of simplicity, 243 

we’ll focus on the right half of the crack growth in the following discussion. The maximum stress 244 

magnitude 𝜎 for the sinusoidal stress is kept constant as 100MPa throughout the simulation. The 245 

initial locations of the crack tips are (6.0, 0.0) and (−6.0, 0.0). The reinforcement learning agent 246 

will learn to control the stress angle 𝛽 and the stress frequency 𝑓, so that the crack growth can 247 

track any 5 pre-defined discrete goal points. For each episode in the training period, first a random 248 

desired crack growth path comprising 5 randomly selected goal points is predefined prior to 249 

learning. The RL agent needs to learn to track all the 5 goal points in minimum steps (preferably 250 

one step for each goal point) in each training episode. 251 

As shown in the crack growth paths for the 3 random training episodes in Figure 4, the 252 

desired crack paths are centrosymmetric with respect to the location of the initial crack center (i.e. 253 

the origin). Initially, as the RL agent performs an action by selecting optimal values of stress angle 254 

𝛽 and the stress frequency 𝑓 based on current state, the crack propagates toward the first goal point. 255 

Once the first goal point is reached within a certain error margin, the crack will propagate toward 256 

the second goal point. The learning episode ends when all the goal points are reached with a certain 257 

error margin or when the crack propagates towards the wrong direction. The former terminal 258 

condition is referred as positive terminal, where the RL agent has successfully completed the task. 259 

The latter terminal condition is referred as negative terminal, where the episode is terminated early 260 

to avoid wasting time on exploring the less meaningful regions in the state space. The current state 261 

of the environment that is accessible to the RL agent is (𝑙, 𝜃𝑑 , 𝑑), where 𝑙 is the crack half-length 262 

that is measured along the crack path, 𝜃𝑑 is the direction of the current goal point with respect to 263 

the horizontal direction, and 𝑑 is the distance between crack tip and the current goal point.  264 

Each episode of learning focuses on controlling crack growth along a randomly chosen crack 265 

path, as predefined by the 5 discrete points for each half as shown in Figure 4. Each episode poses 266 

a different crack path to the learning agent. The state space 𝒮 of 𝑙 is [6.0, 8.0] mm, that of 𝜃𝑑 is 267 

[−40°, 40°], and that of 𝑑 is [0.2, 0.5] mm. The reinforcement learning agent will learn to control 268 

the crack to propagate along the desired path by manipulating the stress angle 𝛽 and the stress 269 

frequency 𝑓 . The action space 𝒜  of 𝛽  is [−30°, 30°]  and that of 𝑓  is [10, 100]  Hz. The 270 

mechanistic equation governing the fatigue crack growth is coupled within the environment. RL 271 
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agent interacts with the environment by checking the current state, taking an action, and receiving 272 

a reward. All this is designed to mimic a real-world scenario where the learning agent learns by 273 

interacting with a solid material containing a single embedded crack. 274 

In this paper, the maximum circumferential stress criterion proposed by Erdogan and Sih 275 

(1963) is used to determine the direction of fatigue crack growth, where the crack propagates 276 

toward a direction which is perpendicular to the direction of greatest tension. Assuming a quasi-277 

static crack growth where the dynamic effects like wave propagation does not affect the crack 278 

propagation, the crack propagation angle 𝜃𝑝 can be represented as Patricio and Mattheij (2007) 279 

𝜃𝑝 = 2 tan−1 (
𝐾𝐼 − √𝐾𝐼

2 + 8𝐾𝐼𝐼
2

4𝐾𝐼𝐼
) (7) 280 

where the mode I and II stress intensity factors 𝐾𝐼 and 𝐾𝐼𝐼 are calculated as (Sih et al., 1962) 281 

𝐾𝐼 = 𝜎√𝜋𝑙 cos2 𝛽 (8) 282 

𝐾𝐼𝐼 = 𝜎√𝜋𝑙 sin 𝛽 cos 𝛽 (9) 283 

The most commonly used equation to characterize the mixed-mode fatigue crack growth is 284 

the Paris–Erdogan equation (Paris and Erdogan, 1963; Tanaka, 1974): 285 

𝑑𝑙

𝑑𝑁
= 𝐶(Δ𝐾𝑒𝑞)

𝑚
(10) 286 

where 𝑁 represents the number of loading cycles, 𝑚 is Paris’ exponent, 𝐶 is Paris’ constant, Δ𝐾𝑒𝑞 287 

is the stress intensity range. In this paper we assume 𝑚 = 3.77 and 𝐶 = 8.77 × 10−12 𝑚 𝑐𝑦𝑐𝑙𝑒⁄  

(𝑀𝑃𝑎∙𝑚0.5)𝑚
. 288 

If the length increment Δ𝑙 for each step is small, it can be estimated as (Sajith et al., 2019) 289 

Δ𝑙 = 𝐶(Δ𝐾𝑒𝑞)
𝑚

Δ𝑁 = 𝐶(Δ𝐾𝑒𝑞)
𝑚

Δ𝑡𝑓 (11) 290 

where Δ𝑁  is the number of loading cycles for each simulation step, Δ𝑡  is the time for each 291 

simulation step. We assume Δ𝑡 = 100𝑠 during the simulation. By controlling the stress frequency 292 

𝑓, we control the crack propagation length for each time step; thus, the learning agent controls the 293 

rate of crack propagation. Many forms of stress intensity range are available in the literature. In 294 

this paper, we use the expression that is proposed by Irwin (1957): 295 
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Δ𝐾𝑒𝑞 = √Δ𝐾𝐼
2 + Δ𝐾𝐼𝐼

2 (12) 296 

We consider the goal point is reached when the new distance 𝑑𝑛𝑒𝑤 between crack tip and the goal 297 

point is less than 10% of the original distance 𝑑. By controlling both the 𝛽 and 𝑓 such that the 298 

crack propagates at various propagation angle 𝜃𝑝 and length Δ𝑙 at each time step, the RL agent try 299 

to reach each of the desired goal points in one single time step. 300 

2.4. Tuning parameters to optimize the reinforcement-learning based control 301 

Table 1 summarizes the tuning parameters used during the training stage. To help the agent 302 

better explore the state space, we add an Ornstein-Uhlenbeck noise 𝒩𝑡  (Uhlenbeck and Ornstein, 303 

1930) to the output of the action network. Ornstein-Uhlenbeck process can be considered as a 304 

random walk process or Brownian motion. The main feature of such process is that it tends to 305 

converge to the mean value over time. In the simulation, the Ornstein-Uhlenbeck noise can be 306 

represented as 307 

𝒩𝑡 = 𝒩𝑡−1 + 𝜗(𝜇 − 𝒩𝑡−1)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (13) 308 

where 𝜇 is the long term mean level, which is 0 in our paper; 𝜗 is the speed of reversion, which 309 

characterizes the velocity at which the trajectory will regroup around the mean 𝜇; and 𝜎 is the 310 

instantaneous volatility that measures instant by instant the amplitude of randomness. A higher 𝜎 311 

implies more randomness. 𝑑𝑡  represents the time interval. 𝑊𝑡  denotes the Wiener process. In 312 

simulation, 𝑑𝑊𝑡 can be modeled as 313 

𝑑𝑊𝑡 = 𝑍√𝑑𝑡 (14) 314 

where 𝑍 is an independent standard normal variable. In this paper, we make the 𝜎 of the noise 315 

subject to exponential decay during the training period, such that the RL agent is encouraged to 316 

explore at the early training period and exploit at the late training period: 317 

𝜎 = 𝜎0𝑒−𝑘𝑟0 (15) 318 

where 𝜎0 is initial instantaneous volatility; 𝑘 is the current index of training episode; 𝑟0 is decay 319 

rate, which is expressed as 320 

𝑟0 =
5

𝑀
(16) 321 
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where 𝑀 is the total number of training episodes. During the deployment stage, the noise will be 322 

removed by setting 𝜎 to 0 for the best control behavior. The actor/critic network learning rate and 323 

target networks update rate are chosen to achieve a stable training. The discount factor represents 324 

the importance of future rewards. A higher discount factor indicates the future reward is more 325 

important. The capacity of replay buffer defines the maximum number of transitions stored. A 326 

larger capacity will typically result in a wider range of experience which benefits the stability of 327 

training, but it takes longer time to be refreshed with good/new control policy. The minibatch size 328 

defines the number of transitions used to update the networks at each step taken by the RL agent. 329 

Table 1. Tuning parameters of the deep neural networks during the training stage. 330 

Parameter Value 

Actor network learning rate 0.00025 

Critic network learning rate 0.005 

Target networks update rate 𝜏 0.005 

Discount factor 𝛾 0.99 

Capacity of replay buffer 𝑅 10000 

Minibatch size 𝑁 64 

Total training episodes 𝑀 30000 

Speed of reversion 𝜗 0.15 

Time interval in exploration noise 𝑑𝑡 0.01 

Initial instantaneous volatility 𝜎0 0.2 

  331 

2.5. Reward Function 332 

The design of the reward function is the most important factor for a successful and stable 333 

reinforcement learning result. Through reward shaping, the RL agent learns in a more informative 334 

environment (Laud, 2004). Ideally, the reward function provides all the necessary information for 335 

the RL agent to learn the optimal control policy while being as simple as possible. A reward that 336 

adapts during the learning steps through reward shaping helps the agent to quickly and correctly 337 

converge to the desired policy. Such adaptive rewards are better as compared to binary reward that 338 

only marks success or failure (Ng et al., 1999). The impact of the reward function on the training 339 

results will be discussed in the appendix. In this paper, we design the reward function as 340 

𝑟 = [1 − (
3𝑑𝑛𝑒𝑤

𝑑
)

0.2

] + [1 − (
|𝜃𝑑 − 𝜃𝑝|

5
)

0.2

] + [10𝑛 (𝑖𝑓 𝑑𝑛𝑒𝑤 < 0.1𝑑)] (17) 341 
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where 𝑛 is the index of current goal point. In the above equation, the first part indicates that the 342 

closer the crack tip is to the goal point, the more reward it receives, while the second part indicates 343 

that the closer the crack propagates towards the right direction, the more reward it receives. This 344 

kind of shaped reward function biases exploration towards the states that are closer to the goal 345 

point, which guides the RL agent to converge to a good control policy. The gradient of the reward 346 

function becomes higher as it approaches the optimum states (i.e. 𝑑𝑛𝑒𝑤 = 0 and 𝜃𝑑 = 𝜃𝑝), which 347 

encourages the RL agent to get as close as possible to the optimum states. We make sure that the 348 

reward is positive most of the time so we can use negative terminals, where the episode terminates 349 

early as long as the crack propagates to the wrong direction to avoid wasting time on exploring the 350 

less meaningful regions in the state space. Positive rewards encourage the RL agent to keep going 351 

to accumulate the reward rather than terminate early to avoid receiving high accumulated penalties. 352 

However, it also encourage the RL agent to avoid the terminals, unless reaching the terminal state 353 

yields high reward. This will be shown in the appendix. To deal with this problem, we have the 354 

third part in the reward function, which is an additional reward if the crack tip is close enough to 355 

the goal point. In order to encourage the RL agent to reach the goal points as quick as possible, 356 

rather than slowly approach the goal points to accumulate the reward, we make this single-step 357 

additional reward higher than the discounted expected cumulative reward gained from slowly 358 

approaching the goal point. The single-step additional reward becomes higher as the crack 359 

approaches the last goal point. 360 

3. Results and Discussions 361 

This section shows the RL control of fatigue crack growth direction and rate. In each learning 362 

episode, the learning agent will try to maximize the total reward by sequentially reaching the 5 363 

goal points as close as possible within the minimum steps (preferably one step for each goal point). 364 

Figure 5 shows some of the results in training period. As a reminder, each episode poses a different 365 

crack path to the learning agent. We can see the learning agent progressively learns to control the 366 

crack propagation by comparing episodes 10000, 15000 and 20000. As the number of training 367 

episodes increase to 20000, the propagation of crack tip reaches all the 5 goal points. The reward 368 

received for each episode during training period is shown in Figure 6. The curve is noisy and 369 

unstable because of the effect of exploration noise. After training, we remove the exploration noise 370 

and perform testing, which is also deployment stage for the trained RL agent. Figure 7 shows 371 
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some of the results in testing period. It can be seen that the agent successfully learnt to control the 372 

propagation of crack to reach all the 5 goal points sequentially. The reward received for each 373 

episode during testing period without exploration noise is shown in Figure 8. Although we gave 374 

a relative strict criterion from the training environment to decide if the crack tip is closed enough 375 

to the goal point to give the single-step additional reward, the testing period still have a great 376 

behavior in terms of controlling. The learning agents exhibit excellent control for all random test 377 

cases. 378 

 379 

Figure 5. The crack propagation paths (top) and corresponding actions (bottom) taken by the RL agent at 380 
three training episodes (episodes 10000, 15000 and 20000). The discrete dotted points on top show 381 

predefined discrete goal points that the crack propagation need to track. A successful control requires the 382 
propagating crack to touch each of the 5 discrete goal points per crack path. RL agent’s action includes an 383 

optimal selection of stress angle 𝛽 [−30°, 30°] and stress frequency 𝑓 [10, 100] Hz. The agent 384 
progressively learns to control the crack propagation. 385 
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 386 

Figure 6. Reward history received by the RL agent during training period. The entire training process of 387 
30000 episodes takes 10 minutes on an Intel® Xeon® E5-1650 v3 CPU. The rewards are positive most of 388 

the times. The curve is noisy because of the effect of exploration noise. 389 
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 390 

Figure 7. The crack propagation paths (top) and corresponding actions (bottom) taken by the RL agent at 391 
three testing episodes (episodes 700, 1000 and 2000). The discrete dotted points on top show predefined 392 

discrete goal points that the crack propagation need to track. A successful control requires the propagating 393 
crack to touch each of the 5 discrete goal points per crack path. RL agent is able to take actions that result 394 

in perfect tracking of the predefined crack path. 395 
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 396 

Figure 8. Reward history received by the RL agent during testing period. The control was good for all the 397 
2000 testing episodes. 398 

3.1. Limitations 399 

The training is performed in a self-created environment by coupling a simple 2D governing 400 

equation for fatigue crack growth, which may not be accurate for modelling the crack propagation 401 

in complex heterogeneous materials. We assume a high cycle fatigue crack growth in stage II with 402 

crack length higher than 10µm, such that the fatigue crack propagation complies with the Paris–403 

Erdogan law. The development of reinforcement learning environment and framework, including 404 

the design of reward function and the selection of training parameters, are highly specialized for 405 

this particular task. A more generalized environment/framework will be hard to design. The 406 

proposed propagation is under sinusoidal uniaxial stress field in an infinite material. 407 

Computationally tractable training of the reinforcement learning on physical systems and on 408 

large-scale numerical simulations is not easy. Several training episodes are required for the RL 409 

agent to find the optimal policy, and the training parameters need to be carefully tuned to promote 410 

a fast and precise training process. Like other machine learning methods, poorly designed 411 

reinforcement learning suffers from overfitting. The reinforcement learning models need 412 
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continuous interaction with environment as a Markov decision process (MDP), where the next 413 

state of the environment depends only on the current state of the environment and the action taken 414 

by the agent. The MDP assumption is useful for modeling many real-world sequential decision-415 

making problems. However, the MDP assumption is not necessarily true for all systems and 416 

processes. Moreover, according to Kober et al. (2013), reinforcement learning suffers from the 417 

following disadvantages:  418 

(1) Curse of dimensionality, wherein the number of interactions with the environment 419 

required for training grows exponentially as the dimension of state space increases;  420 

(2) Curse of real-world samples, wherein the physical environment presents several  421 

challenges, such  as  time  discretization, delays in sensing and actuation, uncertainty in  422 

measurement, disturbance in the environment, inability to observe all states, time, labor and 423 

maintenance cost, safety concerns, and external factors, that limit the behavior of reinforcement 424 

learning;  425 

(3) Curse of  under-modeling  and  model  uncertainty when  using a digital  simulator as  426 

the  environment  is challenging  in  light  of  the  difficulty  in  building  a  sufficiently  accurate  427 

model when there exist complex mechanical interactions. The control policy learned from a 428 

simulated environment often performs poorly in real world, especially when the system is unstable 429 

where small variations can cause drastic divergences;  430 

(4) Curse of goal specification occurs when it is difficult to define a proper reward function 431 

and there exists trade-offs between the complexity of the reward function and the complexity of 432 

the learning problem. 433 

 434 

4. Conclusions 435 

The paper is a proof-of-concept development and deployment of a reinforcement learning 436 

framework to control both the direction and rate of the growth of fatigue crack embedded in an 437 

infinite homogeneous, planar material subject to a sinusoidal uniaxial stress field. To that end, we 438 

adapt the deep deterministic policy gradient (DDPG) algorithm and develop robust reward 439 

functions. The reinforcement learning scheme learns to control the direction and rate of fatigue 440 
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crack growth by interacting with a simulated environment based on the OpenAI Gym environment 441 

and adaptively changing two engineering parameters, namely, stress angle and stress frequency. 442 

The Markov decision process, which includes state, action and reward, must be carefully designed 443 

so that the reinforcement learning framework can learn an optimal, computational tractable, 444 

control policy. The state is defined as the crack half-length, the direction of the current goal point, 445 

and the distance between crack tip and the current goal point. 446 

The key for robust and accurate control is the design of a good reward function. We designed 447 

a reward function to encourage the RL agent to get as close as possible to the optimum states by 448 

making the gradient of the reward function become higher as it approaches the optimum states. 449 

The reward is positive most of the time to encourage the RL agent to keep going to accumulate the 450 

reward rather than terminate early to avoid receiving high accumulated penalties. To prevent the 451 

RL agent from avoiding the terminals by slowly moving to the goal point to accumulate the reward, 452 

we give the agent an additional high reward if the crack tip is close enough to the goal point to 453 

encourage the RL agent to reach the goal points as quick as possible. The RL agent was 454 

successfully trained to accomplish the controlled fatigue crack propagation task. 455 
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Nomenclature 461 

Acronyms 462 

DDPG = deep deterministic policy gradient 463 

MDP = Markov decision process 464 

RL = reinforcement learning 465 

TD = temporal difference 466 

Symbols 467 

𝑎 = action 468 

𝒜 = action space 469 

𝛽 = stress angle 470 

𝐶 = Paris’ constant 471 

𝑑 = distance between crack tip and the current goal point 472 

𝑑𝑛𝑒𝑤 = new distance between crack tip and the current goal point 473 

𝑓 = stress frequency 474 

𝛾 = discount factor 475 

𝐽 = expected return from the start distribution 476 

𝑘 = current index of training episode 477 

𝐾𝐼, 𝐾𝐼𝐼 = mode I, II stress intensity factors 478 

Δ𝐾𝑒𝑞 = equivalent stress intensity range 479 

𝑙 = crack half-length 480 

𝑙0 = initial crack half-length 481 

Δ𝑙 = crack propagation length at each time step 482 

𝐿 = mean squared loss 483 

𝑚 = Paris’ exponent 484 

𝑀 = total number of training episodes 485 

𝜇 = long term mean level 486 

𝜇(𝑠|𝜃𝜇) = actor network 487 

𝜇′(𝑠|𝜃𝜇′
) = target actor network 488 

𝑛 = index of current goal point 489 

𝑁 = minibatch size or number of loading cycles 490 

Δ𝑁 = number of loading cycles for each simulation step 491 

𝒩 = Ornstein-Uhlenbeck noise 492 

𝑄 = action-value (Q-value) 493 

𝑄(𝑠, 𝑎|𝜃𝑄) = critic network 494 

𝑄′(𝑠, 𝑎|𝜃𝑄′
) = target critic network 495 

𝑟 = reward 496 

𝑟0 = decay rate 497 

𝑅 = replay buffer 498 

𝑠 = state 499 

𝒮 = state space 500 

𝜎 = stress or instantaneous volatility 501 

𝜎0 = initial instantaneous volatility 502 

Δ𝑡 = the time for each simulation step 503 
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𝑑𝑡 = time interval 504 

𝜏 = target networks update rate 505 

𝜃 = weights in the deep neural network 506 

𝜃𝑑 = the direction of the current goal point 507 

𝜃𝑝 = crack propagation angle 508 

𝜗 = speed of reversion 509 

𝑊𝑡 = the Wiener process 510 

𝑦 = moving target (TD target) 511 

𝑍 = an independent standard normal variable 512 

Subscripts 513 

𝑖 = denotes each transition selected from the replay buffer 514 

𝑡 = denotes time step 515 

Superscripts 516 

′ = denotes target networks 517 

𝜇 = denotes actor network 518 

𝜇′ = denotes target actor network 519 

𝑄 = denotes critic network 520 

𝑄′ = denotes target critic network 521 

  522 
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Appendix A:  Sensitivity of the Reinforcement Learning Framework 523 

The effect of neural network size 524 

We re-trained the learning agents with smaller and larger neural networks in the same 525 

learning environment. The results are shown in Figure A1 and Figure A2, respectively. Both the 526 

testing results are poor. We conclude that similar to supervised and unsupervised learning, there 527 

exists a “sweet point” of the neural network size. The size can neither be too large nor too small 528 

to obtain a good control policy. Large networks lead to overfitting and small networks lead to 529 

underfitting. 530 

 531 

Figure A1. Testing result for the trained learning agent with small neural network size. The average 532 
reward is below 0, indicating the agent did not learn anything. 533 
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 534 

Figure A2. Testing result for the trained learning agent with larger neural network size. The curve is 535 
unstable with a very large uncertainty range, indicating that the learning agent was unable to learn a good 536 

control policy. 537 

The effect of reward function 538 

We re-trained the learning agent in a learning environment where the reward function is 539 

represented as 540 

𝑟 = [1 − (
3𝑑𝑛𝑒𝑤

𝑑
)

0.2

] + [1 − (
|𝜃𝑑 − 𝜃𝑝|

5
)

0.2

] (18) 541 

In the above equation, the additional reward term that encourage the learning agent to reach 542 

the goal point is removed. Some of the testing results are shown in Figure A3. We can see that 543 

instead of reaching each goal point within one single action step, the agent learned to approach the 544 

goal points slowly to accumulate the rewards. Although the desired propagation path is followed 545 

and the goal points are matched well, the agent failed to control the rate of propagation. 546 
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 547 

Figure A3. Testing results for episodes 100, 200 and 300 for the learning agent trained in a learning 548 
environment with a deficient reward function. Although the desired propagation path is followed and the 549 

goal points are matched well, the agent failed to control the rate of propagation. 550 

 551 

The effect of state and action space 552 

We trained the RL agent in an environment with a much larger state and action spaces. The 553 

state space of 𝑙 is [6.0, 8.2] mm, that of 𝜃𝑑  is [−60°, 60°], and that of 𝑑 is [0.1, 0.55] mm. The 554 

action space of 𝛽 is [−60°, 60°] and that of 𝑓 is [10, 1000] Hz. This control task is hard because 555 

within such an action space, the crack propagation length at each time step Δ𝑙 can be as small as 556 

0.0058 mm and as large as 10.1 mm, depending on the different combination of action parameters. 557 

To accommodate the increased state and action spaces, we increase the total number of training 558 

episodes to 200000 and the buffer size is increased to 100000. All the other tuning parameters 559 

remain the same. The testing result is shown in Figure A4. With more training, the learning agent 560 

was able to learn a relatively good control policy for this harder control task, but several cases are 561 

missed. This harder task required one order more of training episodes. If the state space is further 562 

increased to the following: 𝑙 to [6.0, 10.8] mm, 𝜃𝑑 to [−60°, 60°], and 𝑑 to [0.2, 1.2] mm, and the 563 

action space is further increased to the following: 𝛽 to [−60°, 60°] and 𝑓 to [10, 3000] Hz, the 564 
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training results are shown in Figure A5. Unfortunately, the learning agent was unable to learn a 565 

good control policy for this much harder control problem. We can conclude that the reinforcement 566 

learning is sensitive to the training environment. It can fail in a poorly-defined training 567 

environment with large action and state spaces. For such training environments, we may consider 568 

to improve the training by implementing prioritized experience replay technique to honor extreme 569 

cases, or by using multi-agent reinforcement learning algorithm. 570 

 571 

Figure A4. Testing result for the learning agent trained in a learning environment with larger state and 572 
action spaces. The state space of 𝑙 is [6.0, 8.2] mm, that of 𝜃𝑑 is [−60°, 60°], and that of 𝑑 is [0.1, 0.55] 573 
mm. The action space of 𝛽 is [−60°, 60°] and that of 𝑓 is [10, 1000] Hz. The learning agent was able to 574 

learn a relatively good control policy for this harder control task, but several cases are missed. 575 
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 576 

Figure A5. Testing result for the learning agent trained in a learning environment with even larger state 577 
and action spaces. The state space of 𝑙 is [6.0, 10.8] mm, that of 𝜃𝑑 is [−60°, 60°], and that of 𝑑 is 578 

[0.2, 1.2] mm. The action space of 𝛽 is [−60°, 60°] and that of 𝑓 is [10, 3000] Hz. The learning agent 579 
was not able to learn a good control policy for the harder control task with much larger state and actions 580 

spaces. 581 

  582 
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