
P
os
te
d
on

22
N
ov

20
22

—
C
C
-B

Y
-N

C
-N

D
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
8
68
6.
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Controlling Mixed-Mode Fatigue Crack Growth using Deep

Reinforcement Learning

Yuteng Jin1 and Siddharth Misra1

1Texas A&M University

November 22, 2022

Abstract

Mechanical discontinuity embedded in a material plays an essential role in determining the bulk mechanical, physical, and

chemical properties. This paper is a proof-of-concept development and deployment of a reinforcement learning framework to

control both the direction and rate of the growth of fatigue crack. The reinforcement learning framework is coupled with an

OpenAI-Gym-based environment that implements the mechanistic equations governing the fatigue crack growth. Learning

agent does not explicitly know about the underlying physics; nonetheless, the learning agent can infer the control strategy by

continuously interacting the numerical environment. The Markov decision process, which includes state, action and reward, is

carefully designed to obtain a good control policy. The deep deterministic policy gradient algorithm is implemented for learning

the continuous actions required to control the fatigue crack growth. An adaptive reward function involving reward shaping

improves the training. The reward is mostly positive to encourage the learning agent to keep accumulating the reward rather

than terminate early to avoid receiving high accumulated penalties. An additional high reward is given to the learning agent

when the crack tip reaches close enough to the goal point within specific training iterations to encourage the agent to reach

the goal points as quickly as possible rather than slowly approaching the goal point to accumulate the positive reward. The

reinforcement learning framework can successfully control the fatigue crack propagation in a material despite the complexity of

the propagation pathway determined by multiple goal points.

1

1

Controlling Mixed-Mode Fatigue Crack Growth using Deep 1

Reinforcement Learning 2

Yuteng Jin, M.S. 3

Harold Vance Department of Petroleum Engineering, College of Engineering, Texas A&M 4

University, College Station, Texas, USA 5

 6

Prof. Siddharth Misra, Ph.D. 7

Harold Vance Department of Petroleum Engineering, College of Engineering, Texas A&M 8

University, College Station, Texas, USA 9

Department of Geology and Geophysics, College of Geosciences, Texas A&M University, College 10

Station, Texas, USA 11

 12

Abstract 13

Mechanical discontinuity embedded in a material plays an essential role in determining the 14

bulk mechanical, physical, and chemical properties. This paper is a proof-of-concept development 15

and deployment of a reinforcement learning framework to control both the direction and rate of 16

the growth of fatigue crack. The reinforcement learning framework is coupled with an OpenAI-17

Gym-based environment that implements the mechanistic equations governing the fatigue crack 18

growth. Learning agent does not explicitly know about the underlying physics; nonetheless, the 19

learning agent can infer the control strategy by continuously interacting the numerical environment. 20

The Markov decision process, which includes state, action and reward, is carefully designed to 21

obtain a good control policy. The deep deterministic policy gradient algorithm is implemented for 22

learning the continuous actions required to control the fatigue crack growth. An adaptive reward 23

function involving reward shaping improves the training. The reward is mostly positive to 24

encourage the learning agent to keep accumulating the reward rather than terminate early to avoid 25

receiving high accumulated penalties. An additional high reward is given to the learning agent 26

when the crack tip reaches close enough to the goal point within specific training iterations to 27

encourage the agent to reach the goal points as quick as possible rather than slowly approaching 28

the goal point to accumulate the positive reward. The reinforcement learning framework can 29

successfully control the fatigue crack propagation in a material despite the complexity of the 30

propagation pathway determined by multiple goal points. 31

Keywords: Reinforcement learning; DDPG; Discontinuity; Fatigue; Propagation; Control 32

2

1. Introduction 33

1.1.Study on the mixed-mode fatigue crack growth 34

Under cyclic loading, fatigue in a material leads to the initiation and propagation of cracks. 35

In general, when a fatigue occurs after about 10000 cycles, it is called a high cycle fatigue (stress-36

based) that can be characterized by elastic deformation, whereas a low cycle fatigue (strain-based) 37

can be characterized by plastic deformation in each cycle. In linear elastic fracture mechanics, the 38

fatigue crack growth can be divided into two periods, namely initiation and propagation 39

(McBagonluri and Soboyejo, 2005). In the initiation period, the microcracks form with 40

preference in regions of high stress concentration. The propagation period can be further divided 41

into two stages, namely stage I and II. The stage I fatigue crack growth is characterized by low 42

stress intensity factors, whereas the fatigue crack growth in stage II is characterized by large stress 43

intensity factor range and long crack length. In stage II, the fatigue crack growth rate has a power 44

law relationship with respect to the stress intensity range, which is generally described by the 45

Paris–Erdogan formulation. 46

Mixed-mode fatigue crack growth is widely studied. Various criteria for the prediction of 47

mixed-mode fatigue crack growth direction and rate have been proposed. For example, maximum 48

tangential stress criterion, minimum strain energy density criterion, J-criterion for the prediction 49

of fatigue crack growth direction, while the effective stress intensity factors, strain energy density 50

factors, and J-integral approach for the prediction of fatigue crack growth rate (Qian and Fatemi, 51

1996). Sander and Richard (2006) conducted both experimental and numerical investigations to 52

understand the influence of loading direction on the mixed-mode fatigue crack growth in the 53

Compact Tension Shear specimen. Their experimental results show that the retardation effect 54

decreases with increasing Mode II overload. The fatigue crack growth rate decreases and the 55

direction changes due to the block loading. Their numerical simulation in ABAQUS suggests 56

plastic deformations occur and the stress distribution changes due to mixed-mode overloads. 57

Alegre et al. (2007) performed numerical simulation of mixed-mode fatigue crack growth in an 58

anti-return valve using ANSYS. The simulation result agrees well with experimental observation, 59

which validates the use of the maximum circumferential stress criterion for predicting the fatigue 60

crack growth direction. Ding et al. (2007) proposed a method based on the detailed elastic–plastic 61

3

stress analysis to predict both fatigue crack growth rate and direction in 1070 steel. The predictions 62

match the experiment result. 63

Fatigue crack also exists in quasi-brittle materials. Le et al. (2014) conducted a set of 64

experiments on fatigue crack kinetics for Berea sandstone. They developed a model that accounts 65

for the size effect of the specimens based on the experimental observations. They concluded that 66

the model is also applicable to other quasi-brittle materials including concrete and ceramics. Ray 67

and Kishen (2011) proposed an analytical dimensionally homogeneous model for fatigue crack 68

growth in concrete using dimensional analysis. Their model considers the effect of structural size, 69

loading ratio, initial crack length, tensile strength, and fracture toughness. 70

Being able to control the growth of crack demonstrates the human understanding and 71

capability of manipulating the bulk mechanical, chemical and physical properties. In this paper, 72

we focus on the stage II fatigue crack growth for high cycle fatigue with crack length higher than 73

10µm, such that the fatigue crack propagation honors the Paris–Erdogan law. We propose a 74

reinforcement learning technique that is capable of controlling both the fatigue crack growth rate 75

and direction. 76

1.2. Application of the DDPG reinforcement learning algorithm 77

Reinforcement learning (RL) is a machine learning technique developed specifically for 78

solving the sequential decision-making and control problems. Unlike the supervised and 79

unsupervised learning, reinforcement learning learns from the experience obtained through 80

dynamically interacting with the environment by taking actions, observing the state of the 81

environment, and receiving rewards based on the action and state. The supervised and 82

unsupervised learning aim to learn certain representations by exploiting the existing dataset, 83

whereas reinforcement learning agent learns to develop the optimal control policy for a particular 84

problem by focusing on the maximization of the expected cumulative long-term reward and 85

balancing exploration and exploitation (Li and Misra, 2021). The reinforcement learning models 86

the continuous interaction with environment as a Markov decision process (MDP), where the next 87

state of the environment depends only on the current state of the environment and the action taken 88

by the agent. The MDP assumption is useful for modeling many real-world sequential decision-89

making problems because it eliminates the need for storing the entire history of states and actions, 90

4

which tremendously reduce the memory and computation requirement. However, the MDP 91

assumption is not necessarily true for all systems and processes. 92

In off-policy reinforcement learning, the RL agent evaluates a target policy based on the 93

actions generated by following a behavior policy that is different from the target policy. Deep 94

deterministic policy gradient (DDPG) algorithm is an off-policy reinforcement learning algorithm 95

introduced by Lillicrap et al. (2015). This algorithm combines the ideas from deterministic policy 96

gradient method, deep Q-learning, and actor-critic techniques. By implementing deep neural 97

networks in both actor and critic models, DDPG algorithm is suitable for control problems with 98

continuous state and action space. Kendall et al. (2019) proposed the first application of DDPG 99

algorithm in self-driving. By taking a single image as input, their model learned a policy for lane 100

following task in tens of training episodes. Qiu et al. (2019) proposed an energy management 101

algorithm based on DDPG in energy harvesting wireless networks. The algorithm achieves better 102

performance compared with other algorithms in terms of long-term average net bit rate. Ma et al. 103

(2019) applied several deep reinforcement learning algorithms on the waterflooding optimization 104

problem to find the optimal water injection rate under geological uncertainties by maximizing the 105

net present value. They found the DDPG algorithm requires the least training episodes and 106

converges the fastest. But it can stuck into the local optimum solution due to inferior exploration-107

exploitation implementation. Li and Misra (2021) applied the DDPG algorithm to develop an 108

automated history matching technique that improves the forecast of hydrocarbon production. The 109

technique works well for data generated using a multi-stencil fast marching reservoir simulator. 110

Jin and Misra (2021) demonstrated a successful control of crack propagation in material under 111

biaxial stress. 112

1.3. Novelty and significance of the work 113

The paper is a proof-of-concept development and deployment of a DDPG reinforcement 114

learning framework for controlling both the fatigue crack growth rate and direction. To ensure 115

computational tractability of this proof-of-concept development, we assumed a 2D material 116

containing an initial linear crack. The RL agent is trained by interacting with a numerical 117

environment, which implements mechanistic equations for 2D mixed-mode fatigue crack growth 118

under sinusoidal biaxial stress. The RL agent does not explicitly know about the underlying 119

physics of fatigue crack growth; nonetheless, it can infer the control policy by continuously 120

5

interacting the numerical simulation within a training environment that is developed based on the 121

OpenAI Gym environment. The following scientific questions are investigated and answered in 122

this paper: 123

 Is the deep deterministic policy gradient (DDPG) reinforcement learning algorithm capable 124

of controlling both the fatigue crack growth rate and direction? 125

 How to design generalizable reward function that facilitate the training of the RL agents 126

on the desired control problem? 127

 How do the design of reward function and the size of neural network affect the training 128

outcome and efficiency of the reinforcement-learning-based control of discontinuity? 129

 130

Figure 1. Illustration of the DDPG algorithm developed by Lillicrap et al. (2015) that is adapted and 131
modified for the proposed reinforcement-learning-based control of fatigue crack growth. (a) The 132

interaction between the RL agent and environment to generate transitions and the use of replay buffer. (b) 133
The procedure for updating the critic network that approximates the expected return. (c) The procedure 134

for updating the actor network that maximizes the expected return. In the subplots (b) and (c), the 135
parameter in the parentheses indicates that it is sampled from the replay buffer. 136

6

2. Methodology 137

2.1. DDPG reinforcement learning algorithm 138

In this paper, the DDPG algorithm developed by Lillicrap et al. (2015) is implemented for 139

the optimal control task. DDPG is a model-free, off-policy algorithm that combines the ideas from 140

deterministic policy gradient method, deep Q-learning and actor-critic techniques. It aims to 141

maximize the action-value (Q-value) function that evaluates the performance of the control policy. 142

Q-value is the expected return (also known as the expected cumulative discounted rewards) after 143

taking a specific action for a specific state and thereafter following that policy. By implementing 144

deep neural networks as function approximator in both actor and critic models, DDPG algorithm 145

is able to handle control problems with high-dimensional, continuous state and action space, thus 146

suitable for the fatigue crack growth control problem investigated in this paper. The DDPG 147

algorithm is illustrated in Figure 1 and explained in the following paragraphs. A more in-depth 148

discussion is available in author’s open-source documentation archived on ESSOAr website (Jin 149

and Misra, 2021). 150

As shown in Figure 1(a), for each time step 𝑡 within the same episode, the actor network 151

𝜇(𝑠|𝜃𝜇) predicts an action 𝑎𝑡 that should be taken given the current state 𝑠𝑡, where the parameter 152

𝜃 represents the weights in the deep neural network and the superscript 𝜇 denotes the actor 153

network. The systematic learning of the optimal control policy includes an update in the weigths 154

of the connections in the actor network 𝜃𝜇. The action is chosen by adding an Ornstein-Uhlenbeck 155

noise 𝒩𝑡 (Uhlenbeck and Ornstein, 1930) to the prediction. The random noise 𝒩 is reinitialized 156

at the beginning of each episode to control the balance between exploration and exploitation. After 157

the RL agent is trained, the noise will be removed during the deployment stage. Given 𝑠𝑡 and 𝑎𝑡, 158

the RL environment returns the reward value 𝑟𝑡 and the next state 𝑠𝑡+1 . The transition 159

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is then stored in a replay buffer 𝑅. For each time step, a minibatch of 𝑁 random 160

transitions (𝑠𝑖, 𝑎𝑖 , 𝑟𝑖, 𝑠𝑖+1) are sampled from 𝑅 to update the weights of the connections in the critic 161

and actor network, where the subscript 𝑖 denotes each transition in the minibatch selected from the 162

replay buffer. The assumption of independently and identically distributed samples in 163

reinforcement learning no longer holds if the samples are generated from exploring sequentially 164

in the environment. The use of replay buffer breaks the temporal correlations between the samples 165

7

and make sure that rare experiences are used more than once, which significantly enhances the 166

performance of reinforcement learning. 167

Figure 1(b) shows the procedure for updating the weights of connections 𝜃𝑄 in the critic 168

network 𝑄(𝑠, 𝑎|𝜃𝑄), where the superscript 𝑄 denotes the critic network. The critic network aims 169

to predict the action-value (Q-value) 𝑄𝑖, which represents the expected value of an action 𝑎𝑖 taken 170

at state 𝑠𝑖 . The critic network is updated by minimizing the mean squared loss 𝐿, so that its 171

prediction 𝑄𝑖 is close to the moving target 𝑦𝑖. The difference between the prediction 𝑄𝑖 and the 172

moving target 𝑦𝑖 is also called temporal difference (TD) error and the moving target 𝑦𝑖 is also 173

known as TD target. The loss 𝐿 is defined as 174

𝐿 =
1

𝑁
∑(𝑦𝑖 − 𝑄(𝑠𝑖 , 𝑎𝑖|𝜃

𝑄))
2

𝑁

𝑖

(1) 175

The moving target 𝑦𝑖 is the expected cumulative reward as indicated by the target critic network 176

𝑄′(𝑠, 𝑎|𝜃𝑄′
) calculated as 177

𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝜇′
)|𝜃𝑄′

) (2) 178

where 𝑄′ denotes the target critic network and 𝜇′ denotes the target actor network. The target critic 179

network predicts the Q-value 𝑄𝑖+1
′ with respect to the next state 𝑠𝑖+1 and the action 𝑎𝑖+1

′ , which is 180

predicted by the target actor network 𝜇′(𝑠|𝜃𝜇′
) given the next state 𝑠𝑖+1. 𝛾 is a discount factor for 181

future rewards. The use of target networks enhances the learning stability in the cost of learning 182

speed. If the episode ends at the current state 𝑠𝑖, the TD target 𝑦𝑖 should instead be calculated as 183

𝑦𝑖 = 𝑟𝑖 (3) 184

Figure 1(c) shows the procedure for updating the actor network. The actor network 185

represents the current deterministic policy by mapping the state to the specific action 186

deterministically. The actor network is updated using the policy gradient theorem, so that the 187

action it predicts given the current state 𝑠𝑖 leads to a high Q-value 𝑄𝑖 as predicted by the critic 188

network. The following equation describes the sampled policy gradient (implies that the gradient 189

is calculated based on the samples drawn from the replay buffer) to update the actor network: 190

8

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ((∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖|𝜃𝜇))(∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|𝑠=𝑠𝑖

))

𝑁

𝑖

(4) 191

where 𝐽 denotes the expected return from the start distribution/state. In this paper, the weight 192

updates for critic and actor networks are accomplished in the Tensorflow with Adam optimizer. 193

The initial weights for the target critic/actor networks are the same as the critic/actor networks. 194

For each time step, both the target networks are updated slowly (also referred to as “soft” update) 195

according to rate 𝜏, where 𝜏 ≪ 1: 196

𝜃𝑄′
= 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

(5) 197

𝜃𝜇′
= 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

(6) 198

It is observed that Q-learning with neural networks tends to be unstable. The use of soft update 199

ensures stability in learning by making the moving target 𝑦𝑖 change slowly. Q-learning finds an 200

optimal policy in the sense of maximizing the expected value of the total reward over any and all 201

successive steps, starting from the current state. 202

2.2. Architectures of the actor and critic networks 203

 204

Figure 2. Architecture of the actor network that predicts an action 𝑎𝑡 that should be taken given the 205
current state 𝑠𝑡. Bias units are not shown in this architecture. The inputs to the network are the crack half-206
length 𝑙, the direction of the current goal point 𝜃𝑑, and the distance between crack tip and the current goal 207

point 𝑑. The network generates the action that includes the stress angle 𝛽 and stress frequency 𝑓. 208

9

 209

Figure 3. Architecture of the critic network that predicts to predict the action-value (Q-value) 𝑄𝑖, which 210
represents the expected return after taking action 𝑎𝑖 at state 𝑠𝑖, where 𝑖 represents a transition from the 211
minibatch of 𝑁 transitions selected from the replay buffer. Bias units are not shown in this architecture. 212

The critic network takes all the actions and states as input. 213

Four deep neural networks are used as the learning agents in the reinforcement learning 214

framework: actor network 𝜇 , target actor network 𝜇′ , function approximator for the Q-value 215

function, referred as the critic network 𝑄, and target critic network 𝑄′. In this paper, the neural 216

networks were built in the Keras platform. Figure 2 and Figure 3 depicts the architectures of the 217

actor and critic networks, respectively. The impact of the size of neural networks on the training 218

results will be discussed in the appendix. The target critic/actor networks have the same 219

architecture as the critic/actor networks with the same initial weights. The weights of target 220

networks are updated as shown in equations 5 and 6. The actor network takes state (𝑙, 𝜃𝑑 , 𝑑) as 221

input and then deterministically computes the specific action (𝛽, 𝑓), while the critic network takes 222

both the state (𝑙, 𝜃𝑑 , 𝑑) and action (𝛽, 𝑓) as inputs and then computes a scalar Q-value. The “tanh” 223

10

activation is used in the output layer in the actor network to bound the action to ensure the action 224

is within a proper range, no activation is used in the output layer in the critic network, whereas all 225

the other layers in both networks use the “ReLU” activation. 226

 227

Figure 4. Three distinct and independent fatigue crack growth paths in a 2D infinite material for 3 228
different training episodes. Only half of the material is shown assuming centrosymmetric about the center 229
of the initial crack. The reinforcement learning scheme will train the learning agent to control the mixed-230

mode fatigue crack growth to track each of the 3 paths during each training episode. The growth of 231
mixed-mode fatigue crack is under the influence of a sinusoidal uniaxial stress field with a maximum 232

magnitude of 𝜎. The initial crack with length 𝑙0 is located at the center. The RL agent needs to learn to 233
control the stress angle 𝛽 and the stress frequency 𝑓, so that the crack growth on the right half can track 234

the 5 discrete goal points. 235

2.3. Numerical environment used by the learning agents 236

The training environment was specifically developed for the growth of mixed-mode fatigue 237

crack in an infinite 2D material under sinusoidal biaxial stress field based on the OpenAI Gym 238

environment. In these trainings, the crack growth starts from the middle of an infinite plate 239

containing an initial crack in a sinusoidal biaxial stress field, as shown in Figure 4. The initial 240

crack half-length is 𝑙0. The maximum magnitude of the sinusoidal stress field is 𝜎. The angle 241

11

between initial crack and the direction that is perpendicular to the stress is 𝛽 . The crack 242

environment is centrosymmetric at the center of the initial crack. For the purpose of simplicity, 243

we’ll focus on the right half of the crack growth in the following discussion. The maximum stress 244

magnitude 𝜎 for the sinusoidal stress is kept constant as 100MPa throughout the simulation. The 245

initial locations of the crack tips are (6.0, 0.0) and (−6.0, 0.0). The reinforcement learning agent 246

will learn to control the stress angle 𝛽 and the stress frequency 𝑓, so that the crack growth can 247

track any 5 pre-defined discrete goal points. For each episode in the training period, first a random 248

desired crack growth path comprising 5 randomly selected goal points is predefined prior to 249

learning. The RL agent needs to learn to track all the 5 goal points in minimum steps (preferably 250

one step for each goal point) in each training episode. 251

As shown in the crack growth paths for the 3 random training episodes in Figure 4, the 252

desired crack paths are centrosymmetric with respect to the location of the initial crack center (i.e. 253

the origin). Initially, as the RL agent performs an action by selecting optimal values of stress angle 254

𝛽 and the stress frequency 𝑓 based on current state, the crack propagates toward the first goal point. 255

Once the first goal point is reached within a certain error margin, the crack will propagate toward 256

the second goal point. The learning episode ends when all the goal points are reached with a certain 257

error margin or when the crack propagates towards the wrong direction. The former terminal 258

condition is referred as positive terminal, where the RL agent has successfully completed the task. 259

The latter terminal condition is referred as negative terminal, where the episode is terminated early 260

to avoid wasting time on exploring the less meaningful regions in the state space. The current state 261

of the environment that is accessible to the RL agent is (𝑙, 𝜃𝑑 , 𝑑), where 𝑙 is the crack half-length 262

that is measured along the crack path, 𝜃𝑑 is the direction of the current goal point with respect to 263

the horizontal direction, and 𝑑 is the distance between crack tip and the current goal point. 264

Each episode of learning focuses on controlling crack growth along a randomly chosen crack 265

path, as predefined by the 5 discrete points for each half as shown in Figure 4. Each episode poses 266

a different crack path to the learning agent. The state space 𝒮 of 𝑙 is [6.0, 8.0] mm, that of 𝜃𝑑 is 267

[−40°, 40°], and that of 𝑑 is [0.2, 0.5] mm. The reinforcement learning agent will learn to control 268

the crack to propagate along the desired path by manipulating the stress angle 𝛽 and the stress 269

frequency 𝑓 . The action space 𝒜 of 𝛽 is [−30°, 30°] and that of 𝑓 is [10, 100] Hz. The 270

mechanistic equation governing the fatigue crack growth is coupled within the environment. RL 271

12

agent interacts with the environment by checking the current state, taking an action, and receiving 272

a reward. All this is designed to mimic a real-world scenario where the learning agent learns by 273

interacting with a solid material containing a single embedded crack. 274

In this paper, the maximum circumferential stress criterion proposed by Erdogan and Sih 275

(1963) is used to determine the direction of fatigue crack growth, where the crack propagates 276

toward a direction which is perpendicular to the direction of greatest tension. Assuming a quasi-277

static crack growth where the dynamic effects like wave propagation does not affect the crack 278

propagation, the crack propagation angle 𝜃𝑝 can be represented as Patricio and Mattheij (2007) 279

𝜃𝑝 = 2 tan−1 (
𝐾𝐼 − √𝐾𝐼

2 + 8𝐾𝐼𝐼
2

4𝐾𝐼𝐼
) (7) 280

where the mode I and II stress intensity factors 𝐾𝐼 and 𝐾𝐼𝐼 are calculated as (Sih et al., 1962) 281

𝐾𝐼 = 𝜎√𝜋𝑙 cos2 𝛽 (8) 282

𝐾𝐼𝐼 = 𝜎√𝜋𝑙 sin 𝛽 cos 𝛽 (9) 283

The most commonly used equation to characterize the mixed-mode fatigue crack growth is 284

the Paris–Erdogan equation (Paris and Erdogan, 1963; Tanaka, 1974): 285

𝑑𝑙

𝑑𝑁
= 𝐶(Δ𝐾𝑒𝑞)

𝑚
(10) 286

where 𝑁 represents the number of loading cycles, 𝑚 is Paris’ exponent, 𝐶 is Paris’ constant, Δ𝐾𝑒𝑞 287

is the stress intensity range. In this paper we assume 𝑚 = 3.77 and 𝐶 = 8.77 × 10−12 𝑚 𝑐𝑦𝑐𝑙𝑒⁄

(𝑀𝑃𝑎∙𝑚0.5)𝑚
. 288

If the length increment Δ𝑙 for each step is small, it can be estimated as (Sajith et al., 2019) 289

Δ𝑙 = 𝐶(Δ𝐾𝑒𝑞)
𝑚

Δ𝑁 = 𝐶(Δ𝐾𝑒𝑞)
𝑚

Δ𝑡𝑓 (11) 290

where Δ𝑁 is the number of loading cycles for each simulation step, Δ𝑡 is the time for each 291

simulation step. We assume Δ𝑡 = 100𝑠 during the simulation. By controlling the stress frequency 292

𝑓, we control the crack propagation length for each time step; thus, the learning agent controls the 293

rate of crack propagation. Many forms of stress intensity range are available in the literature. In 294

this paper, we use the expression that is proposed by Irwin (1957): 295

13

Δ𝐾𝑒𝑞 = √Δ𝐾𝐼
2 + Δ𝐾𝐼𝐼

2 (12) 296

We consider the goal point is reached when the new distance 𝑑𝑛𝑒𝑤 between crack tip and the goal 297

point is less than 10% of the original distance 𝑑. By controlling both the 𝛽 and 𝑓 such that the 298

crack propagates at various propagation angle 𝜃𝑝 and length Δ𝑙 at each time step, the RL agent try 299

to reach each of the desired goal points in one single time step. 300

2.4. Tuning parameters to optimize the reinforcement-learning based control 301

Table 1 summarizes the tuning parameters used during the training stage. To help the agent 302

better explore the state space, we add an Ornstein-Uhlenbeck noise 𝒩𝑡 (Uhlenbeck and Ornstein, 303

1930) to the output of the action network. Ornstein-Uhlenbeck process can be considered as a 304

random walk process or Brownian motion. The main feature of such process is that it tends to 305

converge to the mean value over time. In the simulation, the Ornstein-Uhlenbeck noise can be 306

represented as 307

𝒩𝑡 = 𝒩𝑡−1 + 𝜗(𝜇 − 𝒩𝑡−1)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (13) 308

where 𝜇 is the long term mean level, which is 0 in our paper; 𝜗 is the speed of reversion, which 309

characterizes the velocity at which the trajectory will regroup around the mean 𝜇; and 𝜎 is the 310

instantaneous volatility that measures instant by instant the amplitude of randomness. A higher 𝜎 311

implies more randomness. 𝑑𝑡 represents the time interval. 𝑊𝑡 denotes the Wiener process. In 312

simulation, 𝑑𝑊𝑡 can be modeled as 313

𝑑𝑊𝑡 = 𝑍√𝑑𝑡 (14) 314

where 𝑍 is an independent standard normal variable. In this paper, we make the 𝜎 of the noise 315

subject to exponential decay during the training period, such that the RL agent is encouraged to 316

explore at the early training period and exploit at the late training period: 317

𝜎 = 𝜎0𝑒−𝑘𝑟0 (15) 318

where 𝜎0 is initial instantaneous volatility; 𝑘 is the current index of training episode; 𝑟0 is decay 319

rate, which is expressed as 320

𝑟0 =
5

𝑀
(16) 321

14

where 𝑀 is the total number of training episodes. During the deployment stage, the noise will be 322

removed by setting 𝜎 to 0 for the best control behavior. The actor/critic network learning rate and 323

target networks update rate are chosen to achieve a stable training. The discount factor represents 324

the importance of future rewards. A higher discount factor indicates the future reward is more 325

important. The capacity of replay buffer defines the maximum number of transitions stored. A 326

larger capacity will typically result in a wider range of experience which benefits the stability of 327

training, but it takes longer time to be refreshed with good/new control policy. The minibatch size 328

defines the number of transitions used to update the networks at each step taken by the RL agent. 329

Table 1. Tuning parameters of the deep neural networks during the training stage. 330

Parameter Value

Actor network learning rate 0.00025

Critic network learning rate 0.005

Target networks update rate 𝜏 0.005

Discount factor 𝛾 0.99

Capacity of replay buffer 𝑅 10000

Minibatch size 𝑁 64

Total training episodes 𝑀 30000

Speed of reversion 𝜗 0.15

Time interval in exploration noise 𝑑𝑡 0.01

Initial instantaneous volatility 𝜎0 0.2

 331

2.5. Reward Function 332

The design of the reward function is the most important factor for a successful and stable 333

reinforcement learning result. Through reward shaping, the RL agent learns in a more informative 334

environment (Laud, 2004). Ideally, the reward function provides all the necessary information for 335

the RL agent to learn the optimal control policy while being as simple as possible. A reward that 336

adapts during the learning steps through reward shaping helps the agent to quickly and correctly 337

converge to the desired policy. Such adaptive rewards are better as compared to binary reward that 338

only marks success or failure (Ng et al., 1999). The impact of the reward function on the training 339

results will be discussed in the appendix. In this paper, we design the reward function as 340

𝑟 = [1 − (
3𝑑𝑛𝑒𝑤

𝑑
)

0.2

] + [1 − (
|𝜃𝑑 − 𝜃𝑝|

5
)

0.2

] + [10𝑛 (𝑖𝑓 𝑑𝑛𝑒𝑤 < 0.1𝑑)] (17) 341

15

where 𝑛 is the index of current goal point. In the above equation, the first part indicates that the 342

closer the crack tip is to the goal point, the more reward it receives, while the second part indicates 343

that the closer the crack propagates towards the right direction, the more reward it receives. This 344

kind of shaped reward function biases exploration towards the states that are closer to the goal 345

point, which guides the RL agent to converge to a good control policy. The gradient of the reward 346

function becomes higher as it approaches the optimum states (i.e. 𝑑𝑛𝑒𝑤 = 0 and 𝜃𝑑 = 𝜃𝑝), which 347

encourages the RL agent to get as close as possible to the optimum states. We make sure that the 348

reward is positive most of the time so we can use negative terminals, where the episode terminates 349

early as long as the crack propagates to the wrong direction to avoid wasting time on exploring the 350

less meaningful regions in the state space. Positive rewards encourage the RL agent to keep going 351

to accumulate the reward rather than terminate early to avoid receiving high accumulated penalties. 352

However, it also encourage the RL agent to avoid the terminals, unless reaching the terminal state 353

yields high reward. This will be shown in the appendix. To deal with this problem, we have the 354

third part in the reward function, which is an additional reward if the crack tip is close enough to 355

the goal point. In order to encourage the RL agent to reach the goal points as quick as possible, 356

rather than slowly approach the goal points to accumulate the reward, we make this single-step 357

additional reward higher than the discounted expected cumulative reward gained from slowly 358

approaching the goal point. The single-step additional reward becomes higher as the crack 359

approaches the last goal point. 360

3. Results and Discussions 361

This section shows the RL control of fatigue crack growth direction and rate. In each learning 362

episode, the learning agent will try to maximize the total reward by sequentially reaching the 5 363

goal points as close as possible within the minimum steps (preferably one step for each goal point). 364

Figure 5 shows some of the results in training period. As a reminder, each episode poses a different 365

crack path to the learning agent. We can see the learning agent progressively learns to control the 366

crack propagation by comparing episodes 10000, 15000 and 20000. As the number of training 367

episodes increase to 20000, the propagation of crack tip reaches all the 5 goal points. The reward 368

received for each episode during training period is shown in Figure 6. The curve is noisy and 369

unstable because of the effect of exploration noise. After training, we remove the exploration noise 370

and perform testing, which is also deployment stage for the trained RL agent. Figure 7 shows 371

16

some of the results in testing period. It can be seen that the agent successfully learnt to control the 372

propagation of crack to reach all the 5 goal points sequentially. The reward received for each 373

episode during testing period without exploration noise is shown in Figure 8. Although we gave 374

a relative strict criterion from the training environment to decide if the crack tip is closed enough 375

to the goal point to give the single-step additional reward, the testing period still have a great 376

behavior in terms of controlling. The learning agents exhibit excellent control for all random test 377

cases. 378

 379

Figure 5. The crack propagation paths (top) and corresponding actions (bottom) taken by the RL agent at 380
three training episodes (episodes 10000, 15000 and 20000). The discrete dotted points on top show 381

predefined discrete goal points that the crack propagation need to track. A successful control requires the 382
propagating crack to touch each of the 5 discrete goal points per crack path. RL agent’s action includes an 383

optimal selection of stress angle 𝛽 [−30°, 30°] and stress frequency 𝑓 [10, 100] Hz. The agent 384
progressively learns to control the crack propagation. 385

17

 386

Figure 6. Reward history received by the RL agent during training period. The entire training process of 387
30000 episodes takes 10 minutes on an Intel® Xeon® E5-1650 v3 CPU. The rewards are positive most of 388

the times. The curve is noisy because of the effect of exploration noise. 389

18

 390

Figure 7. The crack propagation paths (top) and corresponding actions (bottom) taken by the RL agent at 391
three testing episodes (episodes 700, 1000 and 2000). The discrete dotted points on top show predefined 392

discrete goal points that the crack propagation need to track. A successful control requires the propagating 393
crack to touch each of the 5 discrete goal points per crack path. RL agent is able to take actions that result 394

in perfect tracking of the predefined crack path. 395

19

 396

Figure 8. Reward history received by the RL agent during testing period. The control was good for all the 397
2000 testing episodes. 398

3.1. Limitations 399

The training is performed in a self-created environment by coupling a simple 2D governing 400

equation for fatigue crack growth, which may not be accurate for modelling the crack propagation 401

in complex heterogeneous materials. We assume a high cycle fatigue crack growth in stage II with 402

crack length higher than 10µm, such that the fatigue crack propagation complies with the Paris–403

Erdogan law. The development of reinforcement learning environment and framework, including 404

the design of reward function and the selection of training parameters, are highly specialized for 405

this particular task. A more generalized environment/framework will be hard to design. The 406

proposed propagation is under sinusoidal uniaxial stress field in an infinite material. 407

Computationally tractable training of the reinforcement learning on physical systems and on 408

large-scale numerical simulations is not easy. Several training episodes are required for the RL 409

agent to find the optimal policy, and the training parameters need to be carefully tuned to promote 410

a fast and precise training process. Like other machine learning methods, poorly designed 411

reinforcement learning suffers from overfitting. The reinforcement learning models need 412

20

continuous interaction with environment as a Markov decision process (MDP), where the next 413

state of the environment depends only on the current state of the environment and the action taken 414

by the agent. The MDP assumption is useful for modeling many real-world sequential decision-415

making problems. However, the MDP assumption is not necessarily true for all systems and 416

processes. Moreover, according to Kober et al. (2013), reinforcement learning suffers from the 417

following disadvantages: 418

(1) Curse of dimensionality, wherein the number of interactions with the environment 419

required for training grows exponentially as the dimension of state space increases; 420

(2) Curse of real-world samples, wherein the physical environment presents several 421

challenges, such as time discretization, delays in sensing and actuation, uncertainty in 422

measurement, disturbance in the environment, inability to observe all states, time, labor and 423

maintenance cost, safety concerns, and external factors, that limit the behavior of reinforcement 424

learning; 425

(3) Curse of under-modeling and model uncertainty when using a digital simulator as 426

the environment is challenging in light of the difficulty in building a sufficiently accurate 427

model when there exist complex mechanical interactions. The control policy learned from a 428

simulated environment often performs poorly in real world, especially when the system is unstable 429

where small variations can cause drastic divergences; 430

(4) Curse of goal specification occurs when it is difficult to define a proper reward function 431

and there exists trade-offs between the complexity of the reward function and the complexity of 432

the learning problem. 433

 434

4. Conclusions 435

The paper is a proof-of-concept development and deployment of a reinforcement learning 436

framework to control both the direction and rate of the growth of fatigue crack embedded in an 437

infinite homogeneous, planar material subject to a sinusoidal uniaxial stress field. To that end, we 438

adapt the deep deterministic policy gradient (DDPG) algorithm and develop robust reward 439

functions. The reinforcement learning scheme learns to control the direction and rate of fatigue 440

21

crack growth by interacting with a simulated environment based on the OpenAI Gym environment 441

and adaptively changing two engineering parameters, namely, stress angle and stress frequency. 442

The Markov decision process, which includes state, action and reward, must be carefully designed 443

so that the reinforcement learning framework can learn an optimal, computational tractable, 444

control policy. The state is defined as the crack half-length, the direction of the current goal point, 445

and the distance between crack tip and the current goal point. 446

The key for robust and accurate control is the design of a good reward function. We designed 447

a reward function to encourage the RL agent to get as close as possible to the optimum states by 448

making the gradient of the reward function become higher as it approaches the optimum states. 449

The reward is positive most of the time to encourage the RL agent to keep going to accumulate the 450

reward rather than terminate early to avoid receiving high accumulated penalties. To prevent the 451

RL agent from avoiding the terminals by slowly moving to the goal point to accumulate the reward, 452

we give the agent an additional high reward if the crack tip is close enough to the goal point to 453

encourage the RL agent to reach the goal points as quick as possible. The RL agent was 454

successfully trained to accomplish the controlled fatigue crack propagation task. 455

Acknowledgment 456

This material is based upon work supported by the U.S. Department of Energy, Office of 457

Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences 458

Division under the Award Number DE-SC0020675. 459

 460

22

Nomenclature 461

Acronyms 462

DDPG = deep deterministic policy gradient 463

MDP = Markov decision process 464

RL = reinforcement learning 465

TD = temporal difference 466

Symbols 467

𝑎 = action 468

𝒜 = action space 469

𝛽 = stress angle 470

𝐶 = Paris’ constant 471

𝑑 = distance between crack tip and the current goal point 472

𝑑𝑛𝑒𝑤 = new distance between crack tip and the current goal point 473

𝑓 = stress frequency 474

𝛾 = discount factor 475

𝐽 = expected return from the start distribution 476

𝑘 = current index of training episode 477

𝐾𝐼, 𝐾𝐼𝐼 = mode I, II stress intensity factors 478

Δ𝐾𝑒𝑞 = equivalent stress intensity range 479

𝑙 = crack half-length 480

𝑙0 = initial crack half-length 481

Δ𝑙 = crack propagation length at each time step 482

𝐿 = mean squared loss 483

𝑚 = Paris’ exponent 484

𝑀 = total number of training episodes 485

𝜇 = long term mean level 486

𝜇(𝑠|𝜃𝜇) = actor network 487

𝜇′(𝑠|𝜃𝜇′
) = target actor network 488

𝑛 = index of current goal point 489

𝑁 = minibatch size or number of loading cycles 490

Δ𝑁 = number of loading cycles for each simulation step 491

𝒩 = Ornstein-Uhlenbeck noise 492

𝑄 = action-value (Q-value) 493

𝑄(𝑠, 𝑎|𝜃𝑄) = critic network 494

𝑄′(𝑠, 𝑎|𝜃𝑄′
) = target critic network 495

𝑟 = reward 496

𝑟0 = decay rate 497

𝑅 = replay buffer 498

𝑠 = state 499

𝒮 = state space 500

𝜎 = stress or instantaneous volatility 501

𝜎0 = initial instantaneous volatility 502

Δ𝑡 = the time for each simulation step 503

23

𝑑𝑡 = time interval 504

𝜏 = target networks update rate 505

𝜃 = weights in the deep neural network 506

𝜃𝑑 = the direction of the current goal point 507

𝜃𝑝 = crack propagation angle 508

𝜗 = speed of reversion 509

𝑊𝑡 = the Wiener process 510

𝑦 = moving target (TD target) 511

𝑍 = an independent standard normal variable 512

Subscripts 513

𝑖 = denotes each transition selected from the replay buffer 514

𝑡 = denotes time step 515

Superscripts 516

′ = denotes target networks 517

𝜇 = denotes actor network 518

𝜇′ = denotes target actor network 519

𝑄 = denotes critic network 520

𝑄′ = denotes target critic network 521

 522

24

Appendix A: Sensitivity of the Reinforcement Learning Framework 523

The effect of neural network size 524

We re-trained the learning agents with smaller and larger neural networks in the same 525

learning environment. The results are shown in Figure A1 and Figure A2, respectively. Both the 526

testing results are poor. We conclude that similar to supervised and unsupervised learning, there 527

exists a “sweet point” of the neural network size. The size can neither be too large nor too small 528

to obtain a good control policy. Large networks lead to overfitting and small networks lead to 529

underfitting. 530

 531

Figure A1. Testing result for the trained learning agent with small neural network size. The average 532
reward is below 0, indicating the agent did not learn anything. 533

25

 534

Figure A2. Testing result for the trained learning agent with larger neural network size. The curve is 535
unstable with a very large uncertainty range, indicating that the learning agent was unable to learn a good 536

control policy. 537

The effect of reward function 538

We re-trained the learning agent in a learning environment where the reward function is 539

represented as 540

𝑟 = [1 − (
3𝑑𝑛𝑒𝑤

𝑑
)

0.2

] + [1 − (
|𝜃𝑑 − 𝜃𝑝|

5
)

0.2

] (18) 541

In the above equation, the additional reward term that encourage the learning agent to reach 542

the goal point is removed. Some of the testing results are shown in Figure A3. We can see that 543

instead of reaching each goal point within one single action step, the agent learned to approach the 544

goal points slowly to accumulate the rewards. Although the desired propagation path is followed 545

and the goal points are matched well, the agent failed to control the rate of propagation. 546

26

 547

Figure A3. Testing results for episodes 100, 200 and 300 for the learning agent trained in a learning 548
environment with a deficient reward function. Although the desired propagation path is followed and the 549

goal points are matched well, the agent failed to control the rate of propagation. 550

 551

The effect of state and action space 552

We trained the RL agent in an environment with a much larger state and action spaces. The 553

state space of 𝑙 is [6.0, 8.2] mm, that of 𝜃𝑑 is [−60°, 60°], and that of 𝑑 is [0.1, 0.55] mm. The 554

action space of 𝛽 is [−60°, 60°] and that of 𝑓 is [10, 1000] Hz. This control task is hard because 555

within such an action space, the crack propagation length at each time step Δ𝑙 can be as small as 556

0.0058 mm and as large as 10.1 mm, depending on the different combination of action parameters. 557

To accommodate the increased state and action spaces, we increase the total number of training 558

episodes to 200000 and the buffer size is increased to 100000. All the other tuning parameters 559

remain the same. The testing result is shown in Figure A4. With more training, the learning agent 560

was able to learn a relatively good control policy for this harder control task, but several cases are 561

missed. This harder task required one order more of training episodes. If the state space is further 562

increased to the following: 𝑙 to [6.0, 10.8] mm, 𝜃𝑑 to [−60°, 60°], and 𝑑 to [0.2, 1.2] mm, and the 563

action space is further increased to the following: 𝛽 to [−60°, 60°] and 𝑓 to [10, 3000] Hz, the 564

27

training results are shown in Figure A5. Unfortunately, the learning agent was unable to learn a 565

good control policy for this much harder control problem. We can conclude that the reinforcement 566

learning is sensitive to the training environment. It can fail in a poorly-defined training 567

environment with large action and state spaces. For such training environments, we may consider 568

to improve the training by implementing prioritized experience replay technique to honor extreme 569

cases, or by using multi-agent reinforcement learning algorithm. 570

 571

Figure A4. Testing result for the learning agent trained in a learning environment with larger state and 572
action spaces. The state space of 𝑙 is [6.0, 8.2] mm, that of 𝜃𝑑 is [−60°, 60°], and that of 𝑑 is [0.1, 0.55] 573
mm. The action space of 𝛽 is [−60°, 60°] and that of 𝑓 is [10, 1000] Hz. The learning agent was able to 574

learn a relatively good control policy for this harder control task, but several cases are missed. 575

28

 576

Figure A5. Testing result for the learning agent trained in a learning environment with even larger state 577
and action spaces. The state space of 𝑙 is [6.0, 10.8] mm, that of 𝜃𝑑 is [−60°, 60°], and that of 𝑑 is 578

[0.2, 1.2] mm. The action space of 𝛽 is [−60°, 60°] and that of 𝑓 is [10, 3000] Hz. The learning agent 579
was not able to learn a good control policy for the harder control task with much larger state and actions 580

spaces. 581

 582

29

References 583

Alegre, Jm, Preciado, M & Ferreño, D 2007. Study of the fatigue failure of an anti-return valve of 584

a high pressure machine. Engineering Failure Analysis, 14, 408-416. 585

Ding, Fei, Zhao, Tianwen & Jiang, Yanyao 2007. A study of fatigue crack growth with changing 586

loading direction. Engineering fracture mechanics, 74, 2014-2029. 587

Erdogan, Fazil & Sih, Gc 1963. On the crack extension in plates under plane loading and transverse 588

shear. Journal of Fluids Engineering. 589

Irwin, George R 1957. Analysis of stresses and strains near the end of a crack traversing a plate. 590

Journal of Applied Mechanics. 591

Jin, Yuteng & Misra, Siddharth 2021. Controlling the Propagation of Mechanical Discontinuity 592

using Reinforcement Learning. Earth and Space Science Open Archive. 593

Kendall, Alex, Hawke, Jeffrey, Janz, David, Mazur, Przemyslaw, Reda, Daniele, Allen, John-594

Mark, Lam, Vinh-Dieu, Bewley, Alex & Shah, Amar. Learning to drive in a day. 2019 595

International Conference on Robotics and Automation (ICRA), 2019. IEEE, 8248-8254. 596

Laud, Adam Daniel 2004. Theory and application of reward shaping in reinforcement learning. 597

Le, Jia-Liang, Manning, Jonathan & Labuz, Joseph F 2014. Scaling of fatigue crack growth in 598

rock. International Journal of Rock Mechanics & Mining Sciences, 72, 71-79. 599

Li, Hao & Misra, Siddharth 2021. Reinforcement learning based automated history matching for 600

improved hydrocarbon production forecast. Applied Energy, 284, 116311. 601

Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa, 602

Yuval, Silver, David & Wierstra, Daan 2015. Continuous control with deep reinforcement 603

learning. arXiv preprint arXiv:.02971. 604

Ma, Hongze, Yu, Gaoming, She, Yuehui & Gu, Yongan. Waterflooding Optimization under 605

Geological Uncertainties by Using Deep Reinforcement Learning Algorithms. SPE 606

Annual Technical Conference and Exhibition, 2019. Society of Petroleum Engineers. 607

Mcbagonluri, F & Soboyejo, W 2005. Mechanical Properties: Fatigue. Encyclopedia of Condensed 608

Matter Physics. 609

Ng, Andrew Y, Harada, Daishi & Russell, Stuart. Policy invariance under reward transformations: 610

Theory and application to reward shaping. Icml, 1999. 278-287. 611

Paris, Paul & Erdogan, Fazil 1963. A critical analysis of crack propagation laws. Journal of Fluids 612

Engineering. 613

Patricio, Miguel & Mattheij, R 2007. Crack propagation analysis. CASA report, 07-03. 614

Qian, J & Fatemi, A 1996. Mixed mode fatigue crack growth: a literature survey. Engineering 615

fracture mechanics, 55, 969-990. 616

Qiu, Chengrun, Hu, Yang, Chen, Yan & Zeng, Bing 2019. Deep deterministic policy gradient 617

(DDPG)-based energy harvesting wireless communications. IEEE Internet of Things 618

Journal, 6, 8577-8588. 619

30

Ray, Sonalisa & Kishen, Jm Chandra 2011. Fatigue crack propagation model and size effect in 620

concrete using dimensional analysis. Mechanics of Materials, 43, 75-86. 621

Sajith, S, Murthy, Ksr Krishna & Robi, Ps 2019. Prediction of Accurate mixed mode fatigue crack 622

growth curves using the paris’ law. Journal of The Institution of Engineers: Series C, 100, 623

165-174. 624

Sander, M & Richard, Ha 2006. Experimental and numerical investigations on the influence of the 625

loading direction on the fatigue crack growth. International journal of fatigue, 28, 583-591. 626

Sih, G. C., Paris, P. C. & Erdogan, F. 1962. Crack-Tip, Stress-Intensity Factors for Plane Extension 627

and Plate Bending Problems. Journal of Applied Mechanics, 29, 306-312. 628

Tanaka, Keisuke 1974. Fatigue crack propagation from a crack inclined to the cyclic tensile axis. 629

Engineering Fracture Mechanics, 6, 493-507. 630

Uhlenbeck, George E & Ornstein, Leonard S 1930. On the theory of the Brownian motion. 631

Physical review, 36, 823. 632

 633

 634

