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Abstract

Isopycnal mixing of tracers is important for ocean dynamics and biogeochemistry. Previous studies have primarily focused on

the horizontal structure of mixing, but what controls its vertical structure is still unclear. This study investigates the vertical

structure of the isopycnal tracer diffusivity diagnosed by a multiple-tracer inversion method in an idealized basin circulation

model. The first two eigenvalues of the symmetric part of the 3D diffusivity tensor are approximately tangent to isopycnal

surfaces. The isopycnal mixing is anisotropic, with principal directions of the large and small diffusivities generally oriented

along and across the mean flow direction. The cross-stream diffusivity can be reconstructed from the along-stream diffusivity

after accounting for suppression of mixing by the mean flow. In the circumpolar channel and the upper ocean in the gyres, the

vertical structure of the along-stream diffusivity follows that of the rms eddy velocity times a depth-independent local energy-

containing scale estimated from the sea surface height. The diffusivity in the deep ocean in the gyres instead follows the profile

of the eddy kinetic energy times a depth-independent mixing time scale. The transition between the two mixing regimes is

attributed to the dominance of nonlinear interactions and linear waves in the upper and deep ocean, respectively, distinguished

by a nonlinearity parameter. A formula is proposed that accounts for both regimes and captures the vertical variation of

diffusivities better than extant theories. These results inform efforts to parameterize the vertical structure of isopycnal mixing

in coarse-resolution ocean models.
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Key Points:5

• Eddies are nonlinear in the circumpolar current and transition from nonlinear to6

linear regimes from upper to deep ocean in the gyres.7

• Mixing in the nonlinear regime is well-represented by the rms eddy velocity times8

a depth-independent energy-containing scale.9

• Mixing in the linear regime follows the vertical structure of the eddy kinetic en-10

ergy times a depth-independent decay time scale.11
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Abstract12

Isopycnal mixing of tracers is important for ocean dynamics and biogeochemistry. Pre-13

vious studies have primarily focused on the horizontal structure of mixing, but what con-14

trols its vertical structure is still unclear. This study investigates the vertical structure15

of the isopycnal tracer diffusivity diagnosed by a multiple-tracer inversion method in an16

idealized basin circulation model. The first two eigenvalues of the symmetric part of the17

3D diffusivity tensor are approximately tangent to isopycnal surfaces. The isopycnal mix-18

ing is anisotropic, with principal directions of the large and small diffusivities generally19

oriented along and across the mean flow direction. The cross-stream diffusivity can be20

reconstructed from the along-stream diffusivity after accounting for suppression of mix-21

ing by the mean flow. In the circumpolar channel and the upper ocean in the gyres, the22

vertical structure of the along-stream diffusivity follows that of the rms eddy velocity23

times a depth-independent local energy-containing scale estimated from the sea surface24

height. The diffusivity in the deep ocean in the gyres instead follows the profile of the25

eddy kinetic energy times a depth-independent mixing time scale. The transition between26

the two mixing regimes is attributed to the dominance of nonlinear interactions and lin-27

ear waves in the upper and deep ocean, respectively, distinguished by a nonlinearity pa-28

rameter. A formula is proposed that accounts for both regimes and captures the verti-29

cal variation of diffusivities better than extant theories. These results inform efforts to30

parameterize the vertical structure of isopycnal mixing in coarse-resolution ocean mod-31

els.32

Plain Language Summary33

Ocean mesoscale eddies mix momentum, heat, carbon and other tracers, which im-34

pacts the ocean environment and Earth’s climate. The mixing of tracers by mesoscale35

eddies is mostly measured on the surface, but the observation of the mixing in the ocean36

interior is rare. It is unclear how eddy mixing varies with depth. We estimated the mix-37

ing by mesoscale eddies in an idealized numerical model, which simulates ocean currents38

and eddies in a basin like the Atlantic Ocean. Mixing decreases with depth in the same39

rate as the characteristic swirling velocity of eddies in the upper ocean, while it decreases40

faster in the deep ocean. This is because as eddies become weak in the deep ocean they41

behave like waves rather than closed swirls. A method accounting for this vertical vari-42

ation is proposed which recovers the vertical structure of eddy mixing over full depth,43

once the characteristic swirling velocity is available.44

1 Introduction45

Ocean mesoscale eddies, with scales of 10s–100s of kilometers, represent the ma-46

jority of the kinetic energy of the ocean circulation (Ferrari & Wunsch, 2009). Stirring47

by mesoscale eddies plays an important role in the transport and mixing of oceanic trac-48

ers, which impacts ocean dynamics (Hallberg & Gnanadesikan, 2006; J. Marshall & Radko,49

2003, 2006; Wolfe & Cessi, 2009, 2010) and biogeochemistry (Steinberg et al., 2019; McGillicuddy Jr50

et al., 2003; Siegenthaler, 1983; Gnanadesikan et al., 2015). The ocean components of51

most climate models do not resolve mesoscale eddies and their impact on tracer stirring52

must be parameterized. The standard parameterizations mimic two aspects of mesoscale53

eddy stirring: the advection of buoyancy or thickness that flattens isopycnals (‘GM’, Gent54

& McWilliams, 1990; Gent et al., 1995, see table 1 for a list of abbreviations used in this55

paper) and diffusion of tracers along isopycnals that reduces mean tracer variance (‘Redi’,56

Redi, 1982). These two schemes can be formulated as a single rank-two diffusivity ten-57

sor with its symmetric part representing the Redi scheme and its antisymmetric part rep-58

resenting the GM scheme (Griffies, 1998). Model simulations are sensitive to the mag-59

nitude and distribution of the coefficients of both the GM and Redi parameterizations60

(J. Marshall & Radko, 2003; Gnanadesikan et al., 2015; J. Marshall et al., 2017; Jones61
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Table 1. List of abbreviations used in this paper.

Abbreviation Description

EKE Eddy kinetic energy
FVU Fraction of variance unexplained
GM Gent and McWilliams (1990) parameterization
MLT Mixing length theory
MTT Mixing time theory
MITgcm Massachusetts Institute of Technology general circulation model
PV Potential vorticity
Redi Redi (1982) isopycnal mixing formulation
rms Root mean square
SLT Steering level theory
SMLT Suppressed mixing length theory
SSH Sea surface height

& Abernathey, 2019), and so these coefficients must be constrained by physical insight62

or measurement. Many theoretical studies have focused on the GM coefficient (e.g., Vis-63

beck et al., 1997; Cessi, 2008; D. P. Marshall & Adcroft, 2010; D. P. Marshall et al., 2012;64

Jansen et al., 2015), leaving the Redi coefficient less well constrained in climate mod-65

els.66

Observational studies have estimated the horizontal distribution of the isopycnal67

tracer diffusivity (i.e., the Redi coefficient) using satellite (J. Marshall et al., 2006; Fer-68

rari & Nikurashin, 2010; R. P. Abernathey & Marshall, 2013) and in situ data (Zhurbas69

& Oh, 2003; Zhurbas et al., 2014; Roach et al., 2018), but direct observations of the full-70

depth diffusivity is only available at two sites: one in the North Atlantic (Ledwell et al.,71

1998) and one in the Southern Ocean (Tulloch et al., 2014). Studies have inferred the72

vertical structure of diffusivity based on the mixing length theory (MLT, Prandtl, 1925;73

Cole et al., 2015; Naveira Garabato et al., 2011) and variations that account for mean74

flow suppression (suppressed mixing length theory or SMLT, Ferrari & Nikurashin, 2010;75

Klocker et al., 2012; Bates et al., 2014; Groeskamp et al., 2020).76

Despite the wide use of MLT and SMLT in ocean studies, its applicability to es-77

timating full-depth diffusivity profiles is still unclear. Assumptions about the form of the78

mixing length for MLT (or unsuppressed mixing length for SMLT) vary from study to79

study. Some studies assume that the unsuppressed mixing length is depth-independent80

and is given by either the observed eddy length scale (Bates et al., 2014; Roach et al.,81

2018) or the local Rossby deformation radius (Groeskamp et al., 2020; Wei & Wang, 2021).82

This assumption leads to a vertical structure of the diffusivity that is controlled by the83

vertical structure of the rms eddy velocity and mean flow. Other studies assume that84

the mixing length does vary in the vertical, and estimate this structure from the Eule-85

rian tracer variance (Cole et al., 2015) or Lagrangian particle dispersion (Griesel et al.,86

2014; Chen et al., 2014; Wolfram & Ringler, 2017). Reconciling these assumptions re-87

quires additional understanding of the vertical structure of eddy properties and a com-88

prehensive comparison of MLT and SMLT against the diagnosed full-depth diffusivity89

in a broad range of flow regimes.90

Additionally, many studies estimate the diffusivity as a scalar, either by assuming91

that mixing is isotropic along isopycnals (e.g., Redi, 1982; Adcroft et al., 2019) or by only92

estimating the cross-stream diffusivity (e.g., Ferrari & Nikurashin, 2010; R. Abernathey93

et al., 2013; Groeskamp et al., 2020). However, isopycnal mixing has been revealed to94

be broadly anisotropic (e.g., Rypina et al., 2012; Fox-Kemper et al., 2013; S. D. Bach-95

man et al., 2020), and diffusivity is better described by a tensor (Fox-Kemper et al., 2013).96
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Accounting for the anisotropy of the mixing is important for accurate representation of97

eddy transport in parameterizations (R. D. Smith & Gent, 2004; S. D. Bachman et al.,98

2020; Stanley et al., 2020). Both Eulerian (S. Bachman & Fox-Kemper, 2013; Fox-Kemper99

et al., 2013; S. D. Bachman et al., 2015, 2020) and Lagrangian (Rypina et al., 2012; Ka-100

menkovich et al., 2015; Wolfram et al., 2015; Chen & Waterman, 2017) methods have101

been used to estimate the anisotropy of mixing, and these estimates are usually consis-102

tent (Fox-Kemper et al., 2013). A feature of this anisotropy is that mixing is typically103

much stronger in the direction of the mean flow than across it (S. D. Bachman et al.,104

2020), which could be due to the enhancement of along-stream mixing by mean flow shear105

(K. S. Smith, 2005, 2007a) or the suppression of cross-stream mixing by eddy propaga-106

tion relative to the mean flow (Ferrari & Nikurashin, 2010; Klocker et al., 2012). A com-107

plete parameterization accounting for this anisotropy requires understanding the scal-108

ing of both along- and cross-stream diffusivities.109

The vertical structure of tracer diffusivity tensor was recently examined by S. D. Bach-110

man et al. (2020). They proposed an anisotropic parameterization in which the cross-111

stream diffusivity is equal to the GM diffusivity and ratio of the along-stream to the cross-112

stream diffusivity is randomly selected from an exponential distribution. This param-113

eterization compared favorably to the vertical profile of the global horizontal average of114

the diffusivity diagnosed from a high-resolution global ocean model using a multiple tracer115

inversion method. However, it is unclear how to interpret this comparison, since a hor-116

izontally averaged horizontal diffusivity is only meaningful if the diffusivity is spatially117

constant—multiplying the averaged diffusivity by a gradient (averaged or not) is unlikely118

to recover the appropriate flux. The vertical structure of eddies is influenced by local baro-119

clinic instability, which varies with location (K. S. Smith, 2007a; K. S. Smith & Marshall,120

2009; Tulloch et al., 2011), and the vertical structure of the cross-stream diffusivity is121

even more complex due to mean flow suppression in regions with differing dynamics (Bates122

et al., 2014; Klocker & Abernathey, 2014; Cole et al., 2015; Groeskamp et al., 2020). The123

extent to which extant theories for isopycnal mixing account for this local variability has124

not been thoroughly studied.125

In this study we address whether MLT and SMLT adequately describe the verti-126

cal variation and anisotropy of tracer diffusivities and whether the mixing length is depth-127

independent. This study considers the vertical structure of the isopycnal diffusivity in128

an idealized basin circulation model that contains multiple gyres, western boundary cur-129

rents and a circumpolar current like the Antarctic Circumpolar Current. We investigate130

the vertical profile of diffusivity at various locations that are controlled by different dy-131

namics, in contrast to S. D. Bachman et al. (2020) who study the profile of globally av-132

eraged diffusivity. The 3D diffusivity tensor is diagnosed using the multiple tracer in-133

version method of S. D. Bachman et al. (2015) to provide a “ground truth” for compar-134

ison to scaling theories for the along- and cross-stream diffusivities. This study verifies135

MLT and SMLT scaling in the upper ocean, but also finds that the mixing regime is dis-136

tinctly different below the thermocline. Here, the diffusivity scales like the eddy kinetic137

energy times a depth-independent mixing time. The difference between these mixing regimes138

is attributed to the dominance by the nonlinear and linear processes in the upper and139

deep ocean, respectively. We propose an improved theory which combines the effects of140

both nonlinear and linear mixing processes.141

The remainder of the manuscript is organized as follows. Section 2 introduces the142

mixing theories examined in this study. Section 3 describes the configuration of the nu-143

merical model and the multiple tracer inversion method used to diagnose the diffusiv-144

ity tensor. Section 4 presents the overall properties of the magnitude and orientation of145

the eigenvalues and eigenvectors of the symmetric part of the diffusivity tensor and their146

vertical structures. The full-depth scaling of the along- and cross-stream diffusivities (first147

two eigenvalues) is discussed in section 5. Section 6 offers a summary and conclusions.148
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Additional material may be found in the appendices. A description of the coher-149

ent eddy identification and tracking algorithm is given in Appendix A. Appendix B con-150

tains a discussion of the robustness of the diagnosed diffusivity and its ability to recon-151

struct the observed tracer fluxes and the geographical distribution of diagnosed mixing152

length and time scales is given in Appendix C.153

2 Theoretical background154

2.1 The diffusivity tensor155

The eddy flux of a tracer with concentration C is often represented using the flux-156

gradient relationship157

u′C ′ = −KKK∇C̄, (1)

where u is the 3D velocity and KKK is a 3×3 diffusivity tensor. The averaging operator158

(·) is typically a some combination of a space and time mean over the scales of interest159

and is explicitly defined in section 3.2. The primes are deviations from this average.160

The diffusivity tensor can be decomposed into a sum of a symmetric and antisym-161

metric parts,162

KKK = SSS+AAA. (2)

The antisymmetric tensor, AAA, gives a skew tracer flux (Griffies, 1998) which behaves like163

a bolus velocity (Gent et al., 1995). This tensor is commonly used to parameterize the164

release of mean potential energy by mesoscale eddies. It is important for ocean dynam-165

ics, but has no contribution to the tracer variance budget. In contrast, the symmetric166

tensor, SSS, determines the diffusive transport of tracers and represents an exchange of tracer167

variance between resolved and unresolved scales. The symmetric tensor reduces (increases)168

resolved tracer variance if it is positive (negative) definite. Any increase in resolved vari-169

ance must be local, since eddy diffusion must reduce global tracer variance to balance170

dissipation. This work aims to study the properties of the tracer diffusion, and so focuses171

on the symmetric tensor.172

The symmetric tensor can be diagonalized as173

SSSφi = κiφi, (3)

where κi (i = 1, 2, 3) are the three eigenvalues along the corresponding eigenvectors,174

φi (i = 1, 2, 3), which indicate the three orthogonal principal mixing directions. Mix-175

ing in the ocean is anisotropic, with the mixing along isopycnals generally much larger176

than that across isopycnals (Redi, 1982). This means that the largest two eigenvalues,177

κ1 and κ2, are expected to represent the mixing along isopycnals, while the smallest eigen-178

value, κ3, represents the mixing across isopycnals. This study focuses on the isopycnal179

mixing, so will primarily analyze κ1 and κ2. The isopycnal mixing is itself also often anisotropic180

in the ocean, with κ1 significantly larger than κ2 (S. D. Bachman et al., 2020). Hereafter,181

κ1 and κ2 are referred to as the “major” and “minor” diffusivity, respectively.182

2.2 Mixing length and mixing time theories183

Mixing length theory (MLT, Prandtl, 1925) is a common framework used to un-184

derstand turbulent mixing. MTL expresses the eddy diffusivity as185

κMLT = ΓMLTurmsL, (4)

where ΓMLT is an order-one nondimensional mixing efficiency, urms is the rms eddy ve-186

locity,187

urms =

√
u′2 + v′2, (5)

–5–
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and L is the “mixing length.” The mixing efficiency, ΓMLT, is traditionally included in188

the expression (4), although it can be absorbed it into the definition of the mixing length.189

We shall adopt this convention and set ΓMLT = 1 in the following. An alternate expres-190

sion for the eddy diffusivity is due to Taylor (1922), who expressed the diffusivity as191

κMTT = EKE τ, (6)

where EKE is the eddy kinetic energy (EKE = u2
rms/2) and τ is a “mixing time.” The192

subscript ‘MTT’ stands for “mixing time theory” in analogy to mixing length theory.193

As with MLT, we have absorbed the (possibly different) mixing efficiency into the def-194

inition of τ . With this convention for the mixing efficiencies, (4) and (6) are equivalent195

if L = urmsτ .196

The mixing lengths and times are, in principle, functions of all three spatial dimen-197

sions and time. The eddies responsible for mesoscale mixing are usually coherent and198

nonlinear in the extratropics (Chelton et al., 2011). These eddies tend to have deep ver-199

tical extents (e.g., Zhang et al., 2014), so the distance between coherent eddies, corre-200

sponding to the mixing length (Thompson & Young, 2006; Gallet & Ferrari, 2020), is201

independent of depth—at least in the upper ocean where the eddies are strong (Bates202

et al., 2014). It is therefore reasonable to expect that the mixing length in (4) is inde-203

pendent of depth where eddies are strong and nonlinear. We refer to the regime where204

the mixing length is depth independent as the “Prandtl regime.” In this regime, the ver-205

tical structure of diffusivity should follow the vertical structure of the rms velocity. We206

show in section 5 that the Prandtl regime provides a good description of mixing in our207

model when eddy mixing is nonlinear in the sense defined in section 2.4.208

Eddy velocities typically decay with depth and at sufficient depth may be weak enough209

that they no longer produce closed PV contours (Zhang et al., 2014). The flow field then210

resembles a superposition of linear waves more than a collection of nonlinear eddies. Re-211

sults from the steering level theory show that the diffusivity associated with linear waves212

takes the form of the EKE multiplied by a depth-independent time scale (e.g., K. S. Smith213

& Marshall, 2009; Griesel et al., 2015). In this regime, the diffusivity is given by (6) with214

a depth-independent mixing time and the vertical structure of the diffusivity follows that215

of the EKE. We refer to this regime as the “Taylor regime” and show in section 5 that216

the Taylor regime holds in our model when the eddies are linear, again in the sense de-217

fined in section 2.4. In general, we expect both regimes to coexist at a single geographic218

location, with the Prandtl regime dominating the upper ocean and a transition with depth219

to the Taylor regime.220

2.3 Suppressed mixing length/steering level theory221

In the presence of strong mean flows, mixing across the mean flow direction is sup-222

pressed relative to the predictions of standard MLT and MTT due to the propagation223

of nonlinear eddies relative to the mean flow (e.g., R. Abernathey et al., 2010; Ferrari224

& Nikurashin, 2010). Ferrari and Nikurashin (2010) and Klocker et al. (2012) derive a225

suppressed mixing length theory (SMLT), which accounts for this suppression and show226

that the cross-stream diffusivity is given by an expression equivalent to227

κSMLT(z) =
κMLT(z)

1 + τ2

L2 [cw − ū(z)]2
, (7)

where κMLT is the unsuppressed diffusivity given by (4), L is the unsuppressed mixing228

length, τ is the eddy decorrelation time scale, cw is the zonal eddy phase speed, and ū229

is the zonal mean flow. While the essence of SMLT is captured by (7) and (4), other ver-230

sions exist with L and τ replaced by other equivalent dimensional parameters (e.g., a wavenum-231

ber and rate rather than a length and time scale) or which differ from (7) and (4) by the232

appearance of nondimensional constants of order one.233
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Steering level theory (SLT), based on linear stability analysis, produces a similar234

expression for the cross-stream diffusivity (Killworth, 1997; K. S. Smith & Marshall, 2009;235

Griesel et al., 2015); however, the interpretation is different since the mixing is consid-236

ered to be due to the growth of linearly unstable waves. The resulting diffusivity, κSLT,237

has a form similar to (7), except that κMLT is replaced by κMTT, and the decorrelation238

time scale, τ , corresponds to the growth or decay time scale of linear waves, which is depth-239

independent (Griesel et al., 2015). Note that the expressions κSMLT and κSLT are equiv-240

alent if L = urmsτ (Ferrari & Nikurashin, 2010; Klocker et al., 2012; Griesel et al., 2015).241

Since the cross-stream diffusivity is suppressed by the mean flow, the along-stream242

diffusivity should be larger than the cross-stream diffusivity. Thus, we expect the sym-243

metric diffusivity tensor, SSS, to be anisotropic with the major diffusivity corresponding244

to along-stream mixing and minor diffusivity to cross-stream mixing.245

2.4 A nonlinearity parameter246

Surface mixing is dominated by nonlinear eddies in the extratropics and by linear247

waves in the tropics (Klocker & Abernathey, 2014; Klocker et al., 2016). Since eddy am-248

plitudes decay with depth, a similar transition from nonlinear to linear mixing should249

occur in the vertical. As is discussed in section 2.2 and 2.3, the vertical structure of dif-250

fusivity is likely to be different in the linear and nonlinear regimes, so it is necessary to251

have a criterion to distinguish these two regimes. A useful nonlinearity parameter is the252

ratio of the rms eddy velocity to the intrinsic propagation speed of coherent eddies,253

r =
urms

c
, (8)

where254

c =

√
(ucoh − ūz)

2
(9)

is the intrinsic propagation speed of coherent eddies, ucoh is their absolute propagation255

velocity, ūz is the depth-averaged mean flow. Chelton et al. (2011), Klocker and Aber-256

nathey (2014), and Klocker et al. (2016) propose similar nonlinearity parameters, although257

the details of the calculation differ slightly from (8) and each other. The eddy propa-258

gation speed is obtained from coherent eddies that are identified and tracked from sea259

surface height (SSH) snapshots as described in Appendix A. The Doppler shift by the260

depth-averaged mean flow, ūz, is removed from the total velocity to obtain the intrin-261

sic eddy speed.262

The linear and nonlinear regimes are determined by r < 1 and r > 1, respec-263

tively. When r > 1, the rotational velocity of the eddy is larger than its propagation264

velocity, so the streamlines within the eddy will close in a frame co-moving with the eddy.265

If r < 1, the streamlines within the eddy are not closed and the eddy is wave-like.266

3 Approach267

3.1 Idealized basin circulation model268

This study uses an idealized configuration of Massachusetts Institute of Technol-269

ogy general circulation model (MITgcm, J. Marshall, Adcroft, et al., 1997; J. Marshall,270

Hill, et al., 1997; Campin et al., 2020) used by several previous studies (Wolfe et al., 2008;271

Cessi & Wolfe, 2009; Wolfe & Cessi, 2009, 2010, 2011; Cessi et al., 2010; Wolfe, 2014).272

The model is formulated in a two-hemisphere basin on an equatorial β-plane (β = 2.3×273

10−11 m−1s−1) with a flat bottom. The model domain has width W = 2440 km in zonal274

direction, length L = 9880 km in meridional direction and a uniform depth H = 2440275

m, with no-slip vertical walls on the boundaries, except for the southern eighth of the276

domain, where the flow is zonally reentrant (figure 1). The horizontal resolution is 5.4277

km. The vertical grid spacing varies from 13 m at the surface to 274 m at the bottom278

with a total of 20 vertical levels.279

–7–
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Figure 1. (a) 30-year mean sea surface height (SSH) field in centimeters from the idealized

eddy-resolving basin model. The contour interval is 5 cm and negative contours are dashed. (b)

Snapshot of the instantaneous surface layer vorticity divided by the Coriolis frequency, f , (colors)

and sea surface height (shading) from the same model. The shading around the edges of (a) and

(b) are the walls on the boundary. There is a circumpolar channel in the southernmost eighth of

the domain. (c) Zonal wind stress, τw, (orange line) and surface relaxation temperature, Tsurf,

(blue line) as functions of y. The orange dashed line gives the zero of τw. Black dashed lines

divide the domain into different circulation regimes, marked by the black labels.

–8–
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The model is forced by zonally uniform zonal winds (orange line in figure 1c) and280

a relaxation to a zonally uniform surface temperature distribution (blue line in figure 1c),281

an idealization of the forcing in the Atlantic Ocean. The dissipation is provided by the282

horizontal Laplacian viscosity (Ah = 12 m2 s−1), horizontal biharmonic viscosity (A4 =283

9 × 108 m4 s−1), vertical viscosity (Av = 3 × 10−4 m2 s−1), and linear bottom drag284

(rd = 1.1 × 10−3 m s−1). Buoyancy is a linear function of temperature only, which is285

advected using a seventh-order monotonicity-preserving scheme (Daru & Tenaud, 2004)286

and diffused with a constant isotropic diffusivity (κ = 4.9×10−5 m2 s−1) in both hor-287

izontal and vertical directions. The model starts from equilibrated fields from previous288

studies (e.g. Wolfe & Cessi, 2009, 2010). The velocity, temperature and eddy statistics289

are averaged online and saved every half year for 30 years. Figure 1a shows the mean290

surface flow fields in the model. The model contains multiple gyres, boundary currents,291

and a zonally reentrant channel flow analogous to the Antarctic Circumpolar Current.292

Figure 2 compares the model horizontal resolution to the zonally averaged Rossby293

deformation radius of the first baroclinic mode, Ld, calculated by solving a numerical294

Sturm-Liouville problem. The horizontal grid spacing is less than half of Ld, except near295

the northern boundary and in the zonally reentrant channel. Consistent with the results296

of (Tulloch et al., 2011), the length scale of the most unstable mode of baroclinic insta-297

bility in the channel is about two times Ld (not shown), which is resolved by the model,298

except very near the southern boundary. Mesoscale eddies are therefore sufficiently re-299

solved in the northern half of the channel, although we acknowledge that higher reso-300

lution would be ideal. Figure 1b gives a snapshot of the surface vorticity normalized by301

the local Coriolis frequency (i.e., the local Rossby number) and SSH anomaly fields, which302

shows that rich eddy fields are resolved in most parts of the model domain, including303

the channel. The Rossby number is much less than one in most of the domain, except304

in the tropics. Fine scale features with large Rossby numbers appear at the boundary305

of the tropics, which suggests that submesoscale processes are marginally resolved there.306

The use of a β-plane is primarily for the convenience of Cartesian coordinates and307

may appear to restrict the dynamical regime to be either β-dominated or shear-dominated308

(depending on the value of β). However, while the dimensional value of β is fixed in the309

β-plane approximation, the dynamical impact of β is measured by the Charney-Green310

number (Charney, 1947; Green, 1960). This number measures the relative importance311

of PV gradients due to β and vertical shear and can be written as312

β⋆ =
βLd

σE
, (10)

where Ld is the Rossby deformation radius and σE is the Eady growth rate, estimated313

as314

σE = f

√
1

H

∫ 0

−H

|ūz|2

N2
dz, (11)

where |ūz| is the magnitude of the mean vertical shear (K. S. Smith, 2007b) and N is315

the Brunt-Väisällä frequency estimated from the mean buoyancy field, where the mean316

is a 20-year average. Both of Ld and σE vary by more than an order of magnitude within317

the model domain. The resulting Charney-Green number varies from much larger than318

one in the tropics to much less than one at high latitudes (orange line in figure 2), re-319

flecting β dominance at low latitudes and shear dominance at high latitudes. Thus, while320

β is fixed, the effective β varies over a wide range.321

3.2 Diagnosing the diffusivity tensor based on a tracer-based inversion322

method323

The nine-component diffusivity tensor is diagnosed using the tracer-based inver-324

sion method of S. D. Bachman et al. (2015, 2020), which is used as the “ground truth”325
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Figure 2. Zonal average of the Rossby deformation radius (blue solid line) and the Charney-

Green number, β∗, (orange solid line) as a function of y. Black and cyan dashed lines indicate

one and two times the model’s horizontal grid spacing. Blue, orange, green and red shadings

indicate the locations where we analyze the vertical profiles of diffusivities in figure 5.

to test against the existing scaling theories. An advantage of this method is that it ac-326

counts for the anisotropy of eddy diffusion by diagnosing each component of a diffusiv-327

ity tensor using multiple tracers, rather than simply calculating a scalar diffusivity based328

on the flux-gradient relationship of a single tracer. At least three different tracers are329

required to uniquely solve for the nine components of the diffusivity tensor, but to re-330

duce the noise and bias due to the choice of tracers we use more than three tracers to331

overdetermine the diffusivity tensor and solve for the diffusivity using a least squares method332

(S. D. Bachman et al., 2015, 2020).333

A total of 27 passive tracers, Cα, are advected with the velocity field of the model334

according to335

DCα

Dt
= λα

(
C0

α − Cα

)
, (12)

where λα is the relaxation rate and C0
α is the initial condition of αth tracer. The 27 trac-336

ers are divided into 3 sets; each set is relaxed to the initial conditions with relaxation337

time scales of 1 year for tracers 1–9, 3 years for tracers 10–18, and 9 years for tracers 19–338

27. Tracers in each set are initialized with 9 different conditions,339

C0
1,10,19 =

y

L
, C0

2,11,20 = sin
πy

L
, C0

3,12,21 = cos
πy

L
,

C0
4,13,22 = sin

2πx

W
, C0

5,14,23 = cos
2πx

W
, C0

6,15,24 = sin2
πx

W
,

C0
7,16,25 =

H − 2z

H
, C0

8,17,26 = cos
πz

H
, C0

9,18,27 = sin
2πz

H
,

(13)

These tracer distributions are chosen because they are simple and linearly independent;340

they are similar to those chosen by S. D. Bachman et al. (2020). The diagnosed diffu-341
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sivity is not sensitive to the details of the tracer initial conditions provided sufficient trac-342

ers are used. The linear independence of tracers is maintained by the relaxation in (12).343

Different relaxation rates will cause the tracers that have the same initial distributions344

to misalign relative to each other during the simulation, so that tracers with identical345

initial conditions but different relaxation rates will, in general, have linearly independent346

equilibrium distributions.347

Tracer concentrations and fluxes equilibrate after approximately 10 years and are348

then time-averaged online over 20 years. The time-averaged quantities are then coars-349

ened onto a 152 km horizontal grid by spatial averaging and gradients calculated on the350

coarsened grid. The coarsening scale is chosen because it is coarse enough to separate351

the mesoscale from the large scale poleward of the tropics but still fine enough to cap-352

ture spatial variability. The specific value of 152 km is an even number of uncoarsened353

grid cells (28) and exactly divides the domain into 64 × 16 coarsened grid cells in the354

meridional and zonal directions, respectively. Coarsening scales of 76 km and 304 km355

were also tested and gave similar magnitudes, spatial variations, and probability distri-356

butions of diffusivities as the 152 km case.357

The 3D eddy diffusivity tensor, KKK, is diagnosed by inverting the flux-gradient re-358

lationship359

KKK = −u′C ′
[
∇C̄

]†
, (14)

where C is a row vector of the 27 tracers, (·) is a 20-year and 152-km spatial average,360

(·)′ is the deviation therefrom, and (·)† denotes the Moore-Penrose pseudoinverse (Moore,361

1920; Penrose, 1955). The pseudoinversion solves for KKK in a least squares sense while au-362

tomatically removing linearly dependent combinations of tracers. Using a large number363

of tracers guards against rank-deficiency when tracer distributions “accidentally” align364

and significantly reduces the dependence of the diffusivity on the choice of a particular365

set of tracers (S. D. Bachman et al., 2015). We show in Appendix B that the diagnosed366

diffusivity is able to accurately reconstruct local eddy tracer fluxes, including those trac-367

ers that are not used to determine the diffusivity. This means that, unlike the methods368

of Kamenkovich et al. (2021) and Sun et al. (2021), pseudoinversion produces a diffu-369

sivity tensor that is generic; that is, it is not strongly dependant on the tracers used to370

diagnose it.371

4 Structure of the symmetric diffusivity tensor372

4.1 Anisotropy and orientation of the mixing373

The horizontal distribution of the three eigenvalues of the symmetric diffusivity ten-374

sor, SSS, at 138 m depth is shown in figure 3. The first two eigenvalues, κ1 and κ2, are nearly375

horizontal and much larger than the third eigenvalue, κ3, which is almost vertical. Fig-376

ure 4a shows the histogram for the angles between the direction of each eigenvector and377

the buoyancy gradient normalized by the angle between the buoyancy gradient and the378

vertical direction. This normalization is necessary because isopycnal slopes are them-379

selves small, so small absolute angles do not necessary imply that the mixing directions380

are aligned with isopycnals (but small normalized angles do). The eigenvectors and their381

angles with the buoyancy gradient are shown in the schematic in figure 4c. The direc-382

tions of κ1 and κ2 are nearly along the isopycnals (i.e., are epipycnal) at a majority of383

grid points, while the direction of κ3 is predominantly diapycnal. Values in the tail of384

the distribution are primarily from the deep tropics and regions of active convection. These385

places are weakly stratified and isopycnal slopes are difficult to determine numerically.386

Epipycnal diffusion by mesoscale eddies, represented by κ1 and κ2, plays an im-387

portant role in tracer transport along isopycnals, which have been widely investigated388

in oceanic observations (e.g., Stammer, 1998; Zhurbas & Oh, 2003, 2004; J. Marshall et389

al., 2006; R. P. Abernathey & Marshall, 2013; Cole et al., 2015; Groeskamp et al., 2017;390
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Figure 3. Eigenvalues for the symmetric part of the diffusivity tensor at 138 m depth as a

example. Black lines indicate the horizontal direction of the corresponding eigenvectors. The last

eigenvalue κ3 is almost vertical, so the horizontal components of its eigenvector are small. Blue

lines are the mean flow streamlines. Black boxes labeled by numbers are the regions where the

vertical structures of the diffusivities are analyzed.

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Roach et al., 2018) and is also the focus of this study. Diapycnal mixing, although im-391

portant, is more likely to be induced by submesoscale, fine-scale, or microscale processes392

which are not resolved in this model. The diapycnal diffusivity, κ3, is therefore not the393

focus in this study since it excludes these important contributions.394

(c)

Figure 4. (a) Probability distribution function of the angles, α1,2,3, between the three eigen-

vectors, φ1,2,3, and the mean buoyancy gradient, ∇b̄, normalized by the angle, α0, between the

mean buoyancy gradient and the vertical direction, ẑ, with (α1,2 − 90◦)/α0 in blue and orange,

respectively, and α3/α0 in green. Small values of (α1,2 − 90◦)/α0 indicate that the eigenvectors

are nearly perpendicular to the mean buoyancy gradient. (b) Probability distribution function of

the ratio of the major to the minor diffusivities. (c) Schematic for the angles between three eigen-

vectors and the mean buoyancy gradient. The blue curved surface indicates an mean isopycnal

surface and the solid black line indicates the mean buoyancy gradient. The angle, α0, between

the mean buoyancy gradient and the vertical direction (solid green arrow) is indicated in red.

The dashed black lines indicate the directions of the three eigenvectors, φ1,2,3, with the angles

between these and the buoyancy gradient, α1,2,3, indicated in red. Note that the mixing direc-

tions are ±φi since eigenvectors are sign invariant; reversing the direction of φi does not change

the angle αi.
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The magnitude of κ1 is 2–3 times larger than κ2 on average (figure 4b), indicat-395

ing that the isopycnal mixing is anisotropic. Hereafter κ1 and κ2 will be denoted as the396

major and minor isopycnal diffusivities, respectively. The horizontal direction of the ma-397

jor diffusivity, κ1, is primarily aligned with the mean flow, with an exception in the sub-398

tropical gyres, while the direction of the minor diffusivity κ2 is primarily across the mean399

flow, orthogonal to the major diffusivity (figure 3; see also figure 6). Both the major and400

minor diffusivities are occasionally negative—this primarily occurs in the equatorial cur-401

rent regions, western boundary current and its extensions, and the northwest corner of402

the circumpolar current (figure 3). In these regions the advection of tracer variance by403

mean flow is significant, which can allow upgradient eddy tracer fluxes. This can be un-404

derstood by considering the tracer variance budget,405

∂

∂t

C ′2

2
+∇ ·

(
u
C ′2

2

)
+ u′C ′ · ∇C̄ = C ′D′ + C ′S ′, (15)

where C ′2/2 is the tracer variance, D represents dissipation, and S represent sources (i.e.,406

relaxation). Assuming a statistically steady state with weak relaxation and invoking the407

flux-gradient parameterization of the eddy fluxes, the tracer variance budget becomes408

∇ ·

(
u
C ′2

2

)
−∇C̄ · SSS · ∇C̄ ≈ C ′D′ < 0, (16)

where the less-than sign emphasizes that dissipation is a sink of tracer variance. The sign409

of the diagradient flux term, ∇C̄ ·SSS ·∇C̄, depends on the signs of the eigenvalues of SSS410

(i.e., the diffusivities). This term is positive- (negative-) definite if all the diffusivities411

are positive (negative); otherwise it is sign-indefinite. If advection of tracer variance [first412

term on the LHS of (16)] is negligible or divergent, the cross-gradient term—and thus413

the diffusivities—must be positive to balance dissipation. On the other hand, significantly414

convergent variance advection can overwhelm dissipation and negative diffusivities are415

required to balance the sum of advection and dissipation.416

Note that S. D. Bachman et al. (2020) also find negative diffusivities in energetic417

regions unless they constrain their inversion to only produce positive diffusivities. There418

is no physical reason to insist that eddy diffusivities be positive and constraining them419

to be so degrades the ability of the diffusivities to reconstruct the modeled tracer fluxes,420

so we have avoided implementing such a constraint. On the other hand, we avoid con-421

sidering the negative diffusivities in detail due to a relative lack of theoretical results for422

negative diffusivities on which base our analysis. Examination of the negative diffusiv-423

ities will be pursued in the future work.424

4.2 Vertical structure425

The vertical structure of the isopycnal diffusivity is less well understood than the426

horizontal structure due to the sparsity of full-depth observations (Groeskamp et al., 2020).427

This study seeks to relate the vertical structure of the diffusivity to the dynamical prop-428

erties in four typical regions with different dynamics: the circumpolar current, subtrop-429

ical gyre, western boundary current, and transition between subtropical and subpolar430

gyres (shown by the black boxes labeled 1, 2, 3, and 4, respectively, in figure 3). The ver-431

tical profiles of the first two eigenvalues are analyzed in 600 km × 600 km boxes (black432

boxes in figure 3) in the four regions.433

The vertical structures of the magnitude of κ1 and κ2 in these four regions are shown434

in figure 5. The vertical structures of diffusivities are similar within each region, except435

in the western boundary current where the local variation is large. The horizontal dis-436

tribution of diffusivities in the western boundary current extension is complicated by the437

stability of the jets, wave radiation and formation of recirculations, which can lead to438

both positive and negative diffusivities (Waterman & Jayne, 2011; Chen & Waterman,439
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2017). For example, the eddy diffusivity is positive in the upstream part of the exten-440

sions (which stabilizes the jet) and becomes negative further downstream, driving the441

flanking recirculations (Waterman & Jayne, 2011). A detailed study on the mean flow442

dynamics and tracer variance budget in this region is, however, out of the scope of the443

current work.444

The magnitude of κ1 is generally several times larger than κ2, especially near the445

surface (figure 5), indicating strong anisotropy there. The major diffusivity, κ1, decreases446

monotonically with depth, except in some levels near the surface, while the minor dif-447

fusivity, κ2, tends to have a subsurface maximum, which can reach to 1000 m in the cir-448

cumpolar current and is shallower than 500 m depth in the other three regions. The cross-449

stream diffusivity in the Southern Ocean has also been observed to have a subsurface450

maximum (K. S. Smith & Marshall, 2009; R. Abernathey et al., 2010), which is explained451

to be due to the suppression of mixing by the mean flow (Ferrari & Nikurashin, 2010;452

Klocker et al., 2012; Wolfram & Ringler, 2017; Chapman & Sallée, 2017). Since the di-453

rection of the minor diffusivity, κ2, is mostly across the mean flow as well, we expect the454

vertical structure of κ2 is affected by the mean flow suppression, which will be tested in455

the following section. The major diffusivity, κ1, on the other hand, is mostly along the456

mean flow direction, which has been shown to be less impacted by the mean flow sup-457

pression than the cross-stream diffusivity (Riha & Eden, 2011; Griesel et al., 2014; Chen458

et al., 2014).459

Figure 6 shows the vertical structure of the orientation of φ1 and φ2 in the four460

regions. The direction of φ1 (φ2) is generally along the zonal (meridional) direction in461

the upper levels of the four regions, and it is almost along (across) the direction of the462

mean flow above 1000 m in the four regions. In the deep levels φ1 is less aligned with463

the mean flow, perhaps because the mean flow is weak at depth (figure 7) and the in-464

terior PV gradient plays a more important role in the mixing direction (S. D. Bachman465

et al., 2020). In the subtropical gyre the direction of mean flow is not well-defined, be-466

cause of the strong veering of the mean flow with depth (figure 7). In the circumpolar467

current the mixing directions veer from the mean flow direction at around 1000 m where468

magnitude of the major and minor diffusivities are similar. That means the mixing is469

nearly isotropic at those depths and the mixing directions become arbitrary. This is likely470

because the mean flow becomes weak at depth and no longer acts to suppress the cross-471

stream diffusivity.472

5 What determines the vertical structure of the diffusivities?473

The diffusivities, κ1 and κ2, determine tracer mixing along isopycnals, which has474

important impacts on the mean flow (Fox-Kemper et al., 2013; Bates et al., 2014; Chap-475

man & Sallée, 2017; S. D. Bachman et al., 2020). Understanding the physical mechanism476

that gives rise to the anisotropy and vertical structure of these diffusivities can guide their477

parameterization in coarse-resolution models. Here we test the vertical structure of κ1478

and κ2 against the existing theories. Specific interest is attached to the source of the anisotropy479

of the isopycnal mixing and the applicability of MLT and SMLT to the full-depth dif-480

fusivities.481

5.1 Source of the anisotropy482

The major diffusivity, κ1, is generally along the mean flow and is several times larger483

than the minor diffusivity, κ2. What is the source of this anisotropy? Extant theories484

often suppose that along-stream mixing is dominated by shear-dispersion (Taylor, 1953;485

Young et al., 1982; K. S. Smith, 2005, 2007a), which leads to the shear-dispersion dif-486

fusivity487

κSD ∼ U2l2s
κ⊥

, (17)
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Figure 5. Vertical profiles of the isopycnal diffusivity in the four regions indicated by the

black boxes in figure 3. The four regions labeled 1, 2, 3, and 4 in figure 3 are located in the (a)

circumpolar current, (b) subtropical gyre, (c) western boundary current, and (d) transition be-

tween the subtropical and subpolar gyres, respectively. Blue and orange lines give the vertical

profiles of the major diffusivity, κ1, and minor diffusivity, κ2, respectively, at all grid points in the

four regions. The thick lines highlight the profiles at the geographic center of the four regions;

these profiles are used to illustrate predictions for their vertical structure shown in figures 8 and

11.

–16–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

0 100

2000

1500

1000

500

0

De
pt

h 
(m

)

(a) Circumpolar Current

0 100

(b) Subtropical Gyre

1
2

u
u

0 100
Angle (degrees)

2000

1500

1000

500

0

De
pt

h 
(m

)

(c) Western Boundary Current

0 100
Angle (degrees)

(d) Transition

Figure 6. As in figure 5, but for the angles of the eigenvectors φ1 (blue line), φ2 (orange

line) and the mean flow (green solid line) in degrees relative to the zonal direction. The direction

opposite the mean flow (green dashed line) is also compared with the principal mixing directions
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velocity averaged over 20 years and horizontally averaged over the same four regions as in figure

5. Note that a portion of the abscissa, from −0.09 to −0.02 m/s, is cut out in (c) and (d) to keep

small variations of mean flow visible. The surface meridional velocity is large because the surface

meridional flow is dominated by Ekman flow and the Ekman layer is confined in the first vertical

grid cell in this model.
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where U is a scale for the mean flow, ls is the scale of the mean flow shear, and κ⊥ is488

the cross-stream diffusivity. However, attempts to use (17) to scale κ1 did not show good489

agreement (not shown), which suggests that shear dispersion is not playing a strong role490

in determining κ1.491

Another possible source of anisotropy is the suppression of cross-stream mixing by492

the mean flow, which is explained by SMLT and SLT (e.g., K. S. Smith & Marshall, 2009;493

Ferrari & Nikurashin, 2010; Klocker et al., 2012). Both SMLT and SLT construct the494

cross-stream diffusivity as a background eddy diffusivity times a suppression factor, Fs,495

defined as496

Fs(z) =
1

1 + τ2

L2 [cw − ū(z)]2
, (18)

which estimates the suppression of diffusivity due to the propagation of nonlinear ed-497

dies relative to the mean flow, where L, τ , cw and ū are as in (7). Here ū is obtained from498

the model (ū is simply taken as the zonal mean flow because we find that the suppres-499

sion factor containing the zonal mean flow dominates over that containing the merid-500

ional mean flow since the zonal eddy phase speed is much stronger than the meridional501

speed), and cw is estimated following Klocker and Marshall (2014):502

cw = ūz − βL2
d, (19)

where ūz is the depth-averaged zonal mean flow.503

The diagnosed cross-stream diffusivity, κ2, is compared with the suppressed along-504

stream diffusivity, κ1Fs. The fit of κ1Fs to the profiles of κ2 at the center of the four re-505

gions is shown by the orange solid line in figure 8, where the τ/L in (18) is treated as506

a single depth-independent parameter following Bates et al. (2014) and obtained by least507

squares fitting, which minimizes the vertical integral of the squared difference between508

κ1Fs and κ2 in each profile. The minimization algorithm we use is the Trust Region Re-509

flective algorithm, implemented by the Optimize function in SciPy version 1.7.3. The510

bounds for the fitting parameters are set to be between 0 and infinity. The suppressed511

major diffusivity, κ1Fs, captures the vertical maximum and variation of κ2 well in these512

regions, except in the western boundary current where negative values of diffusivity spoil513

the scaling.514

The goodness of fit for the scaling theory is quantified by the fraction of variance515

unexplained (FVU),516

FVU =

∫ 0

−H
(κobs − κfit)

2dz∫ 0

−H
(κobs − κ̄z

obs)
2dz

, (20)

where κobs is the diagnosed diffusivity, κz
obs is the vertical average of κobs, and κfit is the517

prediction by the scaling theory. A smaller FVU indicates a better fit. If FVU is larger518

than one, that means κfit explains less of the vertical variation of κobs than the mean519

of κobs.520

Figure 9a shows the distribution of the FVU evaluated for the vertical profile of521

κ2 at each coarsened grid cell. The formula κ1Fs provides a good model for κ2 in most522

of the extra-tropics except near the boundaries. This suggests that the along- and cross-523

stream diffusivities satisfy the same scalings, with the difference due to the suppression524

of cross-stream mixing by the mean flow. The anisotropy of the diagnosed isopycnal dif-525

fusion thus appears to be primarily due to the mean flow suppression effect.526

5.2 Mixing regime transition with depth527

Section 5.1 shows that the minor diffusivity, κ2, can be reconstructed from the ma-528

jor diffusivity, κ1, after accounting for the mean flow suppression effect. The vertical pro-529

file of the mean flow can be diagnosed from hydrography or the resolved flow in coarse530
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Figure 8. Scaling of the minor diffusivity, κ2 (blue solid line with dots), at the center of the

four regions, shown in figure 5. Orange lines show the fit for the vertical structure of κ2 to the

formula of κ1Fs (Fs expressed in (18)). Note that the negative values of the diffusivity are ex-

cluded from the fit. The purple and red dashed lines show the estimate with SMLT, urmsL0F
0
s,

and the suppressed composite scaling, κcompF
0
s, respectively, where the mixing length and time

scales in the suppression factor F0
s is estimated as the energy containing scale, L0, and a uniform

decay time scale, τ0 = 24 days, respectively—see section 5.4.
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resolution models, so the remaining unknown is what determines the vertical structure531

of the major diffusivity.532
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Figure 10. Vertical structure of the nonlinearity parameter, (8), (blue line) in the four regions

shown in figure 5. The orange dashed line gives r = 1 and the red dashed line indicates the strat-

ification scale depth, h0.

As discussed in section 2.2, mixing is likely controlled by different dynamics at dif-533

ferent depths if there is a transition from a nonlinear to a linear regime with depth. The534

nonlinear and linear regimes can be distinguished by whether the nonlinearity param-535

eter r defined by (8) is greater or less than unity, respectively. Figure 10 shows the ver-536

tical variation of r in the four regions. Also shown for reference is the stratification scale537

depth, h0,538

h0 =

∫
zN2 dz∫
N2 dz

, (21)

which is a proxy for the base of the thermocline. The scale depth would be equal to the539

e-folding depth if the stratification were exponential. Outside of the circumpolar cur-540

rent, the parameter r decays rapidly above the thermocline and then asymptotes to a541

value less than 1 below thermocline. In the circumpolar current, r > 1 over the full depth.542

This indicates that eddies in the circumpolar current are nonlinear over whole water col-543
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umn, while in the other three regions nonlinear dynamics dominates above the thermo-544

cline and linear dynamics is more significant below it. Parameterizations of full-depth545

mixing should account for this regime transition to produce the correct vertical struc-546

ture of mixing.547
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Figure 11. Scaling of the major diffusivity, κ1 (blue solid line with dots), at the same lo-

cations as in figure 8. The depth where the nonlinearity parameter r = 1 is indicated by black

dashed lines in panels (b–d). Green lines show fits to the Prandtl regime (4) and orange lines

show fits to the Taylor regime (6). The Prandtl and Taylor regime fits are only performed for

depths where r > 1 and r < 1, respectively, but the profiles are shown over the full depth. Tay-

lor regime predictions (orange) significantly overestimate the diffusivity in the upper ocean and

would extend far to the right of panels (b–d) if shown. Note that no Taylor regime fit is per-

formed for panel (a). Purple dashed lines show Prandtl regime profiles with the mixing length

estimated as the energy containing scale, L0, instead of by fitting. Red dashed lines show com-

posite profiles, (25), with the mixing length as the energy containing scale, L0, and mixing time

scale as a uniform constant, τ0 = 24 days—see section 5.4.

The major diffusivity, κ1, at the center of the four regions is shown in figure 11.548

The diffusivity is fit to the Prandtl regime (4) and Taylor regime (6) over depths where549
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the nonlinearity parameter is larger and smaller than unity, respectively. The green and550

orange solid lines in figure 11 show the fits for the Prandtl and Taylor regimes, respec-551

tively. The Prandtl regime closely captures the vertical variation of κ1 over full depth552

in the circumpolar current, while in the three basin regions, the Prandtl regime works553

well in the upper several hundred of meters where the flow is nonlinear but overestimates554

the diffusivity at depth. The Taylor regime captures the vertical structure of κ1 well in555

the deep ocean in the three basin regions, where the flow is linear. Although the deep556

diffusivity is small, the mixing time scale is comparable to the mean flow advection time557

scale, so the mixing can still significantly impact deep water masses and circulation on558

climatological timescales. These results show that the mixing regime transitions from559

the Prandtl regime to the Taylor regime from the upper to deep ocean in the three basin560

regions, because of the dominance by nonlinear eddies and linear waves in the upper and561

deep ocean, respectively.562

To further verify the correspondence between the Prandtl (Taylor) regime and non-563

linear (linear) regime, the vertical profile of the major diffusivity at each grid point is564

divided into two segments with r > 1 and r < 1 and compared to the Prandtl and565

Taylor regimes, respectively. Figure 12a and 12b show the misfit ratio, FVU, for the fit566

of κ1 at depths where r > 1 to the Prandtl regime (4) and the fit at depths where r <567

1 to the Taylor regime (6), respectively. In the circumpolar current, r is larger than 1568

over almost full depth, while in the tropics, r is smaller than 1 over full depth (regions569

where no coherent eddy is detected are regarded to be linear over full depth). The FVU570

for the fits of both (4) and (6) is smaller than 0.5 in most regions, meaning that the mix-571

ing in nonlinear regime is well-described by the Prandtl regime and the mixing in lin-572

ear regime is well-described by the Taylor regime. The mixing regime transitions from573

Prandtl to Taylor regimes from the upper to deep ocean in the subtropics and midlat-574

itudes where eddies are nonlinear and linear in the upper and deep ocean, respectively.575

In the circumpolar current, where eddies are nonlinear over full depth, the mixing is well-576

described by the Prandtl regime. In the tropics, where eddies are linear over full depth,577

the Taylor regime works well. Large values of FVU are found along the western and south-578

ern boundaries, which might be related to the eddy decay due to the lateral friction at579

the boundary.580

Previous studies have found a transition from linear to nonlinear regime from trop-581

ics to midlatitude for the surface tracer mixing in the ocean, and the mixing in the non-582

linear regime in midlatitudes is well-scaled by Prandtl MLT (Klocker & Abernathey, 2014;583

Klocker et al., 2016). This is consistent with our results in figure 12a. This study fur-584

ther finds that such regime transition also happens with depth in the midlatitude ocean,585

and the mixing in linear regime in fact is better characterized by the Taylor regime. The586

Taylor regime also works for the mixing in the tropics shown in figure 12b, which can587

complement previous studies to interpret the mixing in global ocean.588

5.3 Mixing length scale589

While the upper-ocean diffusivity is well-modeled by MLT with a depth-independent590

mixing length, the question of what determines this mixing length remains. The mix-591

ing length is commonly associated with the scale of the energy containing eddies (Larichev592

& Held, 1995; Stammer, 1998; Ferrari & Nikurashin, 2010; Klocker & Abernathey, 2014),593

though the method to estimate this energy containing scale differs. The most straight-594

forward definition of the energy containing scale is simply the peak of the surface EKE595

spectrum (Larichev & Held, 1995), however resolving this peak accurately in wavenum-596

ber space requires large spatial windows that are problematic in the spatially inhomo-597

geneous flow considered here. A more robust and local estimate of the energy contain-598

ing scale is599

L0 =

√
η′′2

|∇η′′|2
, (22)
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Figure 12. Fraction of variance unexplained (FVU) (20) for the comparison between the ver-

tical profile of the major diffusivity, κ1, and prediction by theories at each horizontal location.

(a), (b) FVU for profiles of κ1 at depths where r > 1 and r < 1 compared to their fits to (a)

the Prandtl regime (4) and (b) Taylor regime (6), respectively. Note that the regions where there

are fewer than 4 levels for fitting are masked with grey color. (c), (d) FVU for the entire verti-

cal profile of κ1 compared to (c) urmsL0, where L0 is the local energy-containing scale given by

(22), and (d) the composite scaling, given by (25). Black boxes are the regions where the vertical

structures of the diffusivities are analyzed in figure 11. Note that negative diffusivities are ex-

cluded from the fitting and calculation of FVU.
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Figure 13. Surface geostrophic kinetic energy spectrum (blue solid line with dots) calculated

from the instantaneous SSH fields over the four regions in figure 5 and averaged over 20 years.

The EKE spectrum is estimated as g2|η̂|2k2/f2, where η̂ is the Fourier transform of SSH, f is the

spatial mean Coriolis parameter in each region (values given in the figure). The 2D spectrum is

computed with tapering via a Tukey window, and then azimuthally integrated to obtain the 1D

spectrum. The green dashed line indicates the inverse of the energy containing scale, L0, esti-

mated from (22) at the center of the four regions, and red dashed line is the inverse of the fitted

mixing length from figure 11.
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where η′′ is the SSH anomaly from the 20-year mean (Thompson & Young, 2006; Fer-600

rari & Nikurashin, 2010). In figure 13 we compare the fitted mixing length in figure 11601

to L0 in the surface EKE spectrum. The inverse of both the fitted mixing length scale602

and L0 are close to the peak of the energy spectrum in all the four regions, consistent603

with the mixing length corresponding to the energy containing scale. (Note that the energy-604

containing scale corresponds to the radius of the energy-containing eddies. A single wave-605

length constitutes an eddy dipole so the radius of each eddy is one-fourth the wavelength,606

or approximately the inverse of the energy-containing wavenumber.) The horizontal dis-607

tribution of L0 is given in figure C1b in Appendix C. The purple dashed line in figure608

11 shows the comparison between urmsL0 and κ1. The scaling with L0 matches the dif-609

fusivity in most of the regions, except that it slightly overestimates the mixing length610

in the western boundary current region.611

5.4 A composite profile for the full-depth diffusivity612

We have shown that κ1 follows a mixing length scaling (the Prandtl regime) when613

eddies are nonlinear (r > 1) and a mixing time scaling (the Tayor regime) when the614

eddies are linear (r < 1). These two regimes coexist in most regions, with the Prandtl615

regime holding in the upper ocean and the Taylor regime holding at depth. Here we pro-616

pose a composite vertical profile that can smoothly transition from the Prandtl regime617

to the Taylor regime.618

In the original form of SMLT (Ferrari & Nikurashin, 2010), the unsuppressed dif-619

fusivity, κu, is620

κu(z) = γ−1(z)EKE(z), (23)

where γ is a decorrelation rate. Ferrari and Nikurashin (2010) estimate γ as the eddy621

turnover rate, urms/L0, where L0 is the energy-containing scale (22). With this defini-622

tion, (23) is equivalent to the MLT diffusivity (4). MLT assumes that the mixing is con-623

trolled by nonlinear eddy-eddy interactions; however, this is not the case in the deep ocean624

in the basin, where linear wave dynamics is more important.625

To account for both the nonlinear and linear regimes, we assume that γ has con-626

tributions from both the eddy turnover rate, urms/L0, and a depth-independent decay627

rate, τ−1
0 , so628

γ(z) =
urms(z)

L0
+

1

τ0
. (24)

The eddy turnover rate, urms/L0, varies with depth and represents the contribution from629

nonlinear interactions (Ferrari & Nikurashin, 2010; Kong & Jansen, 2017). The decay630

time scale, τ0, is depth-independent and associated with a superposition of linear waves.631

This form of γ in (24) is similar to that used by Klocker et al. (2012), who point out that632

the decorrelation time scale is set by the turnover time of turbulent eddies in upper ocean633

and by the time scale of linear waves in deep ocean. Adopting (24) in (23), we obtain634

the composite formula635

κcomp(z) =
urms(z)L0

1 + L0/[urms(z)τ0]
. (25)

The advantage of (25) is that it smoothly transitions between the Prandtl and Taylor636

regimes. If urms/L0 dominates over τ−1
0 , (25) reduces to the Prandtl regime expression,637

while if τ−1
0 dominates, (25) reduces to the Taylor regime expression. Since urms decays638

rapidly with depth, the mixing regime described by (25) transitions from the Prandtl639

regime to the Taylor regime naturally with depth. An alternative way to achieve the regime640

transition is to use the nonlinearity parameter, r, in (25) since the variation of r indi-641

cates the transition between nonlinear and linear regimes. However, we avoid the use of642

r since it is difficult to estimate in practice from the resolved fields of coarse-resolution643

models.644

–27–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

In Ferrari and Nikurashin (2010)’s derivation, the inverse of the decorrelation rate,645

1/γ, is equal to the time scale, τ , in the suppression factor (18). However, if τ = (urms/L0+646

1/τ0)
−1 is used in (18), the relation κ2 ≈ κ1Fs no longer holds (not shown)—it is there-647

fore better to treat τ as a depth-independent time scale (i.e., τ = τ0). This mismatch648

between τ and 1/γ is was also noted by Klocker and Abernathey (2014), who attributed649

it to a shortcoming of the stochastic models of Ferrari and Nikurashin (2010) and Klocker650

et al. (2012). The fits of κ2 to κ1Fs in the circumpolar current, subtropical gyre and tran-651

sition regions (c.f. section 5.1 and figure 8) give τ0 as 22 days, 24 days and 29 days, re-652

spectively, assuming the length scale, L, in (18) is given by the local energy-containing653

scale, L0. The fit in the western boundary current is not reliable because κ2 contains many654

negative values there. The time scales from the fits are close to the spin-down time scale655

due to the model’s linear bottom drag, 25 days, which suggests τ0 is related to frictional656

processes. We have no quantitative explanation for the spatial variation of τ0, so for sim-657

plicity we choose it to be a uniform constant. Following Groeskamp et al. (2020), we es-658

timate it by doing an overall fit using diffusivity profiles from all three regions and find659

τ0 ≈ 24 days—which is again close to the frictional spin-down time.660

The composite profile, κcomp, with τ0 = 24 days is compared to the vertical struc-661

ture of the major diffusivity, κ1, in figure 11 (red dashed line). The composite profile cap-662

tures the variation of full-depth diffusivity better than MLT (purple dashed line) in the663

four regions. The composite profile slightly underestimates the diffusivity in the upper664

ocean in the subtropical gyre and transition regions compared with MLT, but its over-665

all comparison with κ1 is better than MLT. The relative performance of the composite666

profile and MLT are assessed using the FVU (20) and shown in figures 12c&d. The com-667

posite profile prediction of κ1 performs better than MLT, especially in the subtropical668

gyres. The success of the composite profile verifies our assumption that both the non-669

linear eddy-eddy interaction and decay of linear waves contribute to the mixing. The com-670

posite profile does not work well in the eastern tropics or the boundary between trop-671

ics and subtropics. The fits show that the mixing time scale, τ0, is smaller than 24 days672

in those regions, which suggests that a better physical estimate for τ0 is necessary to fur-673

ther capture the variation of diffusivity in the tropics.674

The cross-stream diffusivity, κ2, is also estimated by multiplying κcomp by the sup-675

pression factor F0
s,676

F0
s (z) =

1

1 +
τ2
0

L2
0
[cw − ū(z)]2

, (26)

where cw and ū are taken the same as those in section 5.1. The estimate of κcompF
0
s is677

shown by the red dashed line in figure 8. The estimate with SMLT (i.e., urmsL0F
0
s) is678

also shown in figure 8 (purple dashed line) for comparison. SMLT only captures the ver-679

tical structure of κ2 well in the circumpolar current region, while the suppressed com-680

posite profile, κcompF
0
s, works well in both the circumpolar current and the gyres. The681

poor estimate in the western boundary current might be due to the presence of nega-682

tive values for the minor diffusivity (figure 3), which could potentially lead to large un-683

certainties in the profile. The FVU for the comparisons between the vertical profile of684

κ2 and the predictions by SMLT and κcompF
0
s are given in figure 9b and 9c, respectively.685

The composite profile improves the prediction of κ2 compared with the SMLT in the sub-686

tropical and subpolar regions. The suppressed composite profile, κcompF
0
s, is applicable687

to broader ocean regimes than SMLT, which makes it a promising estimate for the cross-688

stream diffusivity from ocean observations.689

The FVU for both the suppressed composite profile and SMLT are large in many690

regions in the circumpolar current. The error is mostly due to the underestimates of the691

diffusivity in the deep circumpolar current, where κ2 decreases with depth more slowly692

than the predictions as shown in figure 8a, but its qualitative features are still captured.693

The mixing tends to become isotropic in the deep circumpolar current as shown in fig-694

ure 5a and figure 6a, and the mean flow suppression appears to be weaker than the pre-695
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diction by (26). Wolfram and Ringler (2017) also found that the cross-stream diffusiv-696

ity decreases with depth slower than the prediction by SMLT in the deep ocean. They697

argued that this issue might be fixed by making L0 and τ0 in (26) vary with depth, but698

the estimation of the vertical structure of L0 and τ0 requires additional physical under-699

standing.700

6 Conclusions701

This study investigates the vertical structure of the isopycnal tracer diffusivity in702

an idealized basin configuration of the MITgcm, which contains multiple gyres, bound-703

ary currents, and a zonally reentrant channel flow analogous to the Antarctic Circum-704

polar Current. Multiple tracers are advected to solve for the 3D diffusivity tensor based705

on the tracer-inversion method of S. D. Bachman et al. (2015). As shown in Appendix706

B, the reconstruction of eddy tracer fluxes from the diffusivity tensor is excellent, even707

for active tracers not used to diagnose the diffusivity tensor. The diffusivity tensor is ad-708

ditionally insensitive to the details of the tracers used in the pseudoinversion as long as709

a sufficient number of linearly independent tracers are used. These results indicate that710

the diffusivity tensor so diagnosed is generic and capable of representing the eddy flux711

of an arbitrary tracer.712

Recent studies reporting that the diffusivity tensor is highly sensitive to the trac-713

ers used to estimate it (e.g., Kamenkovich et al., 2021; Sun et al., 2021; Haigh et al., 2021)714

have used the minimum number of tracers required to determine the diffusivity tensor715

(e.g., two tracers for a 2 × 2 tensor). Such inversion methods rely on the assumption716

that arbitrary pairs (or triplets for a 3×3 tensor) of tracers will remain linearly inde-717

pendent at all spatial points in the simulation domain. This is unlikely to be true in prac-718

tice, which can make the resulting inversion extremely ill-conditioned. In contrast, us-719

ing many tracers allows the pseudoinversion process to automatically remove linearly de-720

pendent tracer combinations so that the inversion remains well-conditioned and robust.721

Note that these statements apply to the representation of the time mean eddy flux on722

coarsened grids—the instantaneous tracer flux on the original grid may not be represented723

in detail. Further, since the diagnosed diffusivities are effectively time-invariant, using724

them to represent the fluxes of active tracers will lead to an eventual accumulation of725

errors due to the lack of feedback between the diffusivities and the fluxes. We therefore726

acknowledge the possibility that the diffusivity tensor necessary to represent instanta-727

neous fluxes of (possibly active) tracers may indeed depend on the tracers in question728

and suggest that the diffusivities obtained from pseudoinversion are more suited for di-729

agnostic rather than prognostic studies.730

The first two eigenvectors of the symmetrized diffusivity tensor are approximately731

aligned with buoyancy surfaces, so the associated eigenvalues represent isopycnal diffu-732

sivities. The isopycnal diffusivities are anisotropic, with the diffusivity along the mean733

flow generally several times larger than the diffusivity across the mean flow. The cross-734

stream diffusivity tends to have a subsurface maximum and can be reconstructed from735

the vertical profile of along-stream diffusivity after accounting for mixing suppression736

by eddy propagation relative to the mean flow (K. S. Smith & Marshall, 2009; Ferrari737

& Nikurashin, 2010; Klocker et al., 2012). This suggests that the anisotropy of mixing738

is primarily due to the mean flow suppression of the cross-stream diffusivity, rather than739

shear dispersion.740

The vertical structure of the along-stream diffusivity is well-captured by Prandtl741

mixing length theory with a depth-independent mixing length where the nonlinearity pa-742

rameter r > 1; this is in the circumpolar current and above the thermocline in the basin743

regions. The mixing length is well-approximated by the energy containing scale estimated744

from the SSH anomaly, which is straightforward to diagnose based on (22) using SSH745

from satellite altimetry. No nondimensional mixing efficiency needs to be specified in this746
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scaling, which is an advantage over previous studies (e.g., Klocker & Abernathey, 2014;747

Groeskamp et al., 2020). The success of Prandtl scaling in the upper ocean in this model748

provides a rationalization for studies which apply mixing length theory to infer the ver-749

tical structure of diffusivity assuming that the mixing length is depth-independent (Bates750

et al., 2014; Groeskamp et al., 2020).751

The nonlinearity parameter r < 1 below the thermocline in the basin, so a depth-752

independent mixing length does not apply. Indeed, using the upper-ocean mixing length753

can overestimate the deep diffusivity in the gyres by nearly an order of magnitude. Al-754

though the diffusivity is generally small at depth, excessively large diffusivities may still755

significantly impact deep watermasses and the mean state over long simulations since756

the mean flow is also very weak at depth. The along-stream diffusivity in the linear regime757

(r < 1) in the deep ocean is well-represented by the Taylor regime (i.e., the EKE times758

a depth-independent mixing time scale). This dependence of mixing regime on nonlin-759

earity is consistent with the arguments of Klocker and Abernathey (2014) and Klocker760

et al. (2016), who find that mixing length theory applies to surface mixing in the extra-761

tropics where the flow is nonlinear but fails in the tropics where the flow is dominated762

by linear waves. This study shows that a similar transition can also occur in the verti-763

cal near the base of thermocline in the midlatitudes. Mixing length theory only char-764

acterizes the full-depth diffusivity well in the circumpolar current, where the flow is non-765

linear (r > 1) over the full depth.766

To account for the transition between nonlinear and linear mixing regimes, we pro-767

pose a composite scaling profile in which the decorrelation rate has contributions from768

both the eddy turnover rate and a depth-independent decay rate. This profile reduces769

to the Prandtl regime where the eddy turnover rate dominates and to the Taylor regime770

where the decay rate dominates, with a smooth transition between them. The compos-771

ite profile captures the vertical structure of the along-stream diffusivity better than ei-772

ther the Prandtl or Taylor regime alone. The cross-stream diffusivity is also well-characterized773

by the composite profile multiplied by a suppression factor, (26), which accounts for the774

suppression of mixing by the mean flow (Ferrari & Nikurashin, 2010; Klocker et al., 2012).775

The composite profile has the advantage of capturing both the nonlinear and linear regimes776

and should be useful in estimates or parameterizations of the full-depth isopycnal mix-777

ing in a broad range of ocean regimes.778

The model used in this study does not have bottom topography, which likely im-779

pacts the vertical structure of EKE and the tracer diffusivities. The presence of bottom780

topography can reduce the EKE near the bottom and make it more surface intensified781

(de La Lama et al., 2016; LaCasce, 2017). The topographic waves will also likely play782

an important role in the mixing in the deep ocean (Rhines, 1970; Hallberg, 1997). These783

possible changes might make eddies become more nonlinear in the upper ocean due to784

a greater surface-intensification of EKE and make linear dynamics more significant in785

the deep ocean due to the presence of topographic waves. Topography can also change786

the direction of the mean flow and PV gradient, especially in the circumpolar current787

region, where the mean flow is strong near the bottom. This can change the major and788

minor directions of isopycnal mixing (S. D. Bachman, 2021) and even lead to the break-789

down of mixing suppression due to the presence of non-parallel jets (Thompson, 2010;790

Naveira Garabato et al., 2011). Finally, topography can alter the mixing length (Wei &791

Wang, 2021) and eddy phase speed (Tailleux & McWilliams, 2001; LaCasce & Groeskamp,792

2020). Application of the results of this study to simulations with bottom topography793

will be pursued in the future work.794

The scaling proposed by this study is not a full closure theory, since it still requires795

the vertical profile of the eddy kinetic energy and the energy containing scale from the796

SSH anomaly. Tests of the existing closure theories for the mixing length (e.g., Visbeck797

et al., 1997; Eden & Greatbatch, 2008; Thompson & Young, 2006; Jansen et al., 2015;798

Gallet & Ferrari, 2020, 2021) and vertical mode theory of the eddy kinetic energy (e.g.,799
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Wunsch, 1997; Lapeyre & Klein, 2006; LaCasce & Mahadevan, 2006; K. S. Smith & Vanneste,800

2013; LaCasce, 2017; Groeskamp et al., 2020) is beyond of the scope of this study and801

will be studied in a forthcoming paper. In addition, the mean flow suppression theory802

used in this study is based on a single energy containing wavenumber as in Ferrari and803

Nikurashin (2010). However, studies have suggested that better estimate of the diffu-804

sivity can be obtained using whole energy spectrum (Chen et al., 2015; Kong & Jansen,805

2017). Thus for a full closure, we will also need a prediction for the EKE spectrum. A806

closure theory including all these factors would serve as a solid parameterization of the807

isopycnal mixing in the ocean component of coarse-resolution climate models.808

Appendix A Identification and tracking of coherent mesoscale eddies809

Coherent mesoscale eddies are identified and tracked using SSH snapshots in three-810

day intervals from the model, using the same algorithm as Chelton et al. (2011). This811

method is provided as an optional tracking method in the eddy tracking package described812

by Mason et al. (2014). Coherent eddies are identified as the SSH extrema and tracked813

by connecting each eddy to the proximal eddies in successive successive time frames, where814

the eddies amplitude and radius are required to be 0.4–2.5 times those of the correspond-815

ing eddies in the last time frame. Only the eddies that last longer than 30 days are con-816

sidered. The propagation velocity of coherent eddies at time step m is estimated as the817

centered difference from locations of the eddy centroids at the time steps m−1 and m+818

1. See Chelton et al. (2011) and Mason et al. (2014) for more detail.819

Appendix B Evaluation of the reliability and robustness of the diffu-820

sivity tensor821

To test the effectiveness of pseudoinversion method, the flux of each of the 27 trac-822

ers and the heat flux are reconstructed using the diffusivity tensor, KKK. Note that the heat823

flux is not used in the tracer inversion in (14), so it can be used as an independent test824

for the effectiveness of KKK. Following S. D. Bachman et al. (2020) the relative error of re-825

constructed tracer flux is estimated as826

ϵ =

∥∥u′C ′ +KKK∇C̄
∥∥∥∥u′C ′

∥∥ , (B1)

where C is one of the 27 tracers or the temperature and ∥ · ∥ is the vector norm. The827

relative error of the tracer flux reconstruction is estimated at each coarsened grid point828

and vertical level and the distribution is shown in figure B1. The relative error is gen-829

erally small at the majority of the grid points, with a median smaller than 0.2, so the830

diffusivity tensor captures most the characteristics of eddy tracer transport. Tracers C9,831

C18 and C27 have the largest relative error, because their initial vertical gradient is close832

to zero at some levels, which leads to very small tracer flux at those levels and make the833

relative error appear very large. With the exception of these tracers, the reconstruction834

is not very different for tracers with different initial distributions, indicating that the dif-835

fusivity tensor is generic and capable of representing the eddy flux of an arbitrary tracer.836

We tried to use fewer tracers (e.g. only using tracers 1–9) in the inversion, and the837

relative error is not very different from the inversion using all 27 tracers (not shown),838

which suggests that 9 tracers with distinct initial distributions are likely sufficient to di-839

agnose the diffusivity tensor. In the rest of the paper we simply used the diffusivity ten-840

sor KKK diagnosed using all the 27 tracers.841

Figure B2 compares the meridional heat flux reconstructed by the diffusivity ten-842

sor with the diagnosed heat flux at 138 m depth (same depth as figure 3) and a merid-843

ionally oriented vertical section, indicated by the black dashed line in figure B2a and B2b.844

The reconstructed heat flux looks very similar as the diagnosed heat flux, meaning that845
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Figure B1. Box and whisker plot of the relative error of the tracer flux reconstruction, cal-

culated by (B1) at all coarsened grid points and weighted by volume. The labels on the abscissa

indicate the tracer whose flux is reconstructed (the number i indicates Ci and T indicates tem-

perature). The red line gives the median value and the box extends from the first to the third

quartile of the error distribution. The upper and lower whiskers indicate the 5 and 95 percentiles.

the diffusivity tensor excellently reconstructs the meridional heat flux of the model. Note846

that the heat flux and temperature gradient are not used in the tracer inversion (14),847

so heat flux is independent from the calculation of the diffusivity tensor. The accurate848

reconstruction of the meridional heat flux thus supports the assumption behind (14) that849

the diffusivity tensor is independent of the particular tracers used in the inversion.850

Appendix C Mixing length and time scales851

Figure C1a and C1c give the distribution of the mixing length and time scales from852

the fits in figure 12a and 12b, respectively. The mixing length is typically tens of kilo-853

meters and decreases from the subtropics to the high latitudes. The ratio of the mix-854

ing length to the local Rossby deformation radius increases from around 1 in the sub-855

tropics (y ∼ 1000–2000 km) to around 2.5 in the high latitudes (y ∼ 4000 km), which856

is consistent with the observationally based results of Klocker and Abernathey (2014).857

The mixing length is close the the energy containing scale, L0, (figure C1b) in most extra-858

tropical regions. The fitted mixing time scale is smallest in the tropics and varies little859

in the gyres, where it is close to the spin-down time scale due to the model’s linear bot-860

tom drag, 25 days.861
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