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Abstract

The increasing frequency of devastating floods from heavy rainfall associated with climate change has made river stage prediction

more important. For steep, forest-covered mountainous watersheds, deep learning models may improve prediction of river stages

from rainfall. Here we use the framework of multilayer perceptron (MLP) neural networks to develop such a river stage model.

The MLP is constructed for the Shimanto river, which lies in southwestern Japan under a mild, rain-heavy climate. Our input

for stage estimation, as well as prediction, is long-term rainfall time series. With a one-year time series of rainfall, the model

estimates the stage with 50 cm RMSE for about 10 m of stage peaks as well as accurately simulate stage-time fluctuations.

Furthermore, the forecast model can predict the stage without rainfall forecasts up to three hours ahead. To estimate the base

flow stages as well as flood peaks with high precision we find the rainfall time series should be at least one year. This indicates

that the use of a long rainfall time series enables one to model the contributions of ground water and evaporation. Given that

the delay between the arrival time of rainfall at a rain-gauge to the outlet change is well simulated, the physical concepts of

runoff appear to be soundly embedded in the MLP.
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Key Points: 14 

• Flood runoff in a forest-covered watershed can be modeled with multilayer perceptron 15 

neural networks from long-term rainfall and stage data.  16 

• Stages can be predicted with a few hours of lead time by using just the observed 17 

rainfall time series.  18 

• Visualization of the learned network indicates a physically sound connection between 19 

rainfall history and flood stage.  20 

  21 
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Abstract 22 

The increasing frequency of devastating floods from heavy rainfall associated with climate 23 

change has made river stage prediction more important. For steep, forest-covered mountainous 24 

watersheds, deep learning models may improve prediction of river stages from rainfall. Here 25 

we use the framework of multilayer perceptron (MLP) neural networks to develop such a river 26 

stage model. The MLP is constructed for the Shimanto river, which lies in southwestern Japan 27 

under a mild, rain-heavy climate. Our input for stage estimation, as well as prediction, is long-28 

term rainfall time series. With a one-year time series of rainfall, the model estimates the stage 29 

with 50 cm RMSE for about 10 m of stage peaks as well as accurately simulate stage-time 30 

fluctuations.  Furthermore, the forecast model can predict the stage without rainfall forecasts 31 

up to three hours ahead. To estimate the base flow stages as well as flood peaks with high 32 

precision we find the rainfall time series should be at least one year. This indicates that the use 33 

of a long rainfall time series enables one to model the contributions of ground water and 34 

evaporation.  Given that the delay between the arrival time of rainfall at a rain-gauge to the 35 

outlet change is well simulated, the physical concepts of runoff appear to be soundly embedded 36 

in the MLP.   37 

  38 
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1 Introduction 39 

Global warming is expected to increase the water vapor content in the atmosphere, thus 40 

fueling more intense tropical cyclones and producing heavier precipitation (IPCC, 2014).  In 41 

Japan, the water vapor at about 1500 m asl is increasing, as is the number of days with 42 

precipitation exceeding 200 mm (Japan Meteorological Agency, 2020). One study argued that 43 

the precipitation from Tropical Cyclone Hagibis, which fell over the Kanto area in October 44 

2019, was higher by 10.9% due to the increase of ocean temperature (Kawase et al. 2021).  45 

Furthermore, record breaking heavy rainfall events occur in Japan more frequently than before 46 

due to stagnant squall lines and other precipitation systems. For instance, quasi-stationary 47 

squall lines stayed over northern Kyushu from July 5th to 6th in 2017, setting new 6- and 12-48 

hour precipitation records (Kato et al. 2018). Also, water vapor associated with a tropical 49 

cyclone circulation flowed into a stationary front from June 28th to July 8th 2018, releasing 50 

devastating heavy rainfall over western Japan and breaking 48- and 72-hour precipitation 51 

records (Uchida et al. 2021).  52 

About 67% of the area on the Japanese main islands are covered by forests (MAFF), with 53 

most watersheds being composed of steep slopes from mountains to alluvial plains. In such a 54 

watershed, the concentration time, defined as the time when the rainfall most far in the drainage 55 

basin reach the river outlet, is estimated to be 400 minutes for the basin area of 1000 km2 (240 56 

minutes for 100 km2) under an effective rain intensity of 30 mmhr-1 (Kadoya and Fukushima 57 

1976).  For the smallest mountain basins (area of 1–10 km2), heavy rainfalls have 58 

concentration times less than 100 minutes (Kanda et al. 1990), which are too short to produce 59 

flood forecasts and thus basin residents must decide on their own whether or not to evacuate.   60 

Although the flooding risk has increased under climate change, the willingness of 61 

residents to evacuate has not increased.  For example, heavy rains in 2018 threatened flooding 62 

of the Monobe river in Kochi, Japan, triggering an evacuation advisory and order. Yet most of 63 

the residents did not evacuate, presumably because flooding had not occurred there for over 64 
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100 years (Kubo et al. 2019). One way that may help convince the residents to evacuate is to 65 

provide them with an accurate estimate of when a given heavy rainfall would produce a flood 66 

downstream. That is, we need a way to obtain accurate concentration times and stage forecasts. 67 

Probabilistic stage forecasts could be constructed from deterministic stage forecasts obtained 68 

by using short-term precipitation forecasts (such as Advanced Hydrologic Prediction Service 69 

products). Thus, it is necessary to improve numerical models for precipitation forecasting and 70 

stage forecasting, thereby gaining trust in the products among residents. 71 

Recent availability of free full sets of machine-learning libraries and powerful GPUs has 72 

motivated the use of deep neural networks (DNN) in various fields including hydrology (e.g., 73 

Shen, 2018).  For instance, multi-layer perceptron (MLP) models have produced accurate 74 

river flow forecasts (Rao and Giridhar, 2016; Chanu and Kumar, 2018; Oluwatobi et al., 2018).  75 

However, the previous studies considered daily to monthly forecasts, which are not applicable 76 

to the steep watersheds in Japan that have flood events over hourly time scales. MLP models 77 

using DNN for flood stage forecasts in Japanese rivers have reduced prediction errors (Hitokoto 78 

et al. 2016, 2017). Their approach has the limitation of requiring upstream stage observations 79 

as well as precipitation observations as the input data. Thus, it cannot be applied to the 80 

mountainous watersheds or small rivers where stage-gauge observation is not available in the 81 

upstream of the forecasting location.  82 

When considering the development of DNN models for steep rivers in a moist and humid 83 

climate, the required input variables likely differ from those needed for rivers that are affected 84 

by early-spring melting of the snow that accumulate over the winter and that drains over a large 85 

catchment with small gradients.  In general, the water stored in rivers and underground 86 

balances precipitation, evaporation, and runoff such that in any long-term analyses the storage 87 

term can be neglected. According to Nakano (1976), in the Japanese forest watersheds where 88 

annual precipitation is more than 1500 mm the annual evaporation is almost constant.  Kochi 89 

prefecture, where the target watershed of this study is included, receives annual precipitation 90 
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of about 2500 mm, and thus it is speculated that the annual evaporation is constant and annual 91 

runoff and precipitation are in a linear relationship.  This suggests that long-term precipitation 92 

and runoff time series can be digested into a DNN to construct a relationship that includes 93 

evaporation.  Nakane and Wakatsuki (2018) proposed a modeling approach in which a river 94 

stage is estimated solely by inputting upstream long-term precipitation time series into DNN; 95 

this directly models characteristics of runoffs and infiltration processes in the watersheds from 96 

the time series.  Their study shows that a DNN can learn the river stage (or discharge) at a 97 

certain time.  Furthermore, Nakane et al. (2019) applied the same method to three rivers with 98 

different influences of dams, and showed that using a longer precipitation time series improved 99 

not only the estimated flood peak, but also the stage estimate during the dry season.   100 

The purpose of this study is to discuss the estimation and forecast of river stages during 101 

flood events in the framework of the DNN model proposed by Nakane et al. (2019) in detail.  102 

When the estimation and forecast errors are not negligible, it is practically important to be able 103 

to explain the reasons behind, and the reliability of the modeling can be enhanced by showing 104 

that fundamental physical relationships are appropriately represented in the model.  We, 105 

therefore, discuss if any physical concepts of runoffs are represented with the DNN model, and 106 

hereby we aim to establish the DNN modeling framework with long-term precipitation time 107 

series that enable us to automatically include runoff processes.  108 

2 Study watershed and dataset  109 

2.1 The Shimanto watershed 110 

The drainage basin of this study is the Shimanto river, which is the longest river in 111 

Shikoku, the smallest of the four main Japanese islands.  The official name of the river is the 112 

Watari river, but the name Shimanto is well-known to the public as “Japan’s last remaining 113 

limpid stream” (https://shikoku-tourism.com/en/see-and-do/10071).  The Shimanto 114 

watershed lies in the island's southwest (Figure 1). Here, 95% of the land is forest, 4% is 115 
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farmland, and 1% is residential or urban.  The drainage area is 2186 km2. The annual 116 

precipitation reaches about 2900 mm in the headwaters, where it is designated a heavy rain 117 

area (MLIT).  The source of the Shimanto has an elevation of 1336 m and the length of the 118 

main stream is 196 km, giving an average stream gradient of 0.68%. The average gradient of 119 

the upper basin ranges from 1/100 to 1/650, that of the middle basin from 1/380 to 1/1300, the 120 

lower basin from 1/1200 to 1/2200. It flows into the Pacific after 319 tributaries merge.   121 

Although one of the tributaries, the Yusuhara, has two reservoirs for power generation purpose, 122 

the main stream has a 8-m weir only. The weir cannot be operated for managing the river stage, 123 

making estimation of the stage during a flood event crucial for residents.   124 

 125 

2.2 Dataset 126 

The target estimation/forecast will be for the Tsunokawa stage observatory, which is 40 127 

km upstream of the mouth (L_3 in Figure 1).  The stage observations are from a hydrology 128 

and water quality database (Water Information System, Ministry of Land, Infrastructure, 129 

 
Figure 1. The Shimanto river watershed and location of rain gauges and stage observatories.  
Rain gauges are labeled R_01 to R_13. The stage observations are from L_3 (Tsunokawa). 
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Transport and Tourism: http://www1. river. go. jp/) and arranged to an hourly data set.  The 130 

input precipitation observation data comes from 13 rain gauges upstream of Tsunokawa (Figure 131 

1) that we obtained from the hydrology and water-quality database and from Japan 132 

Meteorological Agency (JMA, http://www. jma. go. jp/jma/indexe. html). This data covers 133 

2002 to the present with resolution of either 10 min or 1 hr, but due to possible land use changes 134 

earlier in that period, we use just the hourly data for the 11 years of 2008–2018.  Figure 2a 135 

shows the changes in the stage at Tsunokawa from 2008 to 2018.  The stage is low during 136 

winter, then rises from summer to fall when the heavy rainfall events tend to occur, usually 137 

exceeding the level at which the flood prevention team is put on standby (yellow dashed line). 138 

 

Figure 2. Observational data of (a) water levels at Tsunokawa Observatory, and (b) mean 
precipitation of the 13 rain gauges. Yellow dashed line indicates the water level at which 
the flood prevention team are put on standby (6.50 m). The orange dashed line is the water 
level for flood warning (8.50 m), the purple is the level for evacuation judgement (11.90 
m), and the red is the flood danger level (12.70 m). 
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During this period, the red-dashed flood-danger level is exceeded twice.  The average 139 

precipitation from the 13 rain gauges (Figure 2b) shows that an hourly rainfall of 30 mm is 140 

often exceeded after 2013 and short-term precipitation has intensified.   141 

3 Method  142 

3.1 Modeling concept 143 

Rainwater falls in a watershed, infiltrates into the ground, moistens the soil, and then 144 

forms interflow.  Some of the infiltrated water further percolates into the groundwater.  Once 145 

the soil is saturated, the rain flows over the surface (overland flow) and directly flow into a 146 

channel.  The interflow may emerge to the surface in a valley or saturated area, and then flow 147 

into the channel.  When a pulse of rain falls to a regions with a short timescale for its overland 148 

runoff, then the river stage may form a pulse-like increase. However, depending on the depth 149 

of infiltration and geological characteristics, the interflow and the groundwater flow can 150 

possess various timescales that affect the river stage.  In addition, the time series of spatially 151 

distributed rainfall will influence the river stage; that is, the stage is affected by soil moisture 152 

and groundwater from previous rainfall. Moreover, the river stage can respond nonlinearly to 153 

the upstream rainfall as suggested by the data in Figure 2.  Therefore, the stage at a certain 154 

time t at an observatory is a complicated function of the spatial and temporal distribution of 155 

rainfall.  Such a phenomenon can be inductively modeled with machine learning in which the 156 

precipitation time series going back from time t are set as the input data, and the downstream 157 

stage as the output data (labeled data). This downstream stage is not at the river's mouth to 158 

avoid influences from the tide.  159 

3.2 Precipitation time series data as input data 160 

 As input, we use the individual hourly time series of the 13 rain gauges upstream, not 161 

the time series averaged over these gauges, so that the model may capture the spatial 162 

relationships of rain gauges to the Tsunokawa stage, which also provides hourly stage data. 163 
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Moreover, the specific slopes and geology of each branch where a rain gauge is located can 164 

presumably affect the stage.   165 

Our preliminary investigation of the DNN modeling showed that the use of hourly 166 

rainfall time series directly as input produced a noisy time series of stage estimates.  Also, 167 

after a pulse-like rainfall, the river stage would rise to a peak and then fall off with a long 168 

relaxation timescale.  Rainfall events from further back in time can be represented as averages 169 

over a certain time window, assuming that such past rainwater can impact the current stage 170 

through changes in the base flow.  Based on these considerations, we changed to a running 171 

average method in which the number of samples to be averaged increases with the time going 172 

back from the current time.  The duration of the moving averaging y is determined for a period 173 

x hours previous to the time of evaluation to satisfy two conditions. 1) Precipitation reported 174 

within the past six hours has one-hour resolution. 2) Precipitation one year back (365 days 175 

times 24 hours) from the current time has one-month resolution (30 days times 24 hours).   176 

 𝑦 = floor(6
!"#$ %&'
"#$ &()* ∙ 𝑥

"#$ %&'
"#$ &()* + 1) (1) 

As shown in Figure 3a, the duration of averaging (or time resolution ) of rainfall that occurred 177 

1-week back is 21 hours, and that of 3-month back is 204 hours. We assign “element” numbers 178 

to these averages (Figure 3b). This averaging essentially compresses the data; for example, a 179 

1-year time series has 8760 samples, but the manipulation reduces the sample size to 69 (Figure 180 

3b). Thus, the method reduces the computational burden for the DNN modeling.   181 
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3.3 MLP model 182 

We develop a DNN model with two or more hidden layers for the regression task, using 183 

a simple multilayer perceptron (MLP). A fully-connected MLP structure consists of input, 184 

hidden, and output layers as sketched in Figure 4.  It is a feedforward network in which each 185 

node weights the inputs from the previous layer and the information moves from the input to 186 

the output layer. Each connecting line has a weight, and the linear sum of node values and the 187 

weights are incremented with the biases of the layer.  An activation function acts on the 188 

resulting sum to propagate the information to the next layer.  The weights and biases are 189 

updated to minimize the cost function (Rumelhart et al., 1986), a step that involves evaluating 190 

the gradients (partial derivatives).  This procedure is repeated N times, where N is the number 191 

of batches times the learning epochs.   192 

The number of nodes in the input layer of the MLP model is varied from 27 to 69 for 193 

 
Figure 3. Time resolution a) and number of sample elements b) of input precipitation data. 
Abscissa is the time to which the precipitation time series goes back from the current time. 
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each rain gauge, depending on the length of time gone back. The output layer has only one 194 

node.  We apply the activation function PReLU (Maas et al., 2013) to each hidden layer before 195 

the output layer.  As the river stage is regressed on the nodes of the last hidden layer, the mean 196 

squared error (MSE) is applied as the cost function without activation function on the output 197 

layer.  To avoid overfitting, a penalty term of L1 norm is added to the cost function.  198 

We divide the above data from 2008 January to 2018 December into training, validation, 199 

and test data sets. Most of the period is used for training. The validation set is then used to 200 

examine the model structures or hyper parameters (e.g., number of hidden layers), and the test 201 

set is used to evaluate the model performance. The exact data breakdown is 2008–2014: 202 

training; 2016: validation; and 2017–2018: test.  As a result, the numbers of samples for 203 

training, validation, and test sets are 61368, 8784, and 17520, respectively.  204 

 
Figure 4. A fully connected multilayer perceptron (MLP) with three hidden layers. Here, 
the output layer is just the stage observatory water level. Input layer nodes are precipitation 
data.   

Input layer Hidden layer Output layer
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To optimize the structure of the MLP model, the number of hidden layers, the number of 205 

nodes, and the parameter for L1 normalization are set as hyper-parameters, the combination of 206 

which are examined with the grid search method (Gorr et al., 1994).  The search range is listed 207 

in Table 1.  Concerning the number of nodes, the structures with layers that have more nodes 208 

than the previous layer are excluded from the search. (Such a search operation would increase 209 

the number of input dimensions, which seems inappropriate given that the input information 210 

has to be compressed from the first layer to the last layer.)  The selection of hyper parameters 211 

are run for each length of the input time series to determine the best combination.  In total, 212 

480 combinations of hyper parameters are examined for each length of input time series. We 213 

set the batch size during the optimization to 100 and apply the Nesterov-accelerated Adam 214 

(Nadam) optimization method (Dozat, 2016).  We found that for each combination of 215 

hyperparameters the errors started to converge after 25 epochs of learning, so to save on 216 

computational cost we set the number of epochs to 25.  Then, the root mean squared errors 217 

(RMSEs) are calculated over the validation set by using MLP models having parameters that 218 

are obtained from 16 to 25 epochs.  Among the above combinations of hyperparameters, we 219 

decided that the model with minimum average RMSE has the best structure for the length of 220 

input time series.   221 

Table 1. Set of hyperparameters for the grid search method. 

Hidden Layers Nodes L1-normalization 

2 64 0 

3 128 10!+ 

4 256 10!% 

 512 10!) 

 1024  
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3.4 Model evaluation criteria 222 

To examine the model performance, we use the root mean squared error (RMSE), Nash-223 

Sutcliffe efficiency (NSE) (Nash et al., 1970), percentage error of peak (PEP), and the time 224 

error of peak (TEP) calculated between observed stages and model estimates.  RMSE is the 225 

measure of accuracy between the observation 𝑦, and estimate 𝑦-/ .  The NSE is equivalent to 226 

a coefficient of determination coefficient and indicates the fraction of the total variance 227 

explained by a regression. Thus, having NSE close to one indicates a smaller variance of 228 

residuals to the total. NSE can be considered as a relative measure of potential performance 229 

among cases with various magnitude of peak stages. The PEP is the fraction (in percentage) of 230 

the error between the estimated peak and observed peak stages during flood events.  TEP 231 

equals the difference in time between the peak estimated in the model 𝑡./  and the peak 232 

observed 𝑡.. As such, the TEP tells us to what degree the model has learned the time of flood 233 

arrival after the continuous precipitation that caused it. Specifically,  234 

 RMSE = 5&
/
∑ (𝑦, − 𝑦-/)0/
,1&   , (2) 

 235 

 NSE = 1 − ∑ (4!!4"5 )#$
!%&
∑ (4!!47)#$
!%&

  , (3) 

 236 

 PEP(%) =
48'(!4'(
4'(

∙ 100 , and (4) 

 237 

 TEP = 𝑡./ − 𝑡. . (5) 

 238 

4 Results and discussion 239 

4.1 Stage estimation 240 

First, we examine the highest four stages in the test set. These high-stage events are as 241 
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follows: case 1 on 2017 August 7th, case 2 on 2017 September 17th, case 3 on 2018 July 7th, 242 

and case 4 on 2018 September 30th.  The MLP model we discuss in this section was 243 

constructed using a precipitation time series that goes back one year from the time of the high-244 

stage events, starting with hourly resolution.  This model possesses small errors for the 245 

training set and performs qualitatively better during low-stage periods, compared with the other 246 

models with different input time lengths.  247 
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Overall, the estimated stages match well with observed stages and without significant 248 

biases (Figure 5).  The RMSE are about 30–50 cm (Table 2) for the stage variations, relatively 249 

small compared to the peaks of about 7–11 m. Also, the NSE exceed 0. 94, indicating a good 250 

temporal fit to the stage. Considering the individual cases, case 1 has relatively small rainfall 251 

and stage, which likely contribute to the small overall error.  Cases 2 and 4, which had heavier 252 

 

Figure 5. Stage estimation for the four flood events in the test dataset within 48 hr of the 
peak stage. The observed stage data are marked as open circles, the model estimate with red 
circles. Precipitation time series averaged over all gauges are in blue bars at top. Peak hours 
for cases 1–4 are 2017 August 7th 11 JST (=UTC+9), 2017 September 17th 22 JST, 2018 
July 7th 11 JST, 2018 September 30th 21 JST. 
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rain about 12 hours before their peaks, both show a delay of the rising limb, with the estimated 253 

peak time behind about one hour, and both cases underestimate the peak stage.  Later, as the 254 

water levels ease, the estimated stages are slightly overestimated. Case 3 has three rainfall 255 

peaks exceeding 10 mm hr-1, with each stage peak well captured by the model. However, the 256 

stages between the stage peaks are slightly overestimated.  257 

In cases where a precipitation time series similar to the test data set is not available in the 258 

training and validation sets, the estimation errors can be large.  Even though case 2 shows a 259 

similar change of stage over time to case 4, the latter had a larger underestimate and a much 260 

larger PEP (Table 2). According to the time series in Figure 6, case 2 has little rainfall within 261 

one month of the stage peak, whereas case 4 has several notable rainfall events within the 262 

month preceding the flood. The difference in the precipitation pattern during that preceding 263 

period probably led to a difference in soil moisture in the watershed, and hence to the retarded 264 

accuracy of case 4. With regard to the soil moisture and precipitation occurrences, a condition 265 

like case 2 was probably better learned from the training and validation sets, but a condition 266 

like case 4, in which soil moisture increased with time, was probably not learned as well. 267 

Physically, the model simulated a situation where the rainfall over-infiltrated into the soil, 268 

leading to an underestimate of the overland flow and thus underestimation of the peak.   269 

When there are not enough samples of heavy rainfall events in the training and validation 270 

sets that are spatially similar to those in the test set, the estimation errors can be potentially 271 

Table 2. Evaluation measures of the four flood events in the test dataset. 

 CASE1 CASE2 CASE3 CASE4 

RMSE (CM) 30.1 38.0 52.6 42.8 

NSE 0.973 0.982 0.942 0.976 

PEP(%) 3.44 6.42 4.70 11.3 

TEP(HR) -1 1 0 1 
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large. To compare the characteristics of precipitation in the training and test sets, we now 272 

investigate the fraction of total precipitation at each rain gauge for each flood event. For the 273 

statistics, we use the top 12 flood events from 2008–2014 in the training set, and the four events 274 

for the above test set.  As defined below, the precipitation accumulation pin for flood event 𝑛 275 

and for rain gauge i is calculated by the 24-hr window centered on the stage peak:  276 

𝑝,9 = ∑ 𝑟,,;9
;()<&0
;1;()!&0

 , (7) 

where 𝑡.9 is the peak time of the stage.  Summing over all 13 gauges, the total accumulation 277 

𝑝9 is  278 

 𝑝9 = ∑ 𝑝,9&=
,1& . (8) 

Thus, the fraction for the gauge 𝑖 is 279 

 𝑃,9 =
.!
)

.)
 . (9) 

Figure 7 shows the fraction of the 24-hr accumulation centered on the time of stage peak 𝑃,9.  280 

A larger fraction may indicate a larger contribution to the flood (the area coverage of each 281 

gauge is not considered for simplicity).  The rain gauges are arranged from the most upstream 282 

at left (R_01) to the most downstream at right (R_13).  The generally decreasing trend shows 283 

 

Figure 6. Time series of average precipitation and stage in the test dataset. a) For the cases 
in 2017. b) For the cases in 2018. 
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that the precipitation at the upstream gauges at higher altitudes contributed more than those 284 

further downstream.  Cases 1, 2, and 4 show a pattern similar to the training set, and they are 285 

within the 25 to 75 percentiles except for R_01.  However, case 3 indicates a quite different 286 

pattern compared with the training set, with the fraction at the upstream gauges relatively small 287 

and those downstream relatively large. Furthermore, several gauges have values outside the 288 

25th and 75th percentiles.  This difference in the spatial distribution of accumulation is most 289 

likely the reason why the RMSE of Case 3 is the worst.  290 

4.2 Stage forecast 291 

Here we examine an MLP model that learns the relationships between the precipitation 292 

time series up to the present and the river stage at dt later.  In other words, this is the model 293 

that forecasts the stage at dt from the current time.  The same precipitation time series and 294 

hyper parameters were used to construct this MLP model as used for that in the previous section.  295 

The time series of the forecast stage with lead times dt of 1, 2, …, 6 hr are shown for case 296 

2 in Figure 8. Forecasts with 1 and 2 hr lead times give an accurate stage time series similar to 297 

 
Figure 7. Ratios of 24-hour accumulated precipitation at each rain gauge to the total of all 
13 gauges during the four flood cases in the test dataset. Ratios for 16 flood events in the 
training set are indicated with the whisker plots where 5, 25, 50, 75, and 95th percentiles are 
shown. 
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the estimation.  However, the 3-hr forecast predicts a larger peak than the observation, as do 298 

those for the 4–6-hr forecasts.  A closer look at the 4-hr forecast indicates that the stage is 299 

about a half that observed at −6 hr, and the predicted flood peak is late. The same issues also 300 

occur for the 5- and 6-hr forecasts. The errors are probably caused by a lack of precipitation 301 

information during dt.  The accurate prediction from the 3-hr forecast suggests that the 302 

precipitation producing the stage peak arrives via surface runoff at Tsunokawa after about three 303 

hours.   304 

Figure 9 shows the dependence of the RMSE on the lead time for all four cases.  For 305 

cases 2–4 with the large magnitude of stage peak the RMSEs are similar among the forecasts 306 

when the lead time is three hours or less.  However, case 3 shows a rapid increase of the 307 

RMSE after a 2-hr lead time. This case has a larger fraction of precipitation downstream (Figure 308 

7).  This suggests that when stage forecasts are made without the use of precipitation forecasts, 309 

especially cases with large fraction of precipitation occurring in the downstream, the errors can 310 

dramatically increase with the lead time.  311 

Considering the MLP framework above, a MLP model for a dt-hour stage forecast may 312 

 

Figure 8. Case 2 observations and model runs. Water level is indicated by the left axis, 
precipitation by the right axis. 
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be developed with a combined time series of observed and forecast precipitation to learn the 313 

stage observed at dt hour.  In this section, we discussed the case where the forecast 314 

precipitation data is not available up to the time when the stage forecast is made. Given that 315 

JMA produces precipitation forecasts up to 15 hr ahead, then by using their time series, a stage 316 

forecasting may be produced with a 15-hr lead time by using the current MLP framework for 317 

estimation.  In such a case, any decrease in the accuracy of the precipitation forecast would 318 

likely decrease the accuracy of the river-stage forecast.   319 

 

Figure 9. RMSEs for the four flood cases at 0- to 6-hr lead times. RMSEs were calculated 
over ±24 hours centered at the time of peak.  
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4.3 Effects of precipitation time series length on stage estimation 320 

In above sections we discussed the stage estimation and forecast based on MLP models 321 

that use a one-year precipitation time series as the input dataset. Here, we examine how 322 

changing the precipitation time series length affects the stage estimation. This length was set 323 

to one day, one week, two weeks, one month, three months, six months, and one year. For a 324 

given length, an MLP model was developed and its hyperparameters were optimized.  325 

Figure 10 shows the RMSEs between the estimated stage and observation for the seven 326 

MLP models for both the validation and the test datasets.  For both datasets, the RMSE 327 

dramatically decreases from one day to one week, reaching about 0.2 m after one month.  328 

Note that Nakane et al. (2019) found that the RMSE continued to decrease monotonically to 329 

0.156 m after 720 days. (They used a method involving similar MLP models, but shorter time-330 

averaging.) Therefore, we cannot assert the information of precipitation that was observed 331 

more than one-month ago is not necessary.   332 

 

Figure 10. RMSEs for various lengths of the precipitation time series. A given length 
corresponds to an MLP model constructed with that length. Open circles are for the 
validation dataset, open triangles for the test dataset. 
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The improvement in modelling fit for longer precipitation time series can also be seen in 333 

the scatterplots (Figure 11).  For the one-year precipitation time series, the points are 334 

distributed close to the 1:1 line (red, in Figure 11c).  The one-week case is similar, but with 335 

more spread, corresponding to the larger RMSE than the one-year case (Figure 11b).  The 336 

case with one-day time series shows a large number of points are located below the red line 337 

over the range of observation of 3 m, indicating the model tends to underestimate the stage. 338 

The reason behind the large one-day RMSE compared to one week is examined next.  339 

Consider the relation of stage estimate to precipitation pattern for the one-day, one-340 

week and one-year MLP models for flood cases 2 and 3 in Figure 12. The importance of the 341 

length of input time series is evident in the one-day series for case 2 (Figure 12a) when the 342 

stage estimate suddenly drops just after 12 hr and then stays near 0 m. At 24 hr, the average 343 

precipitation during the past 24 hr is 0, which explains the estimate being about 0 m. Case 3 344 

(Figure 12, right column) has intermittent heavy rainfall observed in the upstream. The one-345 

day MLP model poorly estimates the second stage peak and essentially misses the third peak 346 

 

Figure 11. Scatter plots between stage observation and estimate for the test dataset for 
models using three lengths of the precipitation time series.  a) With one-day time series. 
b) With one-week time series. c) With one-year time series. Red solid lines give the 1:1 
relation. RMSEs are shown in the box. 
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(Figure 12b). This model's estimate is remarkably noisy presumably due to the absence of 347 

precipitation information before 24-hr back.  When the length of input time series increases 348 

to one week, the three peaks in case 3 are reproduced nicely (Figure 12d), but the match 349 

between the estimates and observations even better with the one-year input time series (Figure 350 

12f).  From these results, we conclude that during flooding events the role of soil moisture 351 

and ground water is extremely important one day to one week before a rainfall event, and the 352 

runoff process with larger timescales associated with precipitation that occurred one week to 353 

one year in the past also cannot be ignored.   354 

4.4 Stage estimation sensitivity to the rain gauges 355 

How does a given rain gauge and rainfall event affect the flood stage? The typical way 356 

 

Figure 12. Stage estimates for three lengths of input precipitation time series, examined 
within 48 hours of two flood events. Left column: case 2. Right column: case 3. The top 
row is for the one-day time series, the middle for the one-week time series, and the bottom 
for the one-year time series. 
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to measure an output's sensitivity to an input is by perturbing the input and noting the change 357 

in output. However, in this case there are hundreds of input variables for the single output 358 

variable (the stage). Thus, we use layer-wise relevance propagation (LRP) (Bach et al., 2015), 359 

a visualization technique, to determine the relationship between stage and precipitation time 360 

series. The relationship enables us to examine the time of precipitation arrival to the stage, as 361 

well as the sensitivity of the stage, to a given precipitation event from a given rain gauge.  362 

LRP measures the overall contribution of each input variable by propagating the 363 

contribution through the learned neural network for a specific instance of output.  Rises in the 364 

river stage are in general formed not by the independent precipitation event at a certain moment 365 

in the past, but by a distribution of precipitation over a period of time.  Therefore, for the MLP 366 

models here, it is more appropriate to measure the overall relevance of the past precipitation 367 

time series than to calculate the stage's sensitivity to the precipitation at a certain moment.  368 

Also, LRP can be run for estimates and forecasts for real flood events, providing an explanation 369 

of the model behavior for a given flood event.  Therefore, it is an appropriate method to 370 

characterize the MLP models.   371 

LRP quantifies the contribution of a given precipitation input to the model output, calling 372 

it the "relevance" of that input. A higher numerical value for the relevance indicates a higher 373 

contribution. Details on its calculation are in the appendix; here we focus on the results.   374 

The relevance of the precipitation inputs for the stage estimate at a certain time was 375 

calculated for case 2 over 24 hours of the flood event. In Figure 13, the relevance of 376 

precipitation inputs for the stage at a certain time, shown as the black contours, can be examined 377 

by specifying the time on the abscissa and examining the contours from top down, which 378 

corresponds to the retrospective time. The top panel has results for the gauge furthest upstream, 379 

the bottom panel that for the gauge closest to Tsunokawa, L3 (see Figure 1). For the 380 

precipitation inputs, we analyze just the first 14 (of the 69 total).   381 

In general, precipitation at a certain time shifts toward a larger element number as the 382 
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estimation time progresses, and the time resolution gets worse, combining more precipitation 383 

events as the time goes back from the estimation time.  For instance, in Figure 13a, the 384 

precipitation (color fill) of E_01 at −9 hr is the same as that of E_02 at −8 hr, and at −3 hr the 385 

precipitation is contained in E_07 element through the two-hour average.  The sequence of 386 

precipitation that starts at −10 hr lasts up to −4 hr, and the number of elements in the sequence 387 

gradually decreases along the vertical axis toward +12 hr so as to remain as the input 388 

information. 389 
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 390 

 

Figure 13. Relevance map of the stage estimation MLP model for case 2 and three rain 
gauges along the main stream (Figure 1). Abscissa is the time from the stage peak. Left 
ordinate is the precipitation element (Table 3), with its relevance marked as black 
contours. Right ordinate is the stage, with the white dashed curves showing observed 
(white-filled circles) and estimated (red-filled circles) stages. Color fill is input 
precipitation. a) Gauge R_01. b) Gauge R_08. c) Gauge R_13. The red arrows indicate 
estimation of arrival time of precipitation. 
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Consider first the relevance for R_01 (Figure 13a).  The sequence of precipitation 391 

events that starts at −10 hr shows a rise in relevance (black contours) at −4 hr and at E_07.  At 392 

−4 hr the most contributed precipitation to the stage estimate (about 5 m) is the one observed 393 

at −10 hr, the time when the stage starts to rise.  For 0–4 hr the relevance shows a peak at 394 

E_08, indicating that the precipitation that fell 8 or 9 hr prior contributes to the stage up to four 395 

hr after the peak.  Then, from 4 to 6 hr the maximum relevance values occur at E_08 and 396 

E_09, as marked with the red arrows.  Based on this pattern, the time for precipitation that fell 397 

at R_01 to reach the Tsunokawa stage observatory is about 8–11 hr.  Furthermore, there are 398 

large values of relevance associated with the sequence of precipitation events up to 7 hr, and 399 

precipitation peaks follow the relevance peaks closely.  Moreover, as the relevance value is 400 

particularly large after the stage peak, this rain gauge has the geographical characteristic of 401 

being a significant contributor when the stage decreases rather than when it increases.  402 

Now consider the relevance for gauge R_08 (Figure 13b).  The relevance starts to 403 

increase at −4 hr and at E_06, reaching a maximum value at 1 hr and E_08. This pattern 404 

indicates an arrival time of precipitation of about 8–9 hours. In contrast with R_01 further 405 

upstream, this gauge makes its maximum contribution at the time of the stage peak.  Thus, for 406 

the same arrival time of precipitation, the gauge further downstream has a different timing of 407 

its largest contribution. In addition, it has a narrower spread of relevance along the estimation 408 
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time, suggesting that the precipitation that contributes to the flood peak occurs over a shorter 409 

time period.    410 

Finally, consider R_13, the gauge furthest downstream and closest to the stage. Its 411 

relevance starts to increase at −6 hr and E_02, reaching a maximum at either −5 hr and E_03 412 

or at 0 hr and E_07. This pattern indicates an arrival time of precipitation of about 2–7 hours.   413 

The relevance is larger before the peak, so for this gauge the precipitation contributes most 414 

from the rising limb to the peak.    415 

Let dR_n be the distance between the Tsunokawa station and R_n.  Figure 1 indicates 416 

Table 3. Time elements prior to current time t and their time resolutions. 

ELEMENT TIME (HR) RESOLUTION (HR) 

E_01 t 1 

E_02 t-1 1 

E_03 t-2 1 

E_04 t-3 1 

E_05 t-4 1 

E_06 t-5 1 

E_07 t-6~ t-7 2 

E_08 t-8~ t-9 2 

E_09 t-10~ t-11 2 

E_10 t-12~ t-13 2 

E_11 t-14~ t-16 3 

E_12 t-17~ t-19 3 

E_13 t-20~ t-22 3 

E_14 t-23~ t-26 4 
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that dR_13 < dR_08 < dR_01.  The relevance analyzed above suggests the arrival time of 417 

precipitation tR_n follows tR_13 (2–7) < tR_08 (8–9) ≤ tR_01 (8–11).  The tR_13 and tR_08 are clearly 418 

different, and at most about 6–7 hours traveling time in between. This suggests that the MLP 419 

model represents the geographical distance in the arrival time of precipitation.  On the other 420 

hand, the nearly equal timescales between gauges 1 and 8 is unclear.. Gauge R_01 experienced 421 

about twice the precipitation than that at R_08 during case 2 and lies in a steeper, higher region 422 

than R_08 (Figure 1). The steeper slope could reduce the arrival time of R_01, but other factors 423 

such as vegetation, soil types, and local topography may also influence the relevance.  Future 424 

research is required to clarify the physical implication of the relevance in detail.   425 

5 Conclusion 426 

In this study, we developed multilayer perceptron (MLP) models to estimate and forecast 427 

a river stage in the Shimanto river watershed. This watershed lies in a mild, rain-heavy 428 

mountain region covered with forests. The models were developed solely based on the observed 429 

long-term precipitation and stage time series, and then tested. The main findings are  430 

• Models that estimate the stage at the latest time of the input precipitation time series 431 

captured the time fluctuation of stages with an RMSE of 50 cm for flood peaks of 432 

about 10 m.   433 

• Stage forecasts were made 1 to 6 hours after the latest precipitation observation with 434 

the MLP framework.  The performance was highly accurate with up to a 3 hour 435 

lead time.  This suggest that the current precipitation information in the watershed 436 

contributes significantly to the stage 3 hours later.   437 

• Input of precipitation that occurred one day to one week prior to a flood plays 438 

influences the river stage estimate during flood events, which is likely related to the 439 

infiltration to soils and interflow processes.  Precipitation further back, up to one 440 

year, has non-negligible impacts on the base flow, which implies that the MLP 441 
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models learned the ground water flow over long timescales.   442 

• Use of LRP (layer-wise relevance propagation) enabled us to estimate the arrival 443 

time of precipitation based on the increase of the contribution (called relevance).  444 

The arrival time correlated to the distance between rain gauge and stage observatory, 445 

indicating that the MLP models likely capture the geographical characteristics of the 446 

watershed.  However, more detailed analysis is required to relate the arrival time to 447 

physical parameters such as gradients and vegetation.  448 

The inductive (or empirical) modeling proposed in this study does not include relevant 449 

physical processes explicitly.  Even so, the models exhibited reasonable physical behavior.  450 

The visualization technique such as LRP helps users interpret the model characteristics, and it 451 

can enhance the reliability of the MLP models as a practical hazard prevention tool.  However, 452 

due to the inductive nature of the method, accurate predictions require that the model 453 

developers carefully select training sets that are expected to be similar to any anticipated flood 454 

events.  455 

The advantage of the MLP modeling is in allowing one to construct models for forest-456 

covered watersheds with complicated topography only from long-term time series of 457 

precipitation and stage. In contrast, physical-based modeling typically requires information on 458 

topography, gradient, vegetation, and soil type that can be cumbersome to acquire. Also, the 459 

MLP modeling does not require involved parameter tuning, which can save on manpower and 460 

cost. Furthermore, if accurate precipitation forecast datasets are available as the input, a stage 461 

forecast MLP model can be constructed.  Future research is warranted to examine the ability 462 

of the MLP model to remove biases in the precipitation forecast and to effectively use the 463 

precipitation forecasts.   464 
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6 Appendix 465 

6.1 Development environment 466 

The computational hardware is a personal desktop computer with Intel Core i7-7700 CPU 467 

and GeForece GTX1080Ti GPU. The OS is Linux OS (Ubuntu 17). The software framework 468 

for Deep Learning is Keras that uses Google Tensorflow as the backend.  The code is written 469 

with Python (Version 3. 6).  The MLP model of this study uses fully connected networks, so 470 

sequential programing is possible.  We used Keras functional API for ease of future 471 

development.   472 

6.2 LRP 473 

The basic LRP concept is shown in Figure A1.  The subscript gives the node number, 474 

the superscript gives the layer number.  The left diagram shows the feedforward propagation 475 

of information from input to output layers.  The product of inputs and weights 𝑧>> and the 476 

addition of the products and bias terms 𝑧> are defined by Eqs. (50) and (51) of Bach et al. 477 

(2015).  The right diagram shows the backward propagation of information from output to 478 

input layers with relevance 𝑅>
(>)  shown for the feedforward network.  The relevance is 479 

calculated using Eqs. 10–14 below, which are based on Eqs. (57), (58), and (62) of Bach et al.  480 

(2015). Then, 𝑧>>  and 𝑧>  obtained in the feedforward network are used to calculate 481 

backpropagating information for the connected nodes in the upstream layer. The ratio of 𝑧>> 482 

in the upstream layer to the input before activation 𝑧> is calculated, and then multiplied by 483 

the relevance of the node in the layer.  The relevance of a node is the sum of the 484 

abovementioned ratio over all the connections to the node. Specifically,  485 

 486 

 𝑅?
(@) = 𝑓(𝑥),							𝑙 = 1 , (10) 

 487 

 𝑅A
(() = ∑ B*+

B+
𝑅?
(@),&

?1& 	𝑘 ∈ {1, … , 128} , (11) 
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 488 

 𝑅C
(=) = ∑ B,*

B*<DE$F(G,B*)
𝑅A
((),&0+

A1& 	𝑗 ∈ {1, … , 128} , (12) 

 489 

 𝑅,
(0) = ∑ B!,

B,<DE$F(G,B,)
𝑅C
(=),&0+

C1& 	𝑖 ∈ {1, … , 512} , and (13) 

 490 

 𝑅H
(&) = ∑ B-!

B!<DE$F(G,B!)
𝑅,
(0),@&0

,1& 	𝑑 ∈ {1, … , 897} , (14) 

where sign(𝜀, 𝑧,)  gives the sign of 𝑧,  to the absolute value of 𝜀 . This constant 𝜀  is 491 

introduced to prevent the relevance from vanishing or exploding.  For appropriate correction, 492 

𝜀 was set to 𝜀 = 10!), which is about 1/100 of absolute value of 𝑧>.  These calculations are 493 

repeated layer-by-layer toward the upstream to obtain the relevance of the input layer 𝑅H
(&). 494 

 495 
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