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Abstract

Viscous fingering occurs when a less viscous fluid is injected into a rock matrix saturated with a more viscous fluid. Our past

research using the Rothman-Keller (RK) color gradient Lattice Boltzmann Method (LBM) for immiscible two phase flow has

allowed us to study viscous fingering morphology and the complex saturation phase space as a function of the fluid’s properties

(wettability of the injected fluid and viscosity ratio). In this past work, we found that the primary factor affecting the saturation

at breakthrough – when the injected fluid has passed through the entire model – was the viscosity ratio, and the secondary

effect was the wettability. Here, we present an extension of our LBM model to enable convection-diffusion to be simulated,

thereby allowing us to vary the viscosity of the injected fluid, and mimicking the practice in Enhanced Oil Recovery (EOR)

using polymer additives after breakthrough as a means of increasing the viscosity ratio and thus the eventual oil yield. The

basic RK multiphase LBM models two fluid number densities moving and colliding on a discrete lattice, where a second collision

term is used to model cohesion within each fluid, and contains an extra “recoloring step” to ensure fluid segregation. Here,

we model an additional number density representing the concentration of a polymer additive, which affects the viscosity of the

injected fluid. The Peclet number – rate of advection to diffusion of the polymer solution – is used to set the diffusion coefficient

of the polymer concentration number density and hence, the relaxation time in the LBM for the polymer diffusion process.

We present tests to demonstrate the method in which we increase the polymer concentration of the injected fluid after a given

time and study the effect on the viscous fingering morphology and saturation evolution. This work demonstrates that the RK

color gradient multiphase LBM can be used to study complex viscous fingering behavior associated with injection of water with

polymer additives, which can have major scientific and practical significance.
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Introduction

Two-phase flow in porous media has a rich phenomenology with scientific and economic significance.
When a fluid invades a porous matrix filled with a higher viscosity fluid above a critical capillary
number, patterns of viscous fingering occur. This phenomenon has immense significance to Enhanced
Oil Recovery (EOR) where water is injected into injection wells to help push out oil from an adjacent
production well. This is because the viscous fingering leads to a low saturation and hence low Recovery
Factor (RF) at breakthrough when the water reaches the production well. The degree of viscous
fingering strongly depends on the viscosity ratio M between the two fluids, with strong viscous fingering
for M � 1 and minimal viscous fingering for M ≥ 1. As such, polymer additives can be used to
increase M and thus improve recovery rates. We adapt the Lattice Boltzmann Method to model a solute
representing polymer additives in the injected fluid to enable studies of the use of polymer additives.

The colour gradient Lattice Boltzmann Method for two phase flow

The Rothman-Keller colour gradient Lattice Boltzmann Method (LBM) can simulate immiscible two
phase flow of fluids with high viscosity contrasts, variable interfacial tension and any wetting angle. It
models particle distributions denoted f k

α of two fluids moving and colliding on a discrete lattice where α
is the direction of movement on a square lattice. The macroscopic density of the two fluids ρk
(k = 1, 2), total density ρ and macroscopic momentum ρu are given by

ρk =
∑
α

f k
α , ρ =

∑
k

ρk , ρu =
∑
k

∑
α

f k
αcα .

There are three steps in this method: (1) streaming (movement), (2) collision and (3) recolouring.

1. The streaming step

The streaming step is given by f k
α(x, t) = f k

α(x− cα∆t, t − ∆t) ,

where cα is the velocity vector with α = 0, . . . , 8 which moves f k
α one lattice spacing per time step.

2. The collision step

The collision step is written as f k∗
α = f k

α + (∆f k
α)1 + (∆f k

α)2 ,

where ∗ denotes post collision distributions, the first term (∆f k
α)1 accounts for particle collisions, and

the second term (∆f k
α)2 adds an adhesive force to model interfacial tension. The first term is given by

(∆f k
α)1 =

1

τ

(
f k,eq
α − f k

α

)
where τ is the relaxation time and f k,eq

α (x, t) is the usual LBM equilibrium distribution aside from the
rest velocity factor. The relaxation time τ relates to fluid viscosity ν via τ = ν/(c2

s ∆t) + 0.5 where

cs = s/
√

3 is the soundspeed in the lattice and s = ∆x/∆t. The second term is calculated as

(∆f k
α)2 = A|g|

(
wα(cos(λα)|cα|)2 − Bα

)
,

where wα are the LBM weights, g is the colour gradient, λα is the angle between g and cα, Bα are
constants which obtain the correct surface tension, and A is a parameter that relates to surface tension.

3. The recolouring step

The recolouring step is achieves separation of the two fluids and is given by

f k
α =

ρk

ρ
f ∗
α ± β

ρ1ρ2

ρ2
f eq
α (ρ, u = 0) cos(λα) ,

where f ∗
α =

∑
k f k∗
α , the + sign is for k = 1, the - sign for k = 2, β ∈ [0, 1] is an adjustable

parameter relating to interfacial thickness, and f eq
α (ρ, u = 0) = wαρ.

The convection diffusion Lattice Boltzmann Method for two phase flow

We adapt the standard colour-gradient LBM by modelling a third number density denoted f c
α

representing the number density for the concentration of an additive (eg. polymer) in fluid 1 (“ the
solute”). Namely, we model the streaming step of the fluid concentration number density using

f c
α(x, t) = f c

α(x− cα∆t, t − ∆t) ,

and the collision step using

f c∗
α (x, t) = f c

α(x, t) + ∆f c
α , (1)

where f c∗
α is the number density after collision and ∆f c

α is the collision term given by

∆f c
α =

1

τc

(
f c,eq
α (x, t) − f c

α(x, t)
)

(2)
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Convection-diffusion LBM for two phase flow continued . . .

where τc is the relaxation time for the concentration and f c,eq is the standard equilibrium distribution
for the LBM. The relaxation time for the solute concentration is given by τc = νc/(c2

s ∆t) + 0.5
where νc = κ is the diffusivity of the concentration and can be calculated from a knowledge of the
Peclet number which relates to the rate of advection to diffusion and is given by νc = uL/Pe where
Pe is the Peclet number, u is the fluid velocity, and L is the scale length. The macroscopic
concentration is given by C =

∑
α f c
α, and in following, we use C ∈ [0, 1].

The above LBM equations model the convection diffusion equation in the macroscopic limit given by

∂C
∂t

+ u · ∇C = κ∇2C .

Polymer additives are known to increase the viscosity of water. As such, these additives decrease vicous
fingering which in turn increases the recovery factor (fraction of oil recovered from an oilfield) using
EOR via water flooding = injecting water to help evacuate the oil within an oilfield). We set the Peclet
number to be Pe = 50 which is a typical value for polymer additives in water = fluid 1. In our scheme,
the solute concentration is modelled everywhere within all fluid regions (fluid 1 = water and fluid 2 =
oil) and we use the standard LBM bounce-back scheme at solid boundaries. To avoid leakage of the
solute between disconnected regions of fluid 1 such as may occur at finger pinchouts, we set the
diffusivity to be very small when there was a negligable fraction of fluid 1. Specificaly, when
ρ1/ρ < 0.01 we set the diffusivity to νc = uL/Pehigh where Pehigh is set to a much larger Peclet
number than that of fluid 1. In the following, we used Pehigh = 1000� Pe = 50.

The additive concentration C is then used to adjust the viscosity of fluid 1. Specifcally, we set

ν1 = ν
0
1 + (ν2 − ν0

1 )C ,

where ν0
1 is the viscosity of pure water. We then calculate the relaxation time for fluid 1 (the solvent)

using τ1 = ν1/(c2
s ∆t) + 0.5. This approach means that in our model, C = 1 means we have raised

the polymer concentration to a level where the viscosity of water (fluid 1) is equal to that of the oil
(fluid 2). Hence, when C = 1, we can expect little viscous fingering because the viscosity ratio
M = ν1/ν2 is unity, whereas for C = 0, we can expect significant viscous fingering since M = ν1/ν2
will be small, for example, ∼ 0.01 for oil. This is an idealized case to test the method.

Results: viscous fingering versus stable displacement (base case)

We conducted numerical experiments in which we invade a 2D porous matrix initially saturated with
fluid 2 representing oil, with fluid 1 representing water). Before we conduct experiments in which the
water can have an additive (polymer) which increases its viscosity for a specified period of time, we ran
reference experiments. Namely, we conducted two experiments with viscosity ratios M = ν1/ν2 of
M = 0.01 (cf. water injected into an oil saturated matrix), and M = 1 (ie. water with a polymer
additive which raises its viscosity to the same values as that of oil). Figure 1 shows snapshots for first
case (M = 0.01) and exhibits significant viscous fingering, whereas Figure 2 shows snapshots for the
second case (M = 1) and shows stable displacement as expected.

Figure 1: Snapshots for the case of a non-wetting invading fluid with a viscosity ratio of M = 0.01. Black regions are fluid 1,

white regions are fluid 2, and grey regions are solid grains. Breakthrough occurred at a time of t = tbr = 84360.

Figure 2: Snapshots at various times for the case of a non-wetting invading fluid with a viscosity ratio of M = 1. Black regions

are fluid 1, white regions are fluid 2, and grey regions are solid grains.

Results: effect on viscous fingering of polymer injection

In EOR using water flooding, polymer additives can be used to decrease viscous fingering and hence,
increase the oil recovery. These tend to be used either after breakthrough when water first reaches the
production well, or from the start of operations. To illustrate the two phase LBM with convection
diffusion, we ran two simulations of these two cases.

Figure 3 shows polymer concentration for the case of using polymer additives after a specified time of
t = tbr = 84360 (the breakthrough time) for a duration of ∆t = tbr . In contrast, Figure 4 shows
polymer concentration for the case of using polymer additives from t = 0 for the same duration.

Figure 3: Snapshots at various times of the polymer concentration C for the case of the polymer being injected after a time of

t = tbr for a duration of ∆t = tbr . Light blue shows the injected fluid with C = 0, red shows the injected fluid for C = 1, dark

blue depicts fluid 2 (the displaced fluid representing oil), and the darkest blue shows the grains.

Figure 4: Snapshots at various times of the polymer concentration C for the case of the polymer being injected after a time of

t = 0 for a duration of ∆t = tbr . Light blue shows the injected fluid with C = 0, red shows the injected fluid for C = 1, dark

blue depicts fluid 2 (the displaced fluid representing oil), and the darkest blue shows the grains.

The above plots clearly show that when polymers are used from the start of the simulation, viscous
fingering is greatly decreased relative to when polymers are used after the breakthrough time. As such,
the case of using polymers from the start has increased sweep (flow efficiency) and hence, increased
saturation = recovery factor, relative to the case of polymer injection after breakthrough.

To quantify the effect on saturation (ie. recovery factor) of using polymer additives in water flooding,
Figure 5 shows plots of the saturation versus time for the the four different cases studied above. One
observes that the reference case of injecting pure water (cf. Figure 1), the saturation rate (= production
rate) drops suddenly after breakthrough and then decreases with time. The case when a polymer
additive is used after breakthrough for a duration of ∆t = tbr (cf. Figure 3), the production rate
increases again some time after breakthrough. In contrast, the case when a polymer additive is used
before breakthrough for the same time (cf. Figure 4), the production rate remains constant until the
saturation reaches about 90%.

Figure 5:Plots showing saturation as a function of time for the

four different cases of injection of: (1pure ) water, (2) water with

polymer additives always, (3) polymer additives from t = tbr for

a duration of ∆t = tbr , and (4) polymer additives from t = tbr
for a duration of ∆t = tbr .

Conclusions

The two-phase colour gradient LBM is adapted to model convection-diffusion in fluid 1 to enable the
effect on viscous fingering of polymer additives to be studied. We conduct simulations within a 2D
model pore matrix initially saturated with a high viscosity fluid (cf. oil), which is injected from the left
with a lower viscosity fluid (cf. water), thus representing a simplified model of EOR by water flooding.
We test two cases being use of a polymer after breakthrough and before breakthrough and find that the
recovery factor (RF) is much higher for the “before breakthrough” case.


