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Abstract

The successful application of deep learning for seismic phase arrival time picking has increased the efficacy of earthquake catalog

development workflows. Earthquake catalogs with lower magnitude of completeness and better locational precision than current

standard practice can now be generated with very limited need for human review and without the need for earthquake templates,

which are not always available. Here, we report on a ‘Deep Earthquake Catalog’ with over 300,000 events from a geographically

extensive region spanning Oklahoma and Southern Kansas from January 2010 to December 2020 developed using a workflow

that leverages deep learning for phase picking. The increased number of events and improved spatial resolution compared to

the previous statewide catalogs reveals numerous discrete faults and both broad trends and localized patterns of seismicity.

This rich dataset provides new opportunities for data-driven analyses of induced earthquakes.
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Key Points:6
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Abstract12

The successful application of deep learning for seismic phase arrival time picking has in-13

creased the efficacy of earthquake catalog development workflows. Earthquake catalogs14

with lower magnitude of completeness and better locational precision than current stan-15

dard practice can now be generated with very limited need for human review and with-16

out the need for earthquake templates, which are not always available. Here, we report17

on a ‘Deep Earthquake Catalog’ with over 300,000 events from a geographically exten-18

sive region spanning Oklahoma and Southern Kansas from January 2010 to December19

2020 developed using a workflow that leverages deep learning for phase picking. The in-20

creased number of events and improved spatial resolution compared to the previous statewide21

catalogs reveals numerous discrete faults and both broad trends and localized patterns22

of seismicity. This rich dataset provides new opportunities for data-driven analyses of23

induced earthquakes.24

Plain Language Summary25

Oklahoma and Southern Kansas have experienced unprecedented rates of seismic-26

ity for over a decade as a result of unconventional hydrocarbon development. The re-27

gion did not have a history of frequent earthquake activity, and little was known about28

the location or nature of the faults that came to host this seismicity. We reanalyzed the29

seismological data from January 2010 to December 2020 using an advanced workflow and30

produced a map of over 300,000 earthquakes, most of which were previously unknown.31

These earthquakes clearly illuminate the hidden fault structures throughout the region32

and can be used to better understand the regional seismicity.33

1 Introduction34

The workflow for developing an earthquake catalog with lower magnitude of com-35

pleteness and increased location precision, i.e., a high-resolution earthquake catalog, com-36

pared to standard procedures has become faster and easier through the application of37

deep learning (DL) for seismic phase arrival time picking (Zhu & Beroza, 2019). The work-38

flow (referred to as DL-assisted workflow hereafter) has been successfully used to effi-39

ciently create high-resolution earthquake catalogs (referred to as deep earthquake cat-40

alogs hereafter) in both anthropogenic (Park et al., 2020) and tectonic (Liu et al., 2020;41

Tan et al., 2021) settings. These studies demonstrate that we can now produce a cat-42
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alog with resolution and sensitivity approaching that of template matching, but with-43

out the need for the prior information in the form of a set of templates.44

One of the clearest use cases of high-resolution earthquake catalogs is to map hid-45

den fault structures and derive fault attributes such as orientations and dimensions (Schoenball46

& Ellsworth, 2017a; Skoumal et al., 2019). The resulting information can be used for ge-47

omechanical analysis, for example, to evaluate how likely faults are to slip (Walsh III &48

Zoback, 2016), to resolve fault plane ambiguities in focal mechanism solutions and to con-49

strain local stress fields (Angelier, 1979), or to create fault models in numerical simu-50

lations (Yehya et al., 2018). This is especially useful for Oklahoma and Southern Kansas51

as almost all earthquakes have occurred on previously unmapped faults (Schoenball &52

Ellsworth, 2017b).53

Previous studies improved the statewide earthquake catalog developed by the Ok-54

lahoma Geological Survey (OGS) (Walter et al., 2020) by precisely relocating earthquakes55

using a well-established workflow (Schoenball & Ellsworth, 2017b, 2017a) and by detect-56

ing and locating more events with template matching (Skoumal et al., 2019). These stud-57

ies identified fault structures based on the epicentral distance among earthquake events,58

but the difference in spatial resolution and earthquake location methods led to some dis-59

agreements between the two results.60

In this study, we use a DL-assisted workflow to process continuous waveform data61

in Oklahoma and Southern Kansas from January 2010 to December 2020 and report on62

a deep earthquake catalog with over 300,000 earthquakes that illuminates regional fault63

structures at both a broader scale and in more detail than previous catalogs. We show64

that the template-independency of the DL-assisted workflow can lead to earthquake cat-65

alogs with greater spatial resolution than template matching.66

2 Earthquake Catalog Development67

We used data from 17 publicly available seismic networks (codes 4H, 9L, GS, N4,68

NP, NQ, NX, O2, OK, TA, US, XR, Y7, Y9, ZD, ZP, and ZQ), comprising 422 stations.69

The geographic distribution of stations is shown in Figure 1 and the operational time70

of each station is shown in the supporting information (Figure S1).71

We used a pre-trained neural network (Zhu & Beroza, 2019) to detect earthquakes72

and pick P- and S-phase arrival times. Because the picks and the prediction scores vary73
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depending on where the arrival is in the 30-second input window, we used a small stride74

of 2 seconds and used the picks that were consistently predicted in at least 5 windows75

with a prediction score of 0.5 or greater. These picks were then associated using a grid76

search algorithm similar to (Johnson et al., 1997; Zhang et al., 2019) where theoretical77

travel times were computed from the velocity model developed by OGS (Darold et al.,78

2015). We used the theoretical travel times to constrain further the possible time win-79

dow ranges between a pair of phases. This allows us to restrict the length of the time80

window between the first phase pick and the following phase picks during association,81

which removes potential ambiguities that can be introduced with longer time windows.82

To address seismic network variability, we used an adaptive association score as an event83

criterion, defined as84

Association score =

∑N
i=1 w (ri)1 {φi ∈ A}∑N

i=1 w (ri)
(1)

which avoids thresholding on some constant number of required stations and/or phases.85

Here, N is the maximum number of phases that can be observed, i.e., twice the num-86

ber of the stations that were operating at the time of the event, and w(ri) is a weight-87

ing function. The indicator in the numerator (1) evaluates to 1 if the i’th phase (φi) is88

in the association result (A). To downweight stations more distant from the epicenter89

of the grid search solution, we used the weighting function:90

w (ri) = min

(
1

ri
,

1

R

)
(2)

where we set the cutoff radius (R) for constant weight to 10 km. We required the as-91

sociation results to have an association score of 0.3 or greater and to have phase picks92

from at least 3 stations where 2 of them have both P- and S-phases picked. This is a bare93

minimum requirement to create an overdetermined system while resolving any phase con-94

fusion by the picking algorithm, i.e., mis-identifying a P-phase as an S-phase or vice versa.95

We determined initial hypocentral locations with HypoInverse (Klein, 2002) and refined96

them with HypoDD (Waldhauser & Ellsworth, 2000). For the final locations, we used97

the differential travel times calculated from the phase picks supplemented with cross-98

correlation measurements. For the latter, we followed the approach described in (Shelly99

et al., 2013, 2016) and used the three-point quadratic interpolation for subsample pre-100

cision and a weighting function that considers both the largest and the second largest101

cross-correlation coefficients to capture confidence in the measurements. We determined102

local magnitudes using the procedure and distance correction function reported in (Walter103
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Figure 1. Map of the study area showing the faults compiled by OGS (Marsh & Holland,

2016) in black lines, seismic stations in red triangles, and epicenters of the events in our catalog

in blue dots. The highlighted lines mark apparent seismicity boundaries. The area for Figure 2 is

shown in grey box.

et al., 2020) but adopted moment magnitudes produced by St. Louis University (Herrmann104

et al., 2011) when available.105

3 Results106

3.1 Regional map of earthquakes107

Figure 1 shows the epicenters in our catalog and the mapped faults compiled by108

OGS (Marsh & Holland, 2016). Equivalent maps with the events in other catalogs (Guy109
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et al., 2015; Schoenball & Ellsworth, 2017b; Skoumal et al., 2019) and the magnitude-110

frequency distributions of the catalogs are shown in the supporting information (Figures111

S2 through S6). A high-resolution map of the events colored by their origin time is at-112

tached as a separate file (Figure S8). As noted previously, most of the earthquakes are113

not associated with mapped faults (Schoenball & Ellsworth, 2017b). Instead, the event114

epicenters define hundreds or even thousands of discrete fault structures, as seen here115

in high spatial resolution. Note that the fault data were produced in 2016 and some of116

the faults were defined by the earthquakes that had occurred on those faults by that time.117

The fault that hosted the 2011 M5.6 Prague earthquake is an example.118

One aspect that emerges in our catalog are clear boundaries of seismicity. The Nemaha119

Ridge, which is highlighted and marked with A in Figure 1, has been hypothesized as120

a barrier to flow (Weingarten et al., 2015) and our result strengthens the case. Specif-121

ically, the seismicity in eastern Oklahoma tends to be constrained to the east of the ridge122

south of 36.25 N, but to the west of the ridge farther north. Another example is marked123

with B in Figure 1 where the seismicity is confined to the west of the highlighted line.124

The origin of this boundary is not clear; however, we suspect that it too is geologically125

controlled since there are mapped faults with similar orientations in the vicinity of line126

B.127

3.2 Comparing the earthquake catalogs128

Figure 2 compares event epicenters between January 2010 and December 2016 in129

the area highlighted in Figure 1 from our study with the two previous statewide cata-130

logs (Schoenball & Ellsworth, 2017b; Skoumal et al., 2019). We refer the catalog from131

Schoenball and Ellsworth (Schoenball & Ellsworth, 2017b) as SNE2017, and that from132

Skoumal and coworkers (Skoumal et al., 2019) as SEA2019 hereafter. The epicenters be-133

longing to the clustered structures in SNE2017, which were identified in a separate study134

(Schoenball & Ellsworth, 2017a), are shown in different colors. The faults that were iden-135

tified and fit in SEA2019 are plotted beneath the event epicenters. The spatial resolu-136

tion of SNE2017 and SEA2019 limited the structures that can be confidently identified.137

The number of events is larger in SEA2019 compared to SNE2017, but they are more138

tightly clustered, which resulted in many small-scale structures. Our deep earthquake139

catalog reveals that most of these separated structures are actually located within more140

extensive and continuous structures.141
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Figure 2. Comparisons of the event epicenters (black dots) among the three catalogs in the

area highlighted in Figure 1. Events up to December 2016 are shown in c to match the date

range with the other two catalogs. Events that were assigned to the identified fault structures in

a are highlighted with colored backgrounds and the identified faults in b are plotted beneath the

events in red. The area for Figure 3 in shown in c.

The spatial distribution of earthquakes seems more similar between SNE2017 and142

our study than SNE2017 and SEA2019. Note that SNE2017 was produced by relocat-143

ing the events from a routine catalog without increasing the event count while both SEA2019144

and this study increased the number of earthquakes detected to help resolve active struc-145

tures. To compare the distribution of locations quantitatively we used the Chamfer Dis-146

tance (CD), which in this context is defined as147

CD(X,Y ) =
1

Nx

∑
x∈X

min
y∈Y
||x− y||22 +

1

Ny

∑
y∈Y

min
x∈X
||y − x||22 (3)

where x is each event epicenter in catalog X, y is each event epicenter in catalog Y , and148

Nx and Ny are event counts in catalog X and Y , respectively. While the absolute size149

of this distance does not convey much meaning, we can make relative comparisons among150

distances as smaller distances translate to higher similarity. When comparing a low-resolution151

catalog with a high-resolution catalog, the distance should decrease with increasing res-152

olution of the high-resolution catalog because ‘resolving’ in this context refers to resolv-153

ing the same underlying structures. Figure S7 gives more details on this logic. Using the154

events shown in Figure 2, the CD between SNE2017 and SEA2019, SNE2017 and our155

catalog, and SEA2019 and our catalog were 0.86, 0.54, and 0.66, respectively. The fact156
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Figure 3. Clustering results of the earthquake events (up to December 2020) within the high-

lighted area in Figure 2-c. Events with the same background color belong to the same identified

structure in the first row. The second row shows the distributions of measured lengths and strike

angles of the identified structures. The lengths are plotted against the observed lengths, which

are derived from the circular fault model (Eshelby, 1957) using the largest magnitude in each

structure. Normalized histograms of the strike angles are shown in grey bars with a bin size of 10

degrees. The colors of the identified structures and the data points match in each column.

that the CDs between ours and each of the two previous catalogs are lower than the CD157

between the two previous catalogs indicates that the events that were added in our cat-158

alog resolved structures common to both, but previously less well illuminated. It is in-159

teresting to note that the CD between ours and SNE2017 was lower than the CD between160

ours and SEA2019 even though SEA2019 had over 4 times more events than SNE2017.161

This means that the additional events included in SEA2019 did not necessarily resolve162

the same underlying structures in SNE2017.163

3.3 Identifying the structures164

The increased spatial resolution of earthquake events in our catalog poses a chal-165

lenge when defining faults from earthquake locations. Some earthquakes form distinc-166

tive clusters that make the task easy, but it becomes less obvious for other earthquakes167

like those inside the highlighted box in Figure 2-c. Previous studies defined multiple struc-168

tures from these earthquakes (Figure 2-a and b), but one could possibly group all the169

earthquakes to form a linear trend in the box as a single structure when using our dataset170

(Figure 2-c).171
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To evaluate this quantitatively, we ran the DBSCAN algorithm (Ester et al., 1996)172

on the event epicenters as was done in the previous studies. Figure 3 shows the cluster-173

ing result under three different epsilon parameters, which control the distance cutoff used174

to determine the neighboring events of each event. We used a fixed value of 3 for the pa-175

rameter that controls the minimum number of neighbors while clustering. After cluster-176

ing, we selected the clusters with aspect ratio of equal or greater than 3 and derived the177

length of each structure by calculating the greatest distance between any two points within178

the structure and the orientation using the largest eigenvector of the points within the179

structure. The orientations were measured in strike angles, i.e., the angle from north in180

the clockwise direction. For the lengths, we used the circular fault model (Eshelby, 1957)181

to roughly translate the largest magnitude in each cluster into a corresponding length182

scale. We used a constant stress drop value of 3 MPa, following (Huang et al., 2016), and183

defined twice the radius as the observed length.184

With the lowest epsilon value among the three, the earthquakes were grouped into185

multiple small-scale structures, and the measured structure lengths followed the trend186

of the observed lengths (Figure 3-a). With increasing epsilon, however, separated groups187

began to merge, and the measured lengths became much larger than the observed lengths188

(Figure 3-b, c). The distribution of strike angles also varied under different epsilon val-189

ues. The data occupied more than half of the angle bins when epsilon was 0.1 km while190

macroscopically, the events seem to form a structure with a strike angle close to 90 de-191

grees as shown in the results with epsilon of 0.2 and 0.3 km.192

4 Discussion193

The catalog we developed using the DL-assisted workflow resulted in significantly194

more events with high precision locations than the statewide template matching cata-195

log (SEA2019), enabling the mapping of numerous fault structures only hinted at by both196

SNE2017 and SEA2019. Our workflow, which requires no prior knowledge of template197

events, was an important factor behind this increase. Because template matching requires198

template events, which are only available for some stations, the SEA2019 study was un-199

able to use all the waveform data available in the public domain at the time of their study.200

This template-independency also allows us to apply the workflow in real-time to increase201

the resolution over that of a conventionally developed earthquake catalog. Precision of202

the earthquake hypocenters can be managed using the near real-time double-difference203
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approach (Waldhauser, 2009) and the neural network for picking phase arrivals can in-204

crementally be trained for even better performance as we collect more labeled data (Chai205

et al., 2020).206

The catalog illuminates previously hidden fault structures in Oklahoma and South-207

ern Kansas and can be used to derive fault attributes such as dimensions and orienta-208

tions for further analysis. However, we showed that a simple clustering algorithm such209

as DBSCAN that is purely based on earthquake locations has limitations and the statis-210

tics of the identified faults derived from it can be very sensitive to the parameters. Fu-211

ture work is needed on algorithms for identifying the faults from seismicity distributions.212

These algorithms should be robust against missing events and changes in relative event213

locations. Using a probabilistic approach such as sampling the events before clustering214

and quantifying the uncertainties of the derived fault attributes is another option.215

5 Conclusion216

Developing a high-resolution earthquake catalog has become faster and easier due217

to the application of deep learning algorithms for seismic phase arrival time picking. Through218

our case study of a decade of Oklahoma and Southern Kansas seismicity, we found this219

workflow provides significant improvements over the existing catalogs. The newly iden-220

tified seismicity illuminates numerous previously unseen fault structures and sharpens221

the definition of those previously revealed.222
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