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Abstract

This article comprises three independent commentaries about the state of ICON principles in hydrology and discusses the

opportunities and challenges of adopting them. Each commentary focuses on a different perspective as follows: (i) field,

experimental, remote sensing, and real-time data research and application (Section 1); (ii) Inclusive, equitable, and accessible

science: Involvement, challenges, and support of early career, marginalized racial groups, women, LGBTQ+, and/or disabled

researchers (Section 2); and (iii) an ICON perspective on machine learning for multiscale hydrological modeling (Section

3). Hydrologists depend on data monitoring, analyses, and simulations from these diverse scientific disciplines to ensure safe,

sufficient, and equal water distribution. These hydrologic data come from but are not limited to primary (in-situ: lab, plots, and

field experiments) and secondary sources (ex-situ: remote sensing, UAVs, hydrologic models) that are typically openly available

and discoverable. Hydrology-oriented organizations have pushed our community to increase coordination of the protocols for

generating data and sharing model platforms. In addition, networking at all levels has emerged with an invigorated effort to

activate community science efforts that complement conventional data collection methods. With increasing amounts of data,

it has become difficult to decipher various complex hydrologic processes. However, machine learning, a branch of artificial

intelligence, provides accurate and faster alternatives to understand different biogeochemical and hydrological processes better.
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Diversity, equity, and inclusivity are essential in terms of outreach and integration of peoples with historically marginalized

identities into this professional discipline and respecting and supporting the local environmental knowledge of water users.
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Key Points:

• ICON framework can strengthen inclusive, equitable, and accessible sci-
ence in the hydrological community.

• Hydrology-oriented community science bridges the gap between the public
and scientists in understanding hydrological data.

• ICON enables integrating big data and machine learning for improved
predictivity of multiscale hydrological modeling.

Abstract

This article comprises three independent commentaries about the state of ICON
principles in hydrology and discusses the opportunities and challenges of adopt-
ing them. Each commentary focuses on a different perspective as follows: (i)
field, experimental, remote sensing, and real-time data research and applica-
tion (Section 1); (ii) Inclusive, equitable, and accessible science: Involvement,
challenges, and support of early career, marginalized racial groups, women,
LGBTQ+, and/or disabled researchers (Section 2); and (iii) an ICON per-
spective on machine learning for multiscale hydrological modeling (Section 3).
Hydrologists depend on data monitoring, analyses, and simulations from these
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diverse scientific disciplines to ensure safe, sufficient, and equal water distribu-
tion. These hydrologic data come from but are not limited to primary (in-situ:
lab, plots, and field experiments) and secondary sources (ex-situ: remote sensing,
UAVs, hydrologic models) that are typically openly available and discoverable.
Hydrology-oriented organizations have pushed our community to increase coor-
dination of the protocols for generating data and sharing model platforms. In
addition, networking at all levels has emerged with an invigorated effort to ac-
tivate community science efforts that complement conventional data collection
methods. With increasing amounts of data, it has become difficult to decipher
various complex hydrologic processes. However, machine learning, a branch of
artificial intelligence, provides accurate and faster alternatives to understand dif-
ferent biogeochemical and hydrological processes better. Diversity, equity, and
inclusivity are essential in terms of outreach and integration of peoples with his-
torically marginalized identities into this professional discipline and respecting
and supporting the local environmental knowledge of water users.

Keywords: Hydrology, machine learning, community science, ICON principles,
diversity, stakeholders

Index terms: Estimation and forecasting, Geographic Information Systems
(GIS), Modeling, Monitoring networks, Time series analysis

Plain Language Summary:

The ICON principles support scientists, researchers, and community leaders in
understanding and solving local and global challenges. Such a perspective helps
integrate remote sensing, numerical modeling and encourages digital concepts,
including machine learning for multiscale modeling and monitoring. Such in-
tegration is vital to understanding simple to complex hydrological processes
at different temporal and spatial scales. Hydrology with community science
and coordination with stakeholders help establish a network where research,
education, and collaboration become easy and accessible. As a result, the
availability of open data for sustainable water management is increasing. The
ICON framework promotes innovation, equality, diversity, inclusion, and open
access research in the discipline of hydrology that involves and supports early ca-
reer, marginalized racial groups, women, LGBTQ+, and/or disabled researchers.
Here, we discuss the ICON perspective in the discipline of hydrology.

1. Introduction

Integrated, Coordinated, Open, Networked (ICON) science aims to improve syn-
thesis, availability, applicability, reliability and create open transferable knowl-
edge. This article belongs to a collection of commentaries spanning geoscience
on the state and future of ICON science (Goldman et al., 2021).

1. Field, experimental, remote sensing, and real-time data
research and application

The elements of ICON have become seamlessly interwoven within data collection
and sharing practices in hydrology. Studying different hydrological processes
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requires knowledge of multiple fields such as atmospheric process, cryosphere
science, ecohydrology, biogeochemistry, geomorphology, and land-based inter-
actions. Establishing a depth of community knowledge requires purposeful inter-
actions across different disciplines. Environmental observatory platforms such
as the National Ecological Observatory Network (NEON), Long Term Ecologi-
cal or Agricultural Research (LTER, LTAR) programs, Critical Zone Research
Cluster Network (CZCN), Science Focus Areas (SFAs), and their international
counterparts (iLTER, OZCAR, TERENO) in places such as Europe and China
offer a coordinated effort to measure most of the components of the water cycle
and their response to changes in climate and the carbon cycles over time (Wein-
traub et al., 2019) at the watershed scale. Individually these sites offer local
understanding, but together their power increases understanding of the hydro-
logic response to variability (Wlostowski et al., 2021) at regional and continental
scales and, thus, aid our process-based understanding representing hydrology in
models (Baatz et al., 2018).

The data collected by these observatories include primary quantitative analysis
from laboratory experiments, plot-scale, and field-sites monitoring, or secondary
simulated outputs from watershed modeling. Once generated, these data are
openly shared as a result of funding agencies, publishers, and the public pushing
for discoverable data where results can be reproduced. CUASHI’s HydroShare
is one example of an integrative platform where hydrology data, models, and
code are shared.

Data sharing is critical (e.g., Li et al., 2021) and requires coordinated networked
efforts to produce field and lab-based measurements that can help parameterize
models and then numerical simulation effort that can help direct field and lab-
based monitoring and experiments. One such example is the evolution of mobile
or field-based labs (e.g., River Lab; Floury et al., 2017); no longer confined to
university infrastructure, laboratory data can now be generated in the field using
instruments that employ colorimetry, chromatography, and spectroscopy tech-
niques to provide high temporal resolution measurements of ion and nutrient
concentrations allowing for rapid assessment of hydrological processes. Simi-
larly, the development of sensors that can monitor biogeochemical conditions
(e.g., nitrate, oxygen, carbon dioxide concentrations) has increased our power
to understand real-time hydrologic data from plot and watershed scales. The re-
cent increase in Unmanned Aerial Systems (UASs), also called drones, has shown
that UASs are an effective tool to monitor hydrological processes at a much finer
scale and resolution and facilitate water resources planning and management.
UASs are a rapid and cost-effective technique to characterize better, monitor,
and model hydrological processes than satellite-based remote sensing and in-
situ measurements. The combination of sensor, lab, and remotely sensed data
provide the platform by which watershed models can be derived and provide
secondary hydrologic data. However, uncertainty and bias must be accounted
for in modeling outputs. The simulated values provide less expensive, timely,
and over the vast landscape and for hundreds of years together.
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Besides primary and secondary data sources in hydrology, community science
can complement traditional scientific data collection methods. Actively engaging
communities with scientists not only empowers communities and their voice but
establishes a network where research, education, and collaboration result in
continuous developments in technology, data processing, and communication
(Allen and Berghuijs, 2018). Networking communities with experts are crucial,
and open data is necessary, especially when sustainable water management and
resources require effective and efficient hydrological monitoring (Buytaert et al.,
2014; Njue et al., 2019) and input from stakeholders, leaders, and scientists.

. Community science bridges the gap between the public and scientists, facilitat-
ing data flow and knowledge, yet there are barriers to realizing ICON principles.
Though combining mobile applications and inexpensive equipment, communi-
ties are equipped to document and collect data (Buytaert et al., 2014; Njue
et al., 2019; Allen and Berghuijs, 2018). These tools face funding and policy
barriers. Promising examples of hydrology-oriented community science initia-
tives include American Geophysical Union (AGU) Thriving Earth Exchange
and Crowd Hydrology. These examples are coordinated using similar structure
models, where projects are developed and driven by communities. Through
AGU Thriving Earth Exchange, communities are integrated with scientists to
form a network to develop and complete a research project designed by the com-
munity. Crowd Hydrology is community-led and driven, where they choose to
monitor a particular water system and report data through the Crowd Hydrol-
ogy website, resulting in a network of valid open data.

With public solicitation of water quality data to be incorporated in these reports,
communities have the advantage of monitoring their local water system. The
limitation is the requirement to follow standards or universal methods (Buytaert
et al., 2014; Njue et al., 2019). Other limitations include lack of communication
between scientists, political leaders, and communities (; Njue et al., 2019; Allen
and Berghuijs, 2018), given that community science emerges at the center of po-
litical activism and volunteering. There are also differences in motivation, with
community involvement driven by hobbies, environmental concerns, curiosity,
and/or livelihoods (Buytaert et al., 2014; Njue et al., 2019). However, increasing
opportunities for communities to be active participants in water studies acts as
motivation, builds trust between scientists and policymakers, and expands data
available to hydrologists to incorporate in other research projects (Buytaert et
al., 2014; Njue et al., 2019).

In conclusion, either primary or secondary, hydrologic data is required to un-
veil the hydrologic processes and promote water resources management. Indeed,
their availability is increasing due to open, FAIR, and shared science principles
(Cudennec et al., 2020). This has proven to be a boom for data-scarce regions
like Kenya, Ghana, Uganda, and others. With increased interdisciplinary re-
search programs and worldwide collaborative networks, different organizations
across the globe are working together to collect, evaluate, and share the data
via open-source cloud networking. Such actions will help study the impact of
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natural and anthropogenic factors, including climate change, floods, droughts,
sea-level rise, and saltwater intrusion. The gained data are essential to put
in mitigation measures or help pre-preparedness to counteract any extreme cli-
matic events and their impact on the community.

1. An ICON perspective on machine learning for multi-
scale hydrological modeling

Machine learning (ML) is a branch of artificial intelligence that identifies pat-
terns and generates predictions without explicitly programming (Yao and Liu,
2014). Within the field of hydrology, ML models have been used in rainfall-
runoff modeling (Adnan et al., 2021; Chang and Chen, 2018), streamflow fore-
casting (; Boucher et al., 2020), water quality assessment (Bui et al., 2020),
flood forecasting (Mosavi et al., 2018), and soil moisture estimations (Ahmad et
al., 2010; Senanayake et al., 2021). Below, we highlighted the characteristics of
ML models that make them well suited for incorporating the ICON principles.

ML typically requires large input datasets to train the model accurately (i.e.,
determine a predictive model from input data). Many ML models leverage
data from large, existing, open-access datasets such as the United States Ge-
ological Survey, National Water Information System (NWIS), the International
Soil Moisture Network (ISMN), the Catchment Attributes and Meteorological
dataset (CAMELS), and the National Ecological Observatory Network (NEON).
The ability to incorporate data from multiple sources, i.e., “networking of
networks”, can significantly improve the accuracy and generality of ML mod-
els. These datasets are integrated, incorporating multiple types of data (e.g.,
rainfall, soil moisture, stream discharge) and facilitating physics-informed ML
(PIML) models, which are process-based and typically more accurate than an
ML approach that does not rely on training data (i.e., unsupervised learning).
Despite the rapid advancement of ML modeling in hydrology, the following chal-
lenges persist. Firstly, the open-accessed dataset and observations in hydrology
tend to be regionally and temporally imbalanced, which hinders multiscale in-
tegration in hydrological research (Shen et al., 2018). For instance, while river
discharge observations are relatively dense in the United States and Europe,
such data are sparse in many other parts of the world, especially in Africa and
Latin America (e.g., Global Runoff Data Centre, GDRC). Secondly, as hydro-
logic ML models represent different processes at different scales, they require
the design of protocols for data and model sharing networks to provide universal
accessibility without violating intellectual property regulations.

Regardless of the limitations, the ML community is open to addressing these
challenges using ICON principles. The PIML approach is increasingly getting
more attention to integrate process-based hydrological models with ML tech-
niques. Recent studies have shown that adding physical constraints to ML
models improves their simulation performance (Yang et al., 2019; Kratzert et
al., 2019a, b; Fan et al., 2020). Besides the hydrological observation data, other
observation systems, such as FLUXNet (Jung et al., 2019; Nearing et al., 2018)
and earth observation data generated by NASA (Kwon et al., 2019), provide
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integrated, coordinated, open, and networkable observations that can also be
useful in hydrologic machine learning models, albeit with reduced spatial and
temporal resolution (Nearing et al., 2021).

Furthermore, along with ML capability enhancement, hardware innovations
such as edge computing can be used to generate large datasets at remote sites
for live ML applications (Vesselinov et al., 2019; Mudunuru et al., 2021). The
recent proliferation of cloud-based storage and computing services (Ahmad &
Khan, 2015; Diaby & Rad, 2017; Haris & Khan, 2018) has substantially low-
ered entry barriers to processing large datasets from laptops. Now, researchers
no longer require access to an on-site high-performance supercomputer as cloud-
based technologies are more flexible and reasonably economical. Moreover, they
significantly enhance collaboration within research teams and share data and
code resources publicly.

To further strengthen the incorporation of ICON principles in ML, a potential
action would be to coordinate (C) an earth digital twin consortium with the
ultimate mission of developing an integrated (I) virtual representation of the
earth system through interconnected models and data data-model communica-
tion protocols. Such a consortium could be established within the AGU network
(N) and managed similarly to an existing digital twin consortium for aerospace
and natural resources (www.digitaltwinconsortium.org).

1. Inclusive, equitable, and accessible science: Involve-
ment, challenges, and support of early career, marginal-
ized racial groups, women, LGBTQ+, and/or disabled
researchers

This section briefly discusses challenges and opportunities within the ICON
framework to advance hydrology justice, equity, diversity, and inclusion princi-
ples. The perspectives shared here are gleaned from our experiences and inter-
actions with marginalized communities and do not intend to be comprehensive
and may not suit every community and their unique needs.

Water is critical to the ecological and social well-being of communities outside
of “hydrologists”, and by lacking diversity, we cannot serve equity or inclusively.
We must foster inclusion and justice in terms of outreach and integration of
peoples with historically marginalized identities into this professional discipline
and also respect and support the local environmental knowledge of water users.

A lack of diversity within hydrologic sciences and engineering has 1) led to
serving communities inequitably and ignoring historical injustices. For example,
environmental justice in pollution (Hajat et al., 2015; Robison et al., 2018),
disproportionate climate change/severe weather impacts to low-income minority
communities (Parvin et al., 2016; Adeola and Picou, 2017), sexism in water
resource management (CDC; UNICEF) and global south weather forecasts are
underserved due to models being focused on Europe/United States, as well as a
lack of ground data (Vaughan et al., 2019; World Bank). Moreover, 2) leads to
less innovation in science (Phillips, 2014; “Science benefits from diversity”, 2018).
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We believe that increasing inclusiveness, equitability, and accessible science in
hydrology will improve both scenarios. While increasing innovation in science
is essential, impacting underserved communities is imperative and will radically
change human health and well-being across the globe.

Over the past several years, the development of committees and reading lists in
our field has become a typical “first step” to address inclusiveness, equitability,
and accessible science (Byrnes et al., 2020; Garousi-Nejd and Byrnes, 2020).
This step, while meaningful, is not enough: actionable steps must be taken,
and culture must change throughout our hydrological community before policy
changes can be effective. We share some emerging inclusiveness, equitability,
and accessible science practices in hydrology and ideas that we hope can foster
an equity lens throughout water-related practices using the ICON framework.

4.1 Community-led science and environmental justice practices

It is important to build equitable social networks (N) and meaningfully engage
marginalized communities (including but not limited to interrelated dimensions
of race, ethnicity, gender, gender expression, disability, sexuality, nationality,
and class) along with government agencies, industry, academia, and citizens
(Kirkness and Barnhardt, 2001). These groups need to coordinate (C) and
build mutual trust to develop innovative approaches to responding to the ICON
framework’s hydrological issues.

Open (O) data policy must, along with supporting data infrastructures, more
comprehensively and consistently address the gaps in JEDI regarding how in-
formation and knowledge are distributed and acknowledged. For example, pro-
grams and strategies to decolonize science such as the Global Water Futures
Program and indigenous community water research bring together researchers
across all levels to enhance coordination and broaden impacts with the intent to
accelerate a positive paradigm culture shift (GWF, 2018). Indigenous peoples
must be responsibly engaged in the scientific processes at all stages, which in-
cludes ownership of data and knowledge and having a say in how/when it gets
shared (Gardiner, 2011; Lovett et al., 2019; Woodbury et al., 2019; Wong et
al., 2020; Cohen and Livingstone, 2021; Goucher et al., 2021). Policies such
as Ownership, Control, Access, and Possession, Collective Benefit, Authority
to Control, Responsibility, and Ethics and Findability, Accessibility, Interoper-
ability, and Reuse principles can help hydrologists ethically develop protocols
relating to the collection, use, and sharing of community data (Wilkinson et al.,
2016; Mecredy et al., 2018; Carroll et al., 2020).

4.2 Inclusive workplaces

In addition to hydrologists developing more just practices when engaging with
community scientists and non-scientists, we must thoroughly self-evaluate our
daily practices and structures to attain inclusiveness, equitability, and accessible
science and ICON goals more effectively. Here we share ideas for transferrable
best practices through several stages of hydrologist training.
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Broad outreach in primary and secondary education 1) must be done to spur
interest from diverse future hydrologists and 2) must emphasize at the beginning
of interaction that these are professional careers with a strong component of
service and societal relevance.

We must prioritize how water and the study of water relates to and integrates
(I) with other disciplines and connects with society and living with the land.
Hydrologists can learn from and work collaboratively with folks from other dis-
ciplines and walks of life to understand water and hydrologic systems more
holistically. We must create a workplace culture with ingrained inclusiveness,
equitability, and accessible science values. Identity (e.g., race, gender, sexual
orientation), work distribution (Liu et al., 2019; Domingo et al., 2020), and
field safety must be critically viewed to accommodate needs and combat stereo-
types (Viglione, 2020; Demery and Pipkin, 2021). Hydrologists should institute
iterative action plans and policies based on more generalized recommendations
(Chaudhary and Berhe, 2020; Ali et al., 2021). Leadership training and oppor-
tunities for career growth must be equitably distributed, considering historical
biases that have permeated the disciplines (Leverage, 2017). We should aim for
diverse and equitable representation at all levels to achieve the goal of justly
serving our water-using communities.

Networked (N) science must have justice, service, inclusiveness, equitability,
accessible science, and social context is woven clearly and continuously into
hydrologic studies. Hydrologists must ask the following four questions in every
step of the scientific process and contextualize these with follow-up questions
to ensure that they are answered with transparent and actionable inclusiveness,
equitability, and accessible science processes.

1. “Who is doing the hydrology?”

How will marginalized communities be involved? Will they have the same
“power and privileges” as non-marginalized communities? Who will own the
scholarly outputs (e.g., data, grant proposals)?

1. “Who uses the water?”

If marginalized communities are main water users, will they (or their commu-
nities) sustain or use the hydrology knowledge research/work effectively (e.g.,
beyond the end of a project)?

1. “Who benefits from this activity?”

Will marginalized communities get appropriate and meaningful attribution for
their contribution? Will resources and infrastructure be available/sustained to
marginalized communities after a project ends?

1. “Why?”

What is the purpose of this work, and how will marginalized communities benefit
and be supported?

8



References

Adeola, F.O., Picou, J.S. (2017). Hurricane Katrina‐linked environmental injus-
tice: Race, class, and place differentials in attitudes. Disasters, 41(2), 228-257.

Adnan, R.M., Petroselli, A., Heddam, S., Santos, C.A.G. and Kisi, O. (2021).
Short term rainfall-runoff modelling using several machine learning methods
and a conceptual event-based model. Stoch. Environ. Res. Risk. Assess. 35,
597–616.

Ahmad, S., Kalra, A., Stephen, H. (2010). Estimating soil moisture using remote
sensing data: A machine learning approach. Adv. Water Resour. 33, 69–80.

Ahmad, M.O., Khan, R.Z. (2015). The cloud computing: a systematic review.
Intern. J. Innov. Res. Comp. Commun. Eng. 3(5), 4060-4075.

Allen, S.T., Berghuijs, W.R. (2018). A need for incentivizing field hydrology,
especially in an era of open data: discussion of “The role of experimental work in
hydrological sciences–insights from a community survey”. Hydrological Sciences
Journal, 63(8), 1262-1265.

Ali, H.N., Sheffield, S.L., Bauer, J.E., Caballero-Gill, R.P., Gasparini, N.M.,
Libarkin, J., et al. (2021). An actionable anti-racism plan for geoscience organi-
zations. Nat. Commun. 12, 3794. https://doi.org/10.1038/s41467-021-23936-w

Baatz, R., Sullivan, P.L., Li, L., Weintraub, S.R., Loescher, H.W., Mirtl, M.,
et al. (2018). Steering operational synergies in terrestrial observation networks:
Opportunity for advancing Earth system dynamics modelling. Earth Syst. Dyn.
9(2), 593-609.

Boucher, M.A., Quilty, J., Adamowski, J. (2020). Data Assimilation for Stream-
flow Forecasting Using Extreme Learning Machines and Multilayer Perceptrons.
Water Resour. Res. 56, e2019WR026226.

Bui, D.T., Khosravi, K., Tiefenbacher, J., Nguyen, H., Kazakis, N. (2020). Im-
proving prediction of water quality indices using novel hybrid machine-learning
algorithms. Sci. Total Environ. 721, 137612.

Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T.C., Bastiaensen,
J., et al. (2014). Citizen science in hydrology and water resources: opportuni-
ties for knowledge generation, ecosystem service management, and sustainable
development. Frontiers in Earth Science, 2, 26.

Byrnes, D.K., Davis, J., Garousi-Nejad, I., Glose, T., Guimond, J., Hall, C.A.,
et al. (2020). Justice, Equity, Diversity, and Inclusion in the AGU Hydrology
Community [White paper]. American Geophysical Union, USA. Retrieved
from https://drive.google.com/file/d/17b6LezeFA1UJTCsGlWgJNFtFJ9-
m5cVU/view

Carroll, S.R., Garba, I., Figueroa-Rodríguez, O.L., Holbrook, J., Lovett, R.,
Materechera, S., et al. (2020). The CARE Principles for Indigenous Data
Governance. Data Sci, J. 19(1), 43. http://doi.org/10.5334/dsj-2020-043

9



Cudennec, C., Lins, H., Uhlenbrook, S., & Arheimer, B. (2020). Editorial–
Towards FAIR and SQUARE hydrological data. Hydrol. Sci. J. 681-682.
https://doi.org/10.1080/02626667.2020.1739397

CDC. (2021). Global WASH Fast Facts. Global Water, Sanitation, & Hygiene
(WASH). Centers for Disease Control and Prevention, National Center for
Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Foodborne,
Waterborne, and Environmental Diseases https://www.cdc.gov/healthywater/global/wash_statistics.html

Chang, W., Chen, X. (2018). Monthly Rainfall-Runoff Modeling at Watershed
Scale: A Comparative Study of Data-Driven and Theory-Driven Approaches.
Water, 10(9), 1116.

Chaudhary, V.B., Berhe, A.A. (2020). Ten simple rules for building an antiracist
lab. PLoS Comput. Biol. 16(10): e1008210.

Cohen, A., Livingstone, A. (2020). Using Data from Community-based Water
Monitoring in Nova Scotia. Retrieved from https://www.coastalaction.org/uploads/1/2/2/2/122203881/cbwm_data_use_in_ns_clari_final.pdf

Demery, A.J.C., Pipkin, M.A. (2021). Safe fieldwork strategies for at-risk indi-
viduals, their supervisors and institutions. Nat. Ecol. Evol. 5(1), 5-9.

Diaby, T., Rad, B.B. (2017). Cloud computing: a review of the concepts and
deployment models. Intern. J. Inf. Technol. Comput. Sci. 9(6), 50-58.

Domingo, C.R., Gerber, N.C., Harris, D., Mamo, L., Pasion, S.G., Rebanal,
R.D., et al. (2020). More service or more advancement: Institutional barriers
to academic success for women and women of color faculty at a large public
comprehensive minority-serving state university. Journal of Diversity in Higher
Education. https://psycnet.apa.org/doi/10.1037/dhe0000292

Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J. and Jiang, J. (2020). Compari-
son of long short term memory networks and the hydrological model in runoff
simulation. Water, 12(1), p.175.

Floury, P., Gaillardet, J., Gayer, E., Bouchez, J., Tallec, G., Ansart, P., et al.
(2017). The potamochemical symphony: new progress in the high-frequency
acquisition of stream chemical data. Hydrology and Earth System Sciences,
21(12), 6153-6165.

Gardiner, G., McDonald, J., Byrne, A., Thorpe, K. (2011). Respect, trust and
engagement: creating an Australian indigenous data archive. Collect. Building.
30(4), 148-152. https://doi.org/10.1108/01604951111181100

Garousi-Nejd, I., Byrnes, D. (2020). Justice, Equity, Diversity, and In-
clusion resources to inspire change in the hydrology community. Retrived
from https://agu-h3s.org/2020/10/22/justice-equity-diversity-and-inclusion-
resources-to-inspire-change-in-the-hydrology-community/

Goldman, A. E., Emani, S. R., Pérez-Angel, L. C., Rodríguez-Ramos, J. A.,
Stegen, J. C., and Fox, P. (2021). Special collection on open collaboration
across geosciences, Eos, 102, https://doi.org/10.1029/2021EO153180.

10



Goucher N., DuBois, C., Day, L. (2021). Data Needs in the Great Lakes: Work-
shop Summary Report. Presented at the Data Needs in the Great Lakes, Virtual:
Zenodo. http://doi.org/10.5281/zenodo.4705058

GWF. (2018). Indigenization and Co-Creation of Research, Global Water Fu-
tures. Retrieved May 21, 2021, from https://gwf.usask.ca/indigenization/indigenization-
and-co-creation-of-research.php

Hajat, A., Hsia, C., O’Neill, M. S. (2015). Socioeconomic disparities and air
pollution exposure: a global review. Curr. Environ. Health Rep. 2(4), 440-450.

Haris, �., Khan, R. Z. (2018). A systematic review on cloud computing. Intern.
J. Comput. Sci. Eng. 6(11), 632-639.

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., et al.
(2019). The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci
Data 6, 74. https://doi.org/10.1038/s41597-019-0076-8

Kirkness, V.J., Barnhardt, J. (2001). First Nations and Higher Education: The
Four R’s -Respect, Relevance, Reciprocity, Responsibility. Knowledge Across
Cultures: A Contribution to Dialogue Among Civilizations. R. Hayoe and J.
Pan. Hong Kong, Comparative Education Research Centre, The University of
Hong Kong.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Near-
ing, G. (2019a). Toward improved predictions in ungauged basins: Exploiting
the power of machine learning. Water Resour. Res. 55, 11,344–11,354.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing,
G. (2019b). Towards learning universal, regional, and local hydrological behav-
iors via machine learning applied to large-sample datasets. Hydrol. Earth Syst.
Sci. 23, 5089–5110.

Kwon, Y., Forman, B.A., Ahmad, J.A., Kumar, S.V., Yoon, Y. (2019). Ex-
ploring the Utility of Machine Learning-Based Passive Microwave Brightness
Temperature Data Assimilation over Terrestrial Snow in High Mountain Asia.
Remote Sens. 11, 2265. https://doi.org/10.3390/rs11192265

Leverage (2017). Leverage To Support Diverse Engineering Faculty Success.
https://www.leveragefaculty.org/

Li, L., Sullivan, P. L., Benettin, P., Cirpka, O. A., Bishop, K., Brantley, S.
L., et al. (2021). Toward catchment hydro‐biogeochemical theories. Wiley
Interdisciplinary Reviews: Water, 8(1), e1495.

Liu, S.N.C., Brown, S.E., Sabat, I.E. (2019). Patching the “leaky pipeline”:
Interventions for women of color faculty in STEM academia. Arch. Sci. Psychol.
7(1), 32.

Lovett, R., Lee, V., Kukutai, T., Cormack, D., Rainie, S. C., & Walker, J.
(2019). Good data practices for Indigenous data sovereignty and governance.
Good Data, 26-36.

11

https://doi.org/10.3390/rs11192265
https://www.leveragefaculty.org/


Mecredy, G., Sutherland, R., & Jones, C. (2018). First Nations Data Gover-
nance, Privacy, and the Importance of the OCAP® principles. Int. J. Popul.
Data Sci. 3(4).

Mosavi, A., Ozturk, P., Chau, K. W. (2018). Flood Prediction Using Machine
Learning Models: Literature Review. Water, 10, 1536.

Mudunuru, M.K., Chen, X, Karra, S., Hammond, G., Jiang, P., Solander, K.,
et al. (2021). EdgeAI: How to Use AI to Collect Reliable and Relevant Water-
shed Data. Artificial Intelligence for Earth System Predictability, United States.
https://doi.org/10.2172/1769700.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame,
J. M., et al. (2021). What role does hydrological science play in the age of
machine learning? Water Resour. Res. 57, e2020WR028091.

Nearing, G. S., Ruddell, B. L., Clark, M. P., Nijssen, B., Peters-Lidard, C.
(2018). Benchmarking and process diagnostics of land models. J. Hydrometeo-
rol. 19(11), 1835–1852.

Njue, N., Kroese, J. S., Gräf, J., Jacobs, S. R., Weeser, B., Breuer, L., & Rufino,
M. C. (2019). Citizen science in hydrological monitoring and ecosystem services
management: State of the art and future prospects. Sci. Total Environ. 693,
133531.

Parvin, G. A., Shimi, A. C., Shaw, R., Biswas, C. (2016). Flood in a changing
climate: The impact on livelihood and how the rural poor cope in Bangladesh.
Climate, 4(4), 60.

Phillips, K.W., 2014. How diversity makes us smarter. Sci. Am. 311(4), 43-47.

Robinson, T. M., Shum, G., & Singh, S. (2018). Politically unhealthy: Flint’s
fight against poverty, environmental racism, and dirty water. J. Int. Crisis Risk
Commun. Res. 1(2), 6.

Senanayake, I. P., Yeo, I. Y., Walker, J. P., Willgoose, G. R. (2021). Estimating
catchment scale soil moisture at a high spatial resolution: Integrating remote
sensing and machine learning. Sci. Total Environ. 776, 145924.

Science benefits from diversity, Nature. Editorial. 06 June 2018. https://doi.org/10.1038/d41586-
018-05326-3

Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F. J., Gan-
guly, S., Hsu, K. L., Kifer, D., Fang, Z., Fang, K., Li, D., Li, X., Tsai, W.
P. (2018). HESS Opinions: Incubating deep-learning-powered hydrologic sci-
ence advances as a community, Hydrol. Earth Syst. Sci. 22, 5639–5656,
https://doi.org/10.5194/hess-22-5639-2018.

UNICEF. (2016). Collecting water is often a colossal waste of time for
women and girls. United Nations Children’s Fund, New York. Retrived from
https://www.unicef.org/press-releases/unicef-collecting-water-often-colossal-
waste-time-women-and-girls

12



Vaughan, C., Hansen, J., Roudier, P., Watkiss, P., Carr, E. (2019). Evaluating
agricultural weather and climate services in Africa: Evidence, methods, and
a learning agenda. Wiley Interdisciplinary Reviews: Climate Change, 10(4),
e586.

Vesselinov, V.V., Mudunuru, M.K., Karra, S., O’Malley, D., Alexandrov, B.F.
(2019). Unsupervised machine learning based on Non-negative Tensor Factor-
ization for analyzing reactive-mixing. J. Comput. Phys. 395, 84-105

Viglione, G., (2020). Racism and harassment are common in field research-
scientists are speaking up. Nature, 585(7823), pp.15-16.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E.,
Bouwman, J. (2016). The FAIR Guiding Principles for scientific data manage-
ment and stewardship. Sci. Data, 3(1), 1-9.

Weintraub, S.R., Flores, A.N., Wieder, W.R., Sihi, D., Cagnarini, C.,
Gonçalves, D.R.P., Young, M.H., Li, L., Olshansky, Y., Baatz, R., Sullivan,
P.L. (2019). Leveraging environmental research and observation networks to
advance soil carbon science. J. Geophy. Res, Biogeosci. 124(5), 1047-1055.
https://doi.org/10.1029/2018JG004956

Wlostowski, A. N., Molotch, N., Anderson, S. P., Brantley, S. L., Chorover,
J., Dralle, D., ... & Harman, C. (2021). Signatures of hydrologic function
across the Critical Zone Observatory network. Water Resources Research, 57(3),
e2019WR026635.

Wong, C., Ballegooyen, K., Ignace, L., Johnson, M. J., Swanson, H. (2020). To-
wards reconciliation: 10 Calls to Action to natural scientists working in Canada.
FACETS, 5(1), 769-783.

Woodbury, R. B., Beans, J. A., Hiratsuka, V. Y., Burke, W. (2019). Data
management in health-related research involving indigenous communities in the
United States and Canada: a scoping review. Frontiers in Genetics, 10, 942.

World Bank (2016). Modernizing Meteorological Services to Build Climate Re-
silience Across Africa. Retrieved from https://www.worldbank.org/en/news/
feature/2016/11/10/modernizing-meteorological-services-to-build-climate-
resilience-across-africa

Yang, T., Sun, F., Gentine, P., Liu, W., Wang, H., Yin, J., Du, M., Liu, C.
(2019). Evaluation and machine learning improvement of global hydrological
model-based flood simulations. Environ. Res. Lett. 14.

Yao X., Liu Y. (2014). Machine Learning. In: Burke E., Kendall G. (eds) Search
Methodologies. Springer, Boston, MA.

13

https://www.worldbank.org/en/news/feature/2016/11/10/modernizing-meteorological-services-to-build-climate-resilience-across-africa
https://www.worldbank.org/en/news/feature/2016/11/10/modernizing-meteorological-services-to-build-climate-resilience-across-africa
https://www.worldbank.org/en/news/feature/2016/11/10/modernizing-meteorological-services-to-build-climate-resilience-across-africa

