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Abstract

We present the first quantitative comparison of source-partitioned CO2 flux measurements with a high-resolution urban fossil

CO2 emissions inventory. We use tower-based measurements of CO and 14C to partition net CO2 flux measurements into fossil

and biogenic components in a suburban environment. A flux footprint model is used to quantify spatial patterns in fluxes. The

partitioned fossil CO2 emissions are compared to a 200-m resolution emissions inventory (Hestia). The results indicate that

Hestia and the partitioned flux data agree remarkably well on a seasonal average scale. The Hestia inventory is biased by 3.2%

(cold season) and 9.1% (warm season). Their temporal-spatial patterns match closely. In addition, biogenic CO2 uptake is 25%

of local fossil emissions during afternoon in the cold season. This work demonstrates the effectiveness of using eddy-covariance

flux measurements both for evaluating urban emissions inventories and for quantifying urban ecosystem fluxes.
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Key Points:23

• Urban CO2 flux measurements are partitioned into fossil and biogenic components24

using CO and 14C measurements and a flux-gradient method.25

• The partitioned fossil CO2 emissions show remarkable consistency of the compar-26

ison with an emissions inventory in time and space.27

• Biogenic CO2 fluxes within the city are non-negligible in the cold season and need28

to be considered in urban CO2 monitoring.29

Corresponding author: Kai Wu, kwu2@ed.ac.uk
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Abstract30

We present the first quantitative comparison of source-partitioned CO2 flux mea-31

surements with a high-resolution urban fossil CO2 emissions inventory. We use tower-32

based measurements of CO and 14C to partition net CO2 flux measurements into fos-33

sil and biogenic components in a suburban environment. A flux footprint model is used34

to quantify spatial patterns in fluxes. The partitioned fossil CO2 emissions are compared35

to a 200-m resolution emissions inventory (Hestia). The results indicate that Hestia and36

the partitioned flux data agree remarkably well on a seasonal average scale. The Hes-37

tia inventory is biased by 3.2% (cold season) and 9.1% (warm season). Their temporal-38

spatial patterns match closely. In addition, biogenic CO2 uptake is 25% of local fossil39

emissions during afternoon in the cold season. This work demonstrates the effectiveness40

of using eddy-covariance flux measurements both for evaluating urban emissions inven-41

tories and for quantifying urban ecosystem fluxes.42

Plain Language Summary43

This work presents the first comparison of two innovative approaches for quanti-44

fying urban CO2 emissions from the combustion of fossil fuels. Both approaches can quan-45

tify emissions from neighborhoods with hourly time resolution. These methods show very46

similar results concerning the seasonal-mean fossil CO2 emissions, as well as the emis-47

sions variation in time and space. We also find relatively large biological CO2 exchange,48

even during winter when the biosphere is often assumed to be dormant. The results show49

great promise for these new methods of quantifying source, space and time resolved CO250

exchanges, and emphasize the need to take biological CO2 fluxes into account when at-51

tempting to quantify fossil CO2 emissions using atmospheric measurements.52

1 Introduction53

Cities are becoming the focus for formulating and implementing carbon dioxide (CO2)54

emissions mitigation efforts (Hutyra et al., 2014; Lee & Koski, 2014; Bulkeley, 2013). Eval-55

uating the effectiveness of emissions reduction efforts requires accurate and independent56

CO2 emissions estimates (Lauvaux et al., 2020; Turnbull et al., 2018). Although cities57

cover only 3% of the global land area, urban areas are home to 55% of the world’s pop-58

ulation, a proportion that is expected to increase to 68% by 2050 (Chaouad & Verze-59

roli, 2018). Overall, more than 70% of global fossil fuel CO2 (CO2ff) emissions are from60

urban areas (Edenhofer et al., 2015). Efforts to assess and mitigate CO2 emissions can61

provide benefits for urban sustainability and balanced economic growth (Hsu et al., 2019).62

Urban areas are consistently reported as a net source of CO2 (Velasco & Roth, 2010).63

The temporal variation of urban CO2 is dependent on human activities and urban ecosys-64

tems (McKain et al., 2012; Pataki et al., 2006). The eddy-covariance technique has been65

applied to measure urban CO2 emissions for about two decades. This method has been66

demonstrated in many cities (Björkegren & Grimmond, 2018; Ao et al., 2016; Lietzke67

et al., 2015; Järvi et al., 2012; Christen et al., 2011; Vogt et al., 2006; Nemitz et al., 2002;68

Grimmond et al., 2002). The attribution of urban CO2 flux measurements is challeng-69

ing due to the spatial heterogeneity, mixed emission sources and sinks, and limited spa-70

tial coverage of flux measurements (Aubinet et al., 2012). Although most of urban flux71

studies focus on the total observed CO2 flux, a few studies attempt to partition net flux72

measurements into fossil and biogenic components accounting for the temporal and spa-73

tial variability of the multiple sources and sinks. Menzer and McFadden (2017) modeled74

fossil CO2 emissions based on winter data and extrapolated them to the growing sea-75

son to estimate biogenic fluxes. Ishidoya et al. (2020) demonstrated partitioning of CO276

fluxes into liquid and gaseous fossil fuel components using O2 and CO2 measurements.77
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Sugawara et al. (2021) used a nearby tower to estimate the biogenic component of a to-78

tal CO2 flux measurement.79

Quantification of anthropogenic CO2 emissions is challenging due to the difficulty80

of separating CO2ff emissions from biogenic CO2 (CO2bio) fluxes (Miller et al., 2020;81

Basu et al., 2020; Menzer & McFadden, 2017; Pataki et al., 2007). Previous studies have82

demonstrated the feasibility of using 14C isotope measurements to separate CO2ff from83

CO2bio fluxes (Basu et al., 2016; Turnbull et al., 2015; Miller et al., 2012), but flask mea-84

surements of 14C are expensive and discontinuous. Continuous measurements of carbon85

monoxide (CO) provide another approach to track CO2ff emissions (Silva et al., 2013;86

Levin & Karstens, 2007; Turnbull et al., 2006). Uncertainties in the CO to CO2ff ratio,87

which vary as a function of emission sectors, complicate the attribution of urban CO288

fluxes. These methods have not yet been applied to eddy-covariance flux measurements.89

Emissions inventories use activity data to aggregate source-specific and total emis-90

sions (Boden et al., 2009; Gurney et al., 2009; Olivier & Janssens-Maenhout, 2012), but91

the differences among inventories are sizeable (Gately & Hutyra, 2017; Oda et al., 2019).92

Atmospheric inversions use inventories as prior estimates of emissions and optimize the93

emissions using atmospheric mole fraction observations (Bréon et al., 2015; Turner et al.,94

2016; Staufer et al., 2016; Lauvaux et al., 2016; Kunik et al., 2019; Lauvaux et al., 2020).95

Determination of the uncertainty in the inversion results hinges on estimates of errors96

in atmospheric transport models (Deng et al., 2017; Sarmiento et al., 2017) and emis-97

sions inventories (Wu et al., 2018). The Hestia emissions inventory (Gurney et al., 2012)98

was developed in part to support the Indianapolis Flux Experiment (INFLUX) and uses99

energy consumption, population density, and traffic data to quantify CO2ff emissions for100

an entire urban landscape at an approximately 200-m and hourly resolution. The high-101

resolution performance of the Hestia inventory has not yet been evaluated using atmo-102

spheric observations.103

This study compares seven months of source-partitioned CO2 eddy-covariance flux104

measurements with a high-resolution emissions inventory (Hestia) in a suburban region105

of Indianapolis, Indiana, USA. We partition the total CO2 flux measurements into CO2ff106

and CO2bio components using a flux-gradient relationship (Stull, 2012; Ishidoya et al.,107

2020) and atmospheric CO measurements. 14C isotope measurements are used to esti-108

mate the CO to CO2ff ratio and reduce the uncertainty in the flux decomposition. Our109

source decomposition methods are similar to those used by Ishidoya et al. (2020) and110

Sugawara et al. (2021). In addition, we use a flux footprint model (Kljun et al., 2015,111

2004) to match each flux measurement in space and time with the Hestia inventory to112

provide a direct comparison of independent estimates of fossil CO2 emissions at high spa-113

tial and temporal resolution. This is, to our knowledge, the first such comparison of these114

innovative and independent assessments of high-resolution urban CO2 emissions, and is115

timely given the growing interest in studies of urban systems.116

2 Data and Methods117

2.1 Site Descriptions and Atmospheric CO2 Flux Measurements118

The INFLUX observation network (Davis et al., 2017) measures atmospheric CO2119

and CO mole fractions, and net CO2 fluxes in and around Indianapolis, IN (Figure 1).120

The locations, sampling heights and measurements at these sites are described by Miles121

et al. (2017) and instrument performance by Richardson et al. (2017). 14C isotope mea-122

surements, which are related to CO2ff emissions, are collected weekly using a flask sam-123

pling system (Turnbull et al., 2015). We focus on seven months (January to July, 2013)124

of eddy-covariance flux measurements at Tower 2 located in a heterogeneous suburban125

environment (Figures 1 and S1). There is a highway to the north, urban vegetation to126

the south, and neighborhoods with detached houses. The heterogeneous surroundings127

–3–
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Figure 1. The Indianapolis Flux Experiment (INFLUX) measurement network in Indianapo-

lis, IN (left) and cumulative flux footprints from January to July in 2013 at Tower 2 (right). The

contours in the right panel represent the percentage of the time-integrated flux that comes from

within that boundary. The color of the marker in the left panel represents the measurements

at each site: red for CO2, yellow for CO and 14C, blue for CH4, and white for surface energy

balance fluxes. The coordinates in the right panel are the distance (m) to the measurement site.

present a good test of our ability to partition net CO2 flux measurements into biogenic128

and fossil fuel components.129

The flux instrumentation, which includes a sonic anemometer (Campbell Scientific,130

CSAT-3) and a high-frequency open-path infrared CO2 sensor (LI-COR Environmen-131

tal, LI-7500), is mounted at 30 m above ground level (AGL) on Tower 2. The eddy-covariance132

technique measures the covariance between fluctuations in vertical wind velocity and CO2133

density to detect the integrated exchange of CO2 between land and atmosphere (Lee et134

al., 2004; Foken & Napo, 2008; Aubinet et al., 2012). We use flux calculation and filter-135

ing methods recommended by Vickers and Mahrt (1997). We filter out extreme values136

outside 3.5 σ range of the data (0.2% of data are filtered out) and nighttime fluxes dur-137

ing weak turbulence conditions when the friction velocity is less than 0.2 m/s (3.6% of138

data are filtered out) (Gu et al., 2005). Negative fluxes confirm the predominant role of139

photosynthesis from the urban vegetation around this site (Figure S2). We define the140

cold season as January to March (JFM) and the warm season as April to July (AMJJ)141

based on the presence of negative total CO2 fluxes during the daytime in the warm sea-142

son (Figure S3).143

2.2 Partitioning Fossil Fuel and Biogenic CO2 Fluxes144

To partition fossil fuel and biogenic components from the net CO2 flux measure-145

ments, we apply a flux-gradient method and atmospheric CO measurements. We mea-146

sure CO2 and CO mole fractions at 10 m and 40 m heights AGL at Tower 2 (Miles et147

al., 2017). We use the eddy-covariance flux measurement and measured vertical gradi-148

ent in CO2 to solve for the eddy diffusivity, and use that eddy diffusivity and the CO149

vertical gradient to solve for the CO flux, as shown in the supporting information. There150

are three assumptions in this method: (1) Turbulent eddies are small enough that lo-151

cal scalar gradients are proportional to turbulent fluxes; (2) CO and CO2 are subject152

to the same vertical mixing processes; (3) Within the turbulent flux footprint, CO is mainly153
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produced by fossil fuel combustion. We filter out counter-gradient fluxes, and limit the154

eddy diffusivity and CO flux within 3.5 σ range of their estimates to screen out extreme155

values caused by tiny denominators.156

The emission ratio of CO to CO2ff is estimated from flask measurements of 14C157

and CO measurements (Turnbull et al., 2015). The urban CO enhancements are esti-158

mated by the differences between Tower 2 and upwind background sites (Tower 1 or 9159

depending on the wind direction). The median and mean values of CO to CO2ff ratios160

are 9.52 and 8.98 ppb ppm−1 (cold season) and 9.13 and 9.02 ppb ppm−1 (warm sea-161

son) (Figure S4). We use 9 ppb ppm−1 as an approximate value to infer CO2ff emissions.162

To test the uncertainty of using different ratios on the flux decomposition, we vary the163

emission ratio to 11 and 7 ppb ppm−1 based on the range of values estimated by Turnbull164

et al. (2015). Since traffic emissions are likely to have a higher ratio and residential emis-165

sions have a smaller ratio. We add another scenario with a CO to CO2ff ratio of 15 ppb166

ppm−1 for northerly winds from the highway, and 7 ppb ppm−1 for the other wind di-167

rections.168

2.3 Flux Footprint and Emissions Inventory169

A flux footprint, which is defined as the contributing area upwind from the mea-170

surement site (Leclerc & Foken, 2014), is essential to account for the spatial heterogene-171

ity of emission sources. We use a two-dimensional flux footprint model (Kljun et al., 2015,172

2004) to match with the Hestia inventory. Tower-based measurements of wind field and173

boundary layer characteristics are used to estimate the input parameters of the footprint174

model (i.e. roughness length, Obukhov length, friction velocity, standard deviation of175

lateral velocity fluctuations, etc.). The size of footprint depends on measurement height,176

surface roughness, and atmospheric thermal stability. The footprint will increase with177

an increase in measurement height, with a decrease in surface roughness, and with an178

increase in atmospheric thermal stability (Burba & Anderson, 2010). The spatial res-179

olution of the footprint model is approximately two meters. We match every flux foot-180

print with Hestia via a convolution of the influence function with the Hestia emissions.181

3 Results182

Net CO2 flux measurements, decomposed as a function of time and space, behave183

as expected given the environment surrounding the tower. Observed CO2 emissions are184

larger in the cold season than the warm season (Figure 2a), perhaps due to increased emis-185

sions from building heating around the tower (Figures 1 and S1). In the cold season, there186

are two prominent peaks in emissions likely corresponding to peaks in traffic volume dur-187

ing rush hours. In the warm season, fossil fuel CO2 emissions are mixed with photosyn-188

thesis and respiration from urban vegetation within the flux footprints. The daytime pho-189

tosynthetic uptake of CO2 indicates the role of urban vegetation. The spatial patterns190

of flux data show high emissions from the north, and lower emissions or net uptake from191

the south (Figures 2b and 2c), consistent with the highway to the north and urban veg-192

etation to the south of the tower (Figures 1 and S1).193

Partitioning of the net observed CO2 fluxes into fossil and biogenic components yields194

broadly plausible temporal behavior of these flux components (Figure 3). While substan-195

tially smaller than the estimated CO2ff emissions, the cold season CO2bio uptake is 25%196

of urban CO2ff emissions during the afternoon (Figure 3a), which is non-negligible and197

need to be considered to obtain accurate CO2ff emissions. A typical pattern of ecosys-198

tem fluxes emerges in the warm season (Figure 3b). The warm season CO2bio fluxes are199

equal in amplitude to the CO2ff emissions, emphasizing the importance of accounting200

for CO2bio fluxes in attempts to quantify urban CO2ff emissions.201

–5–



manuscript submitted to Geophysical Research Letters

(c)(b)

(a)

CO2 flux
(µmol m-2 s-1)

Figure 2. Diurnal variation of seasonally-averaged CO2 flux measurements during the cold

(JFM) and warm (AMJJ) seasons in 2013 (a). Error bars indicate the standard errors of the sea-

sonal means. Spatial variation of time-averaged CO2 fluxes in the cold (b) and warm (c) seasons.

Color indicates flux magnitude. The radial coordinate corresponds to wind speed (m s−1) and

the polar coordinate defines wind direction.
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Figure 3. Diurnal variation of seasonally-averaged net CO2 flux measurements (FCO2Net)

and the partitioned fossil fuel (FCO2FF) and biogenic (FCO2Bio) fluxes in the cold (JFM) (a)

and warm (AMJJ) (b) seasons in 2013. Error bars are the standard errors of the seasonal means.

The seasonally-averaged eddy-covariance CO2ff emissions estimates show remark-202

able similarity to the Hestia inventory when matched in space and time using flux foot-203

prints. Seasonal-mean CO2ff emissions differ (Hestia minus OBS) by 0.36 µmol m−2 s−1
204

(3.2% of the mean partitioned CO2ff emissions) in the cold season (Figure 4a) and 0.62205

µmol m−2 s−1 (9.1% of the mean partitioned CO2ff emissions) in the warm season (Fig-206

ure 4b). The corresponding root mean square errors (RMSEs) are 8.91 µmol m−2 s−1
207

and 7.54 µmol m−2 s−1, which include random measurement errors in the flux data.208

The temporal patterns of seasonally-averaged Hestia and eddy-covariance CO2ff209

emissions also agree remarkably well (Figures 4c and 4d). The correlation coefficients210

of the seasonal-mean diurnal variations are 0.86 (cold season) and 0.93 (warm season).211

The Hestia emissions are smaller during the night and higher during the day compared212

to the partitioned observations in the cold season (Figures 4c and S5a), and consistently213

slightly higher than the partitioned observations in the warm season (Figures 4d and S5b).214

We also find consistency in the comparison of eddy-covariance and Hestia CO2ff215

emissions as a function of wind direction (Figure S6 and Table 1). In the cold season,216

the Hestia emissions are higher than the observed CO2ff emissions for all wind directions217

except the north, west and northwest wind (Table 1). A similar pattern exists in the warm218

season. Since residential buildings lie upwind in the west and northwest wind directions219

(Figures 1 and S1), we infer that residential emissions may be the source of this discrep-220

ancy.221

These results are somewhat sensitive to the choice of CO to CO2ff emission ratio222

in the flux decomposition. Seasonal-mean flux bias and bias percentage change signif-223

icantly when the emission ratio varies from 9 ppb ppm−1 to 11 or 7 ppb ppm−1 (Table224

S1 and Figure S7a). The temporal variations are not highly sensitive to this choice (Fig-225

ure S7b). The scenario with the space-varying emission ratio (15 & 7 ppb ppm−1), which226

may be more realistic than a constant ratio, does not significantly change compared to227

the default scenario (9 ppb ppm−1) either the comparison of the diurnal variation (Fig-228

ure S7b) or the bias estimation (Table S1).229
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Figure 4. Histogram of flux differences between the Hestia inventory and the partitioned fos-

sil fuel CO2 emissions (Hestia minus OBS) in the cold (JFM) (a) and warm (AMJJ) (b) seasons

in 2013. Bias, bias percentage compared to the mean partitioned CO2ff emissions, and root mean

square error (RMSE) are listed. Diurnal variation of seasonally-averaged CO2ff emissions in the

cold (c) and warm (d) seasons. Error bars are the standard errors of the seasonal means.

Table 1. Statistics of flux differences (µmol m−2 s−1) between the Hestia inventory and the

partitioned fossil fuel CO2 emissions (Hestia minus OBS) for different wind directions.

DIFF N NE E SE S SW W NW

Cold Median -2.00 3.32 2.88 3.45 4.14 3.15 -4.47 -2.14
Season Mean -1.93 5.88 4.88 3.58 3.84 1.89 -4.72 -1.87
(JFM) RMSEa 10.98 9.27 8.22 5.63 7.45 8.00 10.40 9.06

Warm Median 2.49 3.34 1.92 1.98 0.98 0.42 -2.71 -4.27
Season Mean 5.31 3.61 0.92 1.37 0.52 -1.32 -4.17 -5.21
(AMJJ) RMSE 8.24 9.32 5.19 5.54 5.97 8.62 8.47 13.66

aroot mean square error
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4 Conclusions and Discussion230

The remarkably close agreement between the Hestia inventory and the partitioned231

eddy-covariance flux measurements suggests that both methods have the ability to quan-232

tify urban fossil CO2 emissions. Neither approach has yet been cross-validated at such233

a high spatial and temporal resolution. The flux measurement partitioning is sensitive234

to the CO to CO2ff emission ratio, but the consistency of Hestia and flux data suggests235

that flask measurements have accurately quantified that ratio. These results need to be236

tested at other locations and over different periods of time. The success of this test sug-237

gests that these eddy-covariance flux decomposition methods can be used to quantify source-238

specific CO2 emissions of neighborhood-scale urban metabolic processes. Further the suc-239

cessful comparison to Hestia suggests that the algorithms and input data used in the in-240

ventory system are accurate and precise even down to the fine resolution of the eddy-241

covariance flux measurements.242

This study also shows the promise of using this approach for studying urban ecosys-243

tem CO2 fluxes. Previous work has suggested that the edges found in urban ecosystems244

lead to fundamentally different behavior of these ecosystems (Reinmann et al., 2020),245

but these findings are largely based on chamber-scale flux measurements. It is not clear246

whether or not, when upscaled to spatial domains that integrate across many edges such247

as a suburban forest, existing ecosystem models and model parameters will suffice in de-248

scribing urban CO2bio fluxes. Current ecosystem models used in urban studies are largely249

devoid of urban ecosystem flux measurements in either calibration or evaluation due to250

lack of data (Wu et al., 2021; Hardiman et al., 2017). We suggest that the decomposi-251

tion methods can serve as a new approach for obtaining ecosystem flux data necessary252

to develop the next generation of urban ecosystem models.253

Finally, this study emphasizes the importance of urban ecosystem fluxes, both in254

the growing/warm season and the dormant/cold season. The importance of these fluxes255

has been shown in multiple observational (Miller et al., 2020; Turnbull et al., 2015) and256

inversion (Lauvaux et al., 2020; Sargent et al., 2018; Wu et al., 2018) studies, but the257

impact of uncertain biological fluxes has been shown to be large (Lauvaux et al., 2020;258

Wu et al., 2018), and we have not had direct flux measurements available for evaluat-259

ing the modeled ecosystem flux priors. Further, a number of studies (Lauvaux et al., 2016;260

Heimburger et al., 2017) have made the reasonable assumption of neglecting CO2bio fluxes261

in the dormant season. This work shows that urban ecosystems in Indianapolis are mod-262

erately active even in the cold season. More urban flux measurements are needed to study263

the range of urban ecosystem CO2 fluxes.264
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Specific steps to partition anthropogenic and biogenic CO2 flux components:

Step 1: Estimate the eddy diffusivity (K) by calculating the ratio of CO2 flux measure-

ments (FCO2) to the vertical gradients of CO2 mole fractions (∇ CCO2):

K = − FCO2

∇CCO2

(1)

Step 2: Use the vertical gradients of CO mole fractions (∇ CCO) and the estimated

eddy diffusivity (K) to calculate the CO fluxes (FCO):

FCO = −K∇CCO (2)

Step 3: Estimate the fossil fuel CO2 emissions (FCO2ff ) by combining the CO fluxes

with the emissions ratio (R) of CO to CO2ff:

FCO2ff =
FCO

R
(3)

Step 4: Attribute the differences between the net flux measurements and the partitioned

fossil fuel CO2 emissions to estimate the biogenic CO2 fluxes (FCO2bio):

FCO2bio = FCO2 − FCO2ff (4)
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Figure S1. Surface environment around Tower 2 (39.7978°N, 86.0183°W) in Indianapolis, IN.
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Mean = 7.56 µmol m-2 s-1

STDEV = 8.51 µmol m-2 s-1
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Figure S2. Histogram of eddy-covariance CO2 flux measurements at Tower 2 from January to

July in 2013.
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Figure S3. Diurnal variation of monthly-averaged eddy-covariance CO2 flux measurements

from January to July in 2013.
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Figure S4. Ratios between the CO enhancements and the 14C-based CO2ff during the cold

(JFM) and warm (AMJJ) seasons in 2013. The red circle and line mark the mean and median,

respectively. The bottom and top edges of the box indicate the 25th and 75th percentiles. The

whiskers extend to the most extreme data points not considered outliers that are defined as more

than 1.5 times the interquartile range away from the top or bottom of the box.
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Figure S5. Diurnal variation of seasonally-averaged flux differences between the Hestia

inventory and the partitioned fossil fuel CO2 emissions (Hestia minus OBS) in the cold (JFM)

(a) and warm (AMJJ) (b) seasons in 2013. Error bars are the standard errors of the seasonal

means.
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Figure S6. Cumulative flux footprints (a and d), the partitioned fossil fuel CO2 emissions (b

and e) and the Hestia inventory (c and f) for different wind directions. Panels a to c are in the

cold season (JFM) and panels d to f are in the warm season (AMJJ) in 2013. The coordinates in

the left panel indicate the distance (m) to the measurement site. In the middle and right panels,

the red circles, the lines and the plus marks represent the mean, the median and the outliers,

respectively. The bottom and top edges of the box indicate the 25th and 75th percentiles. The

whiskers extend to the most extreme data points not considered outliers that are defined as more

than 1.5 times the interquartile range away from the top or bottom of the box.
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Figure S7. Probability density function of flux differences between the Hestia inventory and

the partitioned fossil fuel CO2 emissions (Hestia minus OBS) for different CO to CO2ff emission

ratios (ppb ppm−1) in the warm (AMJJ) season in 2013 (a). Ratio = 15&7 represents the ratio

is 15 ppb ppm−1 (traffic emissions) for the north wind and 7 ppb ppm−1 (building emissions) for

other wind directions. Diurnal variation of seasonally-averaged CO2ff fluxes for different emission

ratios in the warm season (b). Error bars indicate the standard errors of the seasonal means.
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Table S1. Bias (µmol m−2 s−1), bias percentage compared to the mean partitioned CO2ff

emissions (%), and root mean square error (µmol m−2 s−1) of the Hestia inventory for different CO

to CO2ff emissions ratios (ppb ppm−1) in the warm (AMJJ) season. Ratio = 15&7 represents

the ratio is 15 ppb ppm−1 (traffic emissions) for the north wind and 7 ppb ppm−1 (building

emissions) for other wind directions.

Ratio 9 11 7 15 & 7
Bias 0.62 1.86 -1.34 0.77

Bias PCTa 9.1 33.3 -15.2 11.5
RMSEb 7.54 6.76 9.44 8.86

apercentage
broot mean square error


