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Abstract

Generally, the sea ice prediction skills can be improved by assimilating the observed sea ice data into a numerical forecast model

to update the initial fields of the model. Meanwhile, it is necessary to assimilate sea ice thickness (SIT) while assimilating sea ice

concentration (SIC) to keep the two harmony in assimilation. However, due to the lack of the SIT from satellite remote sensing

observation, it cannot meet the bivariate assimilation requirement in Arctic melting season. In order to solve this problem, an

easy-to-implement bivariate regression mode of SIT is tentatively established based on the grid reanalysis data of SIC and SIT,

through which the SIT field is statistically constructed. Then, the ice-ocean coupled numerical forecast experiment is carried

out in which both the observed SIC and the constructed SIT are jointly assimilated using the spatial multi-scale recursive filter

(SMRF) method. Results show the joint assimilation of SIC and the constructed SIT can greatly improve the forecast accuracy

of sea ice elements especially in the multi-year ice region of Arctic center, where the average absolute error between the SIT

forecast and in situ observations is about 0.14 m. Further, effects of the bivariate assimilation on the ocean elements are also

deeply investigated in melting season. The higher forecast skill of sea surface temperature and drift flow can be obtained via

the bivariate assimilation scheme considering the ice-ocean coupled dynamics and the feedback process between them.
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Abstract 18 

Generally, the sea ice prediction skills can be improved by assimilating the observed sea 19 

ice data into a numerical forecast model to update the initial fields of the model. Meanwhile, 20 

it is necessary to assimilate sea ice thickness (SIT) while assimilating sea ice concentration 21 

(SIC) to keep the two harmony in assimilation. However, due to the lack of the SIT from 22 

satellite remote sensing observation, it cannot meet the bivariate assimilation requirement in 23 

Arctic melting season. In order to solve this problem, an easy-to-implement bivariate 24 

regression mode of SIT is tentatively established based on the grid reanalysis data of SIC and 25 

SIT, through which the SIT field is statistically constructed. Then, the ice-ocean coupled 26 

numerical forecast experiment is carried out in which both the observed SIC and the 27 

constructed SIT are jointly assimilated using the spatial multi-scale recursive filter (SMRF) 28 

method. Results show the joint assimilation of SIC and the constructed SIT can greatly 29 

improve the forecast accuracy of sea ice elements especially in the multi-year ice region of 30 

Arctic center, where the average absolute error between the SIT forecast and in situ 31 

observations is about 0.14 m. Further, effects of the bivariate assimilation on the ocean 32 

elements are also deeply investigated in melting season. The higher forecast skill of sea surface 33 

temperature and drift flow can be obtained via the bivariate assimilation scheme considering the 34 

ice-ocean coupled dynamics and the feedback process between them. 35 

Plain Language Summary 36 

In order to improve the prediction skills of Arctic sea ice, it is necessary to assimilate the 37 

sea ice observation data into the dynamic model to generate a more realistic initial prediction 38 

field. However, during the melting season, sea ice thickness (SIT) is difficult to detect 39 

directly by using satellite remote sensing since the inversion algorithms fail to work in the 40 

saturated surface water vapor from the surface snow melt. In this study, a simple, 41 

easy-to-implement bivariate regression model is put forward to construct SIT using the 42 

corresponding sea ice concentration (SIC) observation. Benefitting from the joint assimilation 43 

of the observed SIC and the constructed SIT, the prediction accuracy of both sea ice variables 44 

and ocean variables is greatly improved. The constructed SIT is expected to provide an 45 
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available dataset for further research on the Arctic sea ice prediction during the melting 46 

season. 47 

1 Introduction 48 

The Arctic is one of the most important regions for the exchange of materials and energy 49 

between the atmosphere and the ocean, and it plays a significant role in global climate change. 50 

The major interaction between the Arctic Ocean and the global climate system is reflected 51 

through the sea ice. However, observations in the past 30 years have shown that Arctic sea ice 52 

is undergoing rapid changes (Kwok and Cunningham, 2015). From 1979 to 2017, the sea ice 53 

extent decreased by 3.24 million square kilometers in September, with a significant decrease 54 

in the Arctic sea ice margin from the Beaufort Sea in the west to the Barents Sea in the north 55 

(Liu et al., 2019). As the ice shrinks, the ice floes are thinning. Recent satellite data show an 56 

average reduction of about 50% in Arctic SIT compared to submarine sea ice observations 57 

during 1958-1976 (Kwok and Rothrock, 2009). The above changes in Arctic sea ice have 58 

aroused people's attention and posed major opportunity to Arctic maritime activities, such as 59 

polar shipping, fishing and oil/gas resources exploration. Meanwhile, the grasp of SIC, SIT 60 

and other information is crucial for polar research (Takuya et al., 2018). Therefore, accurate 61 

real-time sea ice prediction has become an urgent need (Eicken, 2013). It is well known that 62 

Arctic sea ice dynamics models used for short-term forecasting depend heavily on the initial 63 

conditions of the model. Therefore, it is necessary to integrate the sea ice observation data 64 

into the numerical forecast model using appropriate data assimilation methods to generate a 65 

more realistic prediction initial condition and improve the prediction ability of Arctic sea ice 66 

(Lisæter et al., 2003). 67 

Lindasy and Zhang (2006) used Nudging method to assimilate SIC observation. The 68 

assimilated SIC improves the match with the observed extent, but the sea ice draft in the 69 

Fram Strait is underestimated by 0.64m compared with the observation. Lisæter et al. (2003) 70 

assimilated SIC observation data using the Ensemble Kalman Filter (EnKF) (Evensen, 1994) 71 

based on the coupled ice-sea model. Although the correlation coefficient between the forecast 72 

SIC and SIT reaches more than 0.5 in winter, it drops below 0.3 or even reaches a negative 73 
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value in the melting season. Wang et al. (2013) proposed a method combining optimal 74 

interpolation with the Nudging to assimilate SIC. Results show that there are significant 75 

improvements for SIC analysis result in the sea ice margin region in summer, but there are 76 

deviations in the prediction of sea ice extent. Yang et al. (2015a) used Local Singular 77 

Evolution Interpolation Kalman Filter (LSEIK) to assimilate SIC in summer. The consistency 78 

of forecast SIC with satellite observations is improved, but the multi-year ice thickness in the 79 

central Arctic is overestimated by more than 1m. Previous studies have shown that while the 80 

assimilation of observed SIC can improve the SIC forecast results, SIT improvements are 81 

insignificant. 82 

The study of Day et al. (2014) showed that accuracy of initial SIT is also important for 83 

the prediction of SIC and sea ice extent in summer. Lisæter et al. (2007) used EnKF to 84 

assimilate the SIT detected by Cryosat satellite and improved the quality of initial SIT. The 85 

results showed that the prediction results of SIC, sea surface temperature (SST) and sea 86 

surface salinity are improved by the SIT assimilation. Yang et al. (2014) used LSEIK to 87 

simultaneously assimilate Special Sensor Microwave Imager/Sounder (SSMIS) SIC and Soil 88 

Moisture and Ocean Salinity (SMOS) SIT in the cold season. Compared with only SIC 89 

assimilation or no data assimilation, the root mean square error (RMSE) of SIT forecast 90 

results is reduced 0.47m. However, SMOS SIT observation data are only applicable to thin 91 

ice (<1m) (Tian-Kunze et al., 2014), the assimilation of which only improves the one-year ice 92 

prediction in the marginal area of sea ice, while the thick (multi-year) ice cannot be 93 

significantly improved during the early melting and freezing seasons (Yang et al., 2016; Xie 94 

et al., 2016). In this case, in cold season, Mu et al. (2018b) not only assimilated SMOS SIT 95 

and SSMIS SIC observation data, but also simultaneously assimilated Cryosat-2 SIT 96 

observation data which can better capture interannual changes of thick ice areas (Laxon et al., 97 

2013). By using the complementary characteristics of the two kinds of thickness data, the 98 

overall RMSE of SIT and SIC is smaller than the counterpart under the condition of 99 

assimilating both SMOS SIT and SSMIS SIC data. 100 

It is worth noting that there are few studies on the prediction of SIT during the melting 101 
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season due to the sparse in situ observations of SIT. Additionally, the Arctic SIT obtained 102 

from satellite remote sensing inversion has only been available in the recent decade with the 103 

time coverage ranging from October to April (Ricker et al., 2014; Ricker et al., 2017), 104 

resulting in insufficient SIT observations during the melting season. In order to solve this 105 

problem, Mu et al. (2018a) combined the skill of satellite thickness assimilation in the 106 

freezing season with the model skill in the melting season, and a combined model and 107 

satellite thickness (CMST) is proposed to estimate the thickness of Arctic sea ice in the 108 

melting season. Yang et al. (2019) used the Nudging method to assimilate the CMST 109 

estimated SIT in the cold season to provide the initial state of the model for the melting 110 

season, so that the SIT in summer can be modified by the positive cross relationship between 111 

SIC and SIT. In addition, an integrated sea ice seasonal prediction system (SISPS) is designed 112 

for the real-time prediction of summer sea ice conditions in the Arctic. CMST estimation is 113 

heavily dependent on the quality of satellite data products and the parameterization of 114 

physical processes in the model, which has certain uncertainties (Mu et al., 2018a). 115 

This paper proposed a bivariate regression model of SIT based on the fact that there is a 116 

strong positive correlation between SIC and SIT from the perspective of statistical 117 

significance (Yang et al., 2015b), so that the "pseudo" observation field of SIT can be 118 

constructed by using satellite remote sensing observation data of SIC. On this basis, the 119 

SMRF data assimilation method is used to assimilate the sea ice multi-element data to 120 

improve the initial field of the model. The traditional data assimilation methods used by other 121 

scholars (such as LSEIK, Nudging, 3DVAR, etc.) face with the problems that the 122 

determination of correlation scale and filtering parameters depends on human experience and 123 

the non-objectivity of the background error covariance estimation cannot be effectively 124 

solved (Wu et al., 2015). In contrast, the SMRF data assimilation method can not only correct 125 

the error of long wavelength information in the whole region, but also modify the error of 126 

short wavelength information in the data intensive region, so that the multi-scale information 127 

decomposed from the observation can be once extracted successively from the long 128 

wavelength to the short wavelength (Zhang et al., 2020). 129 
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The paper is organized as follows: the ice-ocean coupled model is presented in Section 2 130 

and the data sources including sea ice and ocean are described in Section 3. In Section 4, two 131 

core methods of the bivariate SIT regression mode and the SMRF data assimilation method 132 

are introduced. The accuracy of the SIT field constructed by the regression model is tested 133 

based on an idealized twin experiment framework in Section 5. On this basis, in Section 6, 134 

the influence of multi-scale joint assimilation of SIC and SIT on the prediction results of sea 135 

ice and ocean elements is explored based on the ice-ocean coupled model, and the interaction 136 

between the predicted SIC and SIT is discussed. Finally, the conclusion and summary of this 137 

study are in Section 7. 138 

2 The ice-ocean coupled model 139 

The ocean model used is the Massachusetts Institute of Technology General Circulation 140 

Model (MITgcm) (Marshall et al., 1997), which solves the three-dimensional primitive 141 

equations with implicit linear free-surface under the hydrostatic and Boussinesq 142 

approximations. The ocean model is coupled to a sea-ice model that computes ice thickness, 143 

ice concentration, and snow cover as Zhang et al. (1998) and that simulates a viscous-plastic 144 

rheology using an efficient parallel implementation of the Zhang and Hibler (1997) solver. 145 

The coupled model used in this study adopts a global cubic spherical grid, and the Arctic 146 

region includes 510×510 grid points with an average horizontal distance of 18 km. The open 147 

boundary is about 55°N in the Atlantic Ocean and Pacific Ocean. 148 

The atmospheric forcing fields include 10m surface wind speed, 2m temperature, 149 

relative humidity, precipitation, downward longwave and shortwave radiations. Through the 150 

two-way coupled between ice and sea, the ocean model provides the sea ice model with 151 

information such as ablation/freezing potential, SST and salinity, surface velocity, while the 152 

sea ice model provides the information of the SIC, fresh water and salinity fluxes, ice-sea 153 

stress and others. The heat flux on the sea ice surface is referred to the results of Parkinson 154 

and Washington (1979). The change of sub-grid ice thickness in the sea ice model is taken 155 

into account in the calculation of conduction heat flux. In other words, the sea ice is divided 156 

into 7 categories according to the SIT value in a horizontal grid. The variation of heat flux 157 
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and albedo caused by snow cover and the process of snow-ice conversion are considered on 158 

the surface of sea ice. The albedo of dry ice, wet ice, dry snow and wet snow is 0.87, 0.78, 159 

0.98 and 0.80, the sea-ice drag coefficient is 5.2, and the sea-ice intensity is 2.7×10
4
Pa 160 

(Losch et al., 2010). 161 

3 Data sources 162 

Observations of satellite remotely sensed SIC, independent ice thickness data and SST 163 

data are utilized. 164 

SIC refers to the proportion of sea ice covered area in unit space, the variation range of 165 

which is 0-1. The observations of daily SIC are derived from the daily passive microwave 166 

data of the special sensor microwave /imager (SSMI) carried by DMSP F-17. It was 167 

processed by National Snow and Ice Data Center (NSIDC) with NASA team algorithm 168 

(Cavalieri et al., 2012). The spatial resolution is 25 km×25 km. 169 

To assess our predicted SIT results, independent in situ SIT data are used. One is sea ice 170 

draft, which comes from Upward Looking Sonar (ULS) measurements of Beaufort Gyre 171 

Experiment Program (BGEP). It can be converted into thickness by multiplying by 1.1, which 172 

is approximately equal to the ratio of mean seawater density of 1024 kg/m
3
 and sea ice 173 

density of 910 kg/m
3 

(Nguyen et al., 2011). The error of ULS measurements of ice draft is 174 

estimated about 0.1m(Melling et al., 1995). The other is SIT data, which is derived from Ice 175 

Mass balance Buoys (IMB) deployed on the surface of Arctic sea ice (Perovich et al., 2009). 176 

The two acoustic rangefinders on the IMB monitor the position of the ice bottom and the 177 

snow and ice surface, which is used to estimate the SIT. The accuracy of both detectors is 5 178 

mm (Richter-Menge et al., 2006). According to needs for the research, the data from mooring 179 

facilities of the BGEP_2011B located in , BGEP_2011D 180 

located in  and ice mass balance drift buoys of the 181 

IMB_2011K in the Beaufort Sea during 1 September to 7 October 2011 are selected. In 182 

addition, ice mass balance drift buoys of the IMB_2011L in the North Pole Center during 13 183 

September to 7 October 2011 is also selected. The position of mooring facilities and buoy 184 
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drift trajectory are shown in Figure 1. 185 

 186 

 187 

Figure 1. The location of mooring facilities BGEP_2011B (red box) and BGEP_2011D (blue box) and the 188 

drift track of buoys IMB_2011K (pink line) and IMB_2011L (green line). 189 

 190 

Daily observations of SST are from the European Space Agency (ESA) Climate Change 191 

Initiative's Sea Surface Temperature Project. The dataset is named SST_cci OSTIA Level 4 192 

Analysis Climate Data Record, version 2.1. It combines data from the Advanced Very 193 

High-Resolution Radiometer (AVHRR) and the Along Track Scanning Radiometer (ATSR). 194 

Data assimilation method is used to provide SST fusion data with a spatial resolution of 195 

0.05°×0.05° (Merchant et al., 2019). 196 

The reanalysis data are from TOPAZ4 version of the Nansen Centre for Environment 197 

and Remote Sensing, Norway's Sea Ice/Ocean Numerical Prediction System (Xie et al., 2017). 198 

The dataset is named Arctic_Reanalysis_Phys_002_003. It includes daily SIC, SIT and sea 199 

ice velocity. The spatial resolution is 12.5km×12.5km, the time range is from January 1, 1991 200 

to December 31, 2019, and the region covers the Arctic Ocean. 201 

4 Method 202 

4.1 Bivariate SIT regression mode 203 

Considering that it is impossible to obtain Arctic SIT observation from the satellites 204 
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remote sensing in the melting season due to that the most advanced inversion algorithm was 205 

impeded by the saturated surface water vapor from the surface snow melt (Ricker et al., 206 

2017), we focus on the reconstruction of SIT in the melting season (i.e., September). 207 

Meanwhile, because the smallest SIT was recorded in the past 40 years (Min et al., 2019), the 208 

autumn of 2011 (from 1 September to 30 September 2011) is chosen as an example to 209 

develop the bivariate regression mode for SIT.  210 

First of all, in order to construct SIT field from 1 September to 30 September 2011, the 211 

TOPAZ4 reanalysis SIC and SIT data of the first 7 years (2004-2010) and the last 7 years 212 

(2012-2018) are selected. In order to verify the validity of the dataset, the spatial correlation 213 

coefficients between SIC and SIT on each day in September of each year are calculated 214 

respectively, and the calculation formula is shown in Eq. (1). According to the scatter plots 215 

between correlation coefficients and dates (Figure 2), except for a few dates, most of the 216 

correlation coefficients between SIC and SIT are between 0.80 and 0.95, which completely 217 

pass the significance test. It indicates that there is a strong correlation between SIC and SIT, 218 

which provides theoretical support for the establishment of regression mode in the next step. 219 

  (1) 220 

Where,  represents the label of grid point,  represents the value of SIC of the -th grid 221 

point,  represents the value of SIT of the -th grid point,  represents the average value 222 

of SIC at all grids, and  represents the average value of SIT at all grids. 223 

 224 
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 225 

Figure 2. Spatial correlation coefficient between daily SIC and SIT in September from 2004 to 2018. 226 

 227 

The following is an example of 1 September 2011 to illustrate the construction process 228 

of SIT. The flow chart is shown in Figure 3. First of all, the reanalysis data of daily SIC and 229 

SIT on 1 September in 14 years from 2004 to 2010 and from 2012 to 2018 are selected. In 230 

order to prevent "overfitting" in the calculation process, the SIT data are normalized and 231 

converted into a scalar quantity, which is limited in the interval of [0, 1], as follows: 232 

  (2) 233 

where,  is original data at the -th grid point in each year,  is the result of 234 

normalization of ,  is the minimum value of SIT at all grids in each year,  is 235 

the maximum value of SIT at all grids in each year. 236 

 237 
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 238 

Figure 3. A flow chart of bivariate SIT regression model (take 1 September 2011 as an example). 239 

 240 

 241 
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Then, the linear regression with SIC as independent variable and SIT as dependent 242 

variable is made at each grid point of the whole region for each year based on the reanalysis 243 

data of daily SIC and SIT. The corresponding SIC-SIT regression relation at each grid can be 244 

obtained for each year. The formula is as follows: 245 

  (3) 246 

where,  is the undetermined coefficient,  is the value of SIC, and  is the value of SIT 247 

corresponding to . 248 

The 14 sets of SIT fields on 1 September 2011 are calculated from the fitting relation 249 

and the SIC observational data. The 9-quartile scale method in the Analytic Hierarchy 250 

Process (AHP) (Rahman & Frair, 1984) is used to determine the weight of each year relative 251 

to 2011, as shown in Table 1 (all results pass the consistency test). The constructed SIT field 252 

on 1 September 2011 is obtained by weighting average. 253 

Finally, according to the SIC observational data, the SIT field is empirically adjusted to 254 

make the constructed SIT consistent with the SIC (Preller et al., 2002): if the value of SIC at 255 

a certain grid point is 0 and the constructed SIT at this grid point is not 0, the ice will be 256 

removed from the constructed SIT field; If the value of constructed SIT at a certain grid point 257 

is 0 and the SIC at this grid point is not 0, the constructed SIT is adjusted to 1.0m (if SIC > 258 

0.5) or 0.5m (if SIC < 0.5). The adjusted SIT field can be treated as the SIT observation field 259 

of 1 September 2011 in the process of data assimilation. 260 

 261 

Table 1. The weights for years in 2004-2010 and 2012-2018 relative to year 2011 262 

 2004 2005 2006 2007 2008 2009 2010 

Weight 0.0156 0.0224 0.0338 0.0518 0.0793 0.1200 0.1771 

 2012 2013 2014 2015 2016 2017 2018 

Weight 0.1771 0.1200 0.0793 0.0518 0.0338 0.0224 0.0156 

 263 
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4.2 The SMRF data assimilation method 264 

The traditional three-dimensional variational (3DVAR) data assimilation methods can 265 

only correct the error of a certain wavelength in the assimilation process. Xie (2005) shows 266 

that in the process of data assimilation, if the error of long wavelength could not be well 267 

corrected, the short wavelength error could not be well corrected either. The SMRF is a 268 

method that can realize the sequential correction from long wavelength to short wavelength 269 

and extract multi-scale information through a single 3DVAR analysis (Zhang et al., 2020). 270 

In this method, firstly, a recursive filter operator  with the small filter parameter  271 

is applied to the initial guess field. The parameter  is set to small value in order to ensure 272 

that information of all scales could pass. The cost function and its gradient are calculated 273 

based on the filtered initial guess field. Then, another recursive filter operator  with the 274 

parameter  is applied to the negative gradient of the cost function. This filter parameter  275 

should select a larger value at the beginning to extract the "longest" wavelength information 276 

in the observational data. A line search process (More and Thuente 1992) is performed along 277 

this gradient direction to find the appropriate step size, and the estimated value is updated. 278 

The observational residual is obtained by removing the extracted signal from the observation 279 

data. Then, the filter parameter  is appropriately reduced to extract the "maximum" scale 280 

signal in the observational residual at current iteration. As the number of iterations increases, 281 

the filter parameter  sequentially decreases, so that the information of each scale can be 282 

extracted successively from long wavelength to short wavelength in order to obtain the 283 

analyzed field. 284 

Compared with traditional data assimilation methods, SMRF not only possesses a good 285 

ability in propagating observational signals, but also shows a superior performance in 286 

extracting multi-scale information resolved in observation by performing 3DVAR once 287 

(Zhang et al., 2020). Based on the above two points, the SMRF is applied to assimilate the 288 

observed SIC and constructed SIT into initial fields for sea ice prediction experiments. 289 
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5 The twin test 290 

5.1 Experiment design 291 

In order to evaluate the SIT constructed by the bivariate SIT regression mode and its 292 

influence on the ice-sea coupled prediction, four prediction experiments are designed within 293 

an idealized twin experiment framework. The initial SIC and the SIT fields from four Exps 294 

are given in Table 2. The ice-ocean coupled MITgcm model is used to perform 120h 295 

prediction. 296 

 297 

Table 2. Comparison of the initial fields of twin experiments 298 

 Sea ice concentration Sea ice thickness 

Control Exp The model result on 1 Sep 2011 The model result on 1 Sep 2011 

Exp 1 The model result on 1 Sep 2012 The model result on 1 Sep 2012 

Exp 2 
Same as Exp 1, but the SIC initial field 

in control Exp is assimilated 

Empirically adjusted the SIT initial field in 

Exp 1 

Exp 3 Same as Exp 2 
Same as Exp 1, but the constructed SIT is 

assimilated 

 299 

In control Exp, the SIC and SIT initial fields (Figure 4) are the simulation results of the 300 

ice-sea coupled model on 1 September 2011, which is used as the "truth" field for the 301 

comparison of Exp 1-3. The prediction results of control Exp also serve as the "truth" field 302 

without deviation. 303 

In Exp 1, all configurations are the same as the control Exp except employing the model 304 

results of SIC and SIT on 1 September next year (Figure 5) as a "biased" initial field of this 305 

year. In control Exp and Exp 1, the model results of different years are used as the initial 306 

fields, which not only makes the "truth" and the "biased" fields have obvious difference, but 307 

also ensures that the SIC matches with the SIT. 308 

 309 
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 310 

 311 

Figure 4. The SIC (a) and the SIT (b, unit: m) on 1 September 2011 for initial fields in control Exp. 312 

 313 

 314 

Figure 5. The SIC (a) and the SIT (b, unit: m) fields on 1 September 2012 for initial fields in Exp 1. 315 

 316 

In Exp 2, all configurations are the same as the Exp 1 except that the initial SIC (Figure 317 

6a) is changed to the analyzed result derived from assimilating the SIC "observations" 318 

(Figure 4a) and the initial SIT (Figure 7a) is empirically adjusted according to the SIC change 319 

in order to keep the physical consistency between SIC and SIT. 320 

 321 
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 322 

Figure 6. (a) The SIC initial field in Exp 2; (b) The difference between the SIC initial field in Exp 2 and 323 

the SIC initial field in control Exp. 324 

 325 

 326 

Figure 7. (a) The SIT initial field in Exp 2 (unit: m); (b) The difference between the SIT initial field in Exp 327 

2 and the SIT initial field in Exp 1 (unit: m). 328 

 329 

In Exp 3, all configurations are the same as the Exp 2 except that the initial SIT (Figure 330 

8a) is changed to the analyzed result derived from assimilating the constructed SIT (Figure 331 

9a). The constructed SIT is obtained by using the bivariate SIT regression mode. The 332 

construction process is the same as shown in Figure 3, which only needs to replace the 333 

reanalysis data with the simulation results and replace the observed SIC with the initial SIC 334 

of control Exp. 335 
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The difference between the constructed SIT and the SIT initial field in control Exp is 336 

shown in Figure 9b. The RMSE of the two is 0.0877. It is much smaller than the average SIT 337 

of the initial field in control Exp, which is 2.33 m. In addition, the RMSE between the initial 338 

field in Exp 3 and the SIT initial field in control Exp is 0.1482 (Figure 8b), which is 339 

extremely smaller than that between the initial field in Exp 2 and the initial field in control 340 

Exp (0.2764, Figure 8c). It can be seen that the assimilation of the constructed SIT can 341 

effectively improve the accuracy of the initial field and make it closer to the "truth" field. 342 

 343 

 344 

 345 

Figure 8. (a) The SIT initial field in Exp 3 (unit: m); (b) The difference between the initial field in Exp 3 346 

and the SIT initial field in control Exp (unit: m); (c) The difference between the SIT initial field in Exp 1 347 

and the SIT initial field in control Exp (unit: m). 348 
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 349 

 350 

Figure 9. (a) The constructed SIT in Exp3 (unit: m); (b) The difference between the constructed SIT and 351 

the SIT initial field in control Exp (unit: m). 352 

5.2 Results 353 

To further evaluate whether the assimilation of the constructed SIT has a positive effect 354 

on the prediction of ocean and sea ice, the prediction accuracy of SIC, SIT, SST and sea ice 355 

drift are analyzed.  356 

The RMSEs of the forecast SIC, SIT and SST in Exp 1, Exp 2, Exp 3 relative to that in 357 

control Exp are shown in Table 3. It is not difficult to see that the RMSEs of SIC in Exp 2 358 

and Exp 3 are much smaller than that in Exp 1, which indicates that the assimilation of SIC in 359 

the initial field plays a vital role in improving the SIC prediction accuracy. It is particularly 360 

noted that although the same initial field of SIC is used in Exps 2 and 3, the RMSE of SIC in 361 

Exp 3 is smaller than that in Exp 2. So, the joint assimilation of the SIC and the constructed 362 

SIT in Exp 3 makes the initial SIC and SIT match better physically, which indirectly 363 

improves the prediction accuracy of SIC. The RMSE of the SIT in Exp 3 is far less than those 364 

in Exps 1 and 2, which also implies that the SIT field constructed by the bivariate SIT 365 

regression mode is more effective and accurate. 366 

 367 

 368 

 369 
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 370 

Table 3. The RMSEs of SIC, SIT and SST in Exps 1 - 3 during the prediction time of 24-120h 371 

Variable Exps 

Prediction time 

24h 48h 72h 96h 120h 

SIC 

Exp 1 0.1118 0.1123 0.1124 0.1124 0.1126 

Exp 2 0.0247 0.0297 0.0348 0.0395 0.0418 

Exp 3 0.0234 0.0288 0.0340 0.0379 0.0391 

SIT 

Exp 1 0.3007 0.3017 0.3025 0.3035 0.3058 

Exp 2 0.2609 0.2617 0.2655 0.2686 0.2706 

Exp 3 0.1070 0.1128 0.1184 0.1227 0.1240 

SST 

Exp 1 0.8109 0.8140 0.8183 0.8193 0.8250 

Exp 2 0.7704 0.7709 0.7820 0.7890 0.8118 

Exp 3 0.7684 0.7690 0.7805 0.7886 0.8114 

 372 

Sea ice is closely related to SST. High SST can release heat to sea ice, resulting in sea 373 

ice fusion. Low SST can absorb heat from sea ice and increase the thickness or area of sea ice. 374 

Therefore, although SST is not assimilated in the three experiments, their prediction accuracy 375 

is related to the initial SIC and SIT accuracy. Although the RMSEs of SST prediction results 376 

in the three experiments are not significantly different, the relationship of the SST RMSEs in 377 

three experiments is as follows: Exp 3< Exp 2< Exp 1 (Table 3). The RMSEs in Exp 3 are 378 

minimum in the whole prediction time. The SST short-term forecast results (24h and 48h) in 379 

Exp 3 are obviously better than those of the other two experiments. So, the higher the 380 

accuracy of initial SIC and SIT, the lower the error of SST prediction. 381 

Sea ice divergence can reduce the local SIT and SIC; on the contrary, sea ice 382 

convergence can increase the SIT and SIC. At the same time, the thick ice is not easy to be 383 

accelerated by the wind and ocean current under the influence of the strong internal stress; on 384 

the contrary, the thin ice is easy to be accelerated due to the weakening of internal stress. So, 385 

sea ice velocity is also closed to the SIT and SIC. When the SIT and SIC are assimilated in 386 
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the initial field, the accuracy of sea ice velocity is also affected. Just as shown in Figure 10a, 387 

c and e, it is not difficult to see that the forecast results of 24h sea ice velocity direction in 388 

Exps 1 and 2 are apparently different from the "true" field. In addition, compared with the 389 

"true" field, the sea ice velocity of Exp 1 and 2 differ greatly in the Kara Sea, the Chukchi 390 

Sea and the East Siberian Sea. This may be due to the lower initial ice thickness value in 391 

these regions than the "true" field. Under the same atmospheric and ocean current driving 392 

conditions, the thin ice is easy to be accelerated. Although the results of Exp 3 are different 393 

from those of the "true" field, the drift direction and velocity in the Barents Sea and the East 394 

Siberian Sea are closer to those of the "true" field relative to the other two experiments. The 395 

RMSE of sea ice velocity in Exp 3 is 22.4% lower than that in Exp 1, and 16.9% lower than 396 

that in Exp 2. A similar conclusion can be drawn from the 120h forecast results (Figure 10b, d 397 

and f). 398 

 399 

 400 
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 401 

 402 

Figure 10. Difference of the sea ice velocity (color map) between the "true" field and the forecast results 403 

for Exp 1 (a, b), Exp 2 (c, d) and Exp 3 (e, f) at 24h (a, c, e) and 120h (b, d, f). And comparison of the sea 404 

ice drift (arrows) between the "true" field (blue) and the forecast results (red) for Exp 1, Exp 2 and Exp 3 at 405 

24h and 120h (unit: m/s). 406 

6 Retroactive real-time forecast experiments 407 

In order to further explore the validity of the SIT field constructed by the bivariate 408 

regression mode under the actual condition that the satellite could not detect the ice thickness 409 

by remote sensing technology, retroactive real-time forecast experiments are carried out in 410 

this Section. 411 
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6.1 Experiment design 412 

In the numerical forecast experiments, the simulation results of SIC and SIT from the 413 

ice-ocean coupled model on 1 September 2011 are used as the background field; the SIC 414 

from satellite remote sensing and the constructed SIT at the corresponding time are used as 415 

the observation field. Then, the analyzed field is obtained by using the SMRF method to 416 

assimilate the SIC and SIT; the analyzed field is used as the initial field, and the forecast 417 

results from 2 September to 8 September 2011 are obtained by the 7-day integration of the 418 

ice-ocean coupled model. In the next step, the 24h forecast results (i.e., 2 September) are used 419 

as the background field and the observed SIC and constructed SIT at the corresponding time 420 

are assimilated to provide the initial field of the next 7-day forecast; the forecast results from 421 

3 September to 9 September 2011 are obtained by model simulation. According to this 422 

process, the data assimilation and model integration are alternately rolled until 30 September 423 

2011, and the one-month numerical forecast of Arctic sea ice is realized. 424 

According to the bivariate regression mode proposed in Section 4.1, the SIT field 425 

required in the real numerical forecast experiment can be constructed based on the reanalysis 426 

data of SIC and SIT and the satellite remote sensing observation data of SIC. Taking 1 427 

September 2011 as an example, the reanalysis data of SIC and SIT on 1 September from 2004 428 

to 2010 and from 2012 to 2018 are selected and normalized into dimensionless quantities. 429 

Based on this, a regression model is established at each grid point for each year. Then, the 430 

SIT is calculated based on the regression relationship and the satellite remote sensing SIC 431 

observation data of 1 September 2011 at each grid point for each year. The AHP is used to 432 

determine the weight of each year and the SIT field is weighted average. Finally, the SIT field 433 

is empirically adjusted according to the SIC observation data. The constructed SIT field on 1 434 

September 2011 is shown in Figure 11 as an example., The average RMSEs between the 435 

constructed SIT field and the observed SIT on site of the four devices are 0.3622, 0.3338, 436 

0.4241, and 0.1659 (Figure 12). 437 

 438 
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 439 

Figure 11. The constructed SIT field for 1 September 2011 (unit: m). 440 

 441 

 442 

Figure 12. Comparison between the constructed SIT field (orange) and the observed SIT on site of 443 

BGEP_2011B (a), BGEP_2011D (b), IMB_2011K (c), IMB_2011L (d). 444 

 445 

The initial fields for the three comparative experiments are shown in Table 4. The 446 

Exp_Ctrl is a control experiment, which does not assimilate any data and only integrates 447 
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forward through the ice-ocean coupled model. The other two experiments both use the SMRF 448 

data assimilation method, but differ in the construction of the initial SIC and SIT. The 449 

Exp_SIC only assimilates the SIC and empirically adjusts the SIT. The Exp_SIC&SIT 450 

assimilates the SIC and constructed SIT. 451 

 452 

Table 4. Comparison of Exp_Ctrl, Exp_SIC and Exp_SIC&SIT initial fields 453 

Experiment title Assimilation method Assimilated SIC Assimilated SIT 

Exp_Ctrl None None None 

Exp_SIC The SMRF method 

SIC from Satellite 

remote sensing 

The empirically 

adjusted SIT 

Exp_SIC&SIT The SMRF method 

SIC from Satellite 

remote sensing 

The constructed SIT 

 454 

6.2 Results 455 

6.2.1 Sea Ice Concentration forecast 456 

For intuitive and effective comparison, the RMSE of SIC between forecast results and 457 

observations is calculated by the following formula: 458 

  (4) 459 

where  is index of the grid point,  is the analyzed value at the -th grid point,  is the 460 

observation value at the -th grid point,  denotes the total number of grid points (except 461 

land points and the north pole center point). 462 

The RMSE time series of SIC forecast results relative to satellite remote sensing 463 

observation in the three experiments (Exp_Ctrl, Exp_SIC, Exp_SIC&SIT) are shown in 464 

Figure 13. In order to more clearly express the difference of SIC between joint assimilation 465 

and single-variable assimilation, the RMSE time series in the Exp_SIC and Exp_SIC&SIT 466 
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experiments in Figure 13 are enlarged (Figure 14). 467 

 468 

 469 

Figure 13. The RMSEs of SIC during 2 September to 7 October 2011 (each segment represents the 7-day 470 

forecast) between the forecast results of Exp_Ctrl (green), Exp_SIC (red), Exp_SIC&SIT (blue) and the 471 

SSMI observation. 472 

 473 

 474 

Figure 14. The RMSEs of SIC during 2 September to 7 October 2011 (each segment represents the 7-day 475 

forecast) between the forecast results of Exp_SIC (red), Exp_SIC&SIT (blue) and the SSMI observation. 476 

 477 
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It can be seen from Figure 13 that the RMSE in Exp_Ctrl is within the range of 0.2-0.25, 478 

with an average value of 0.23. However, the RMSEs in Exp_SIC and Exp_SIC&SIT are in 479 

the range of 0.07-0.12, which are much smaller than Exp_Ctrl. In other words, data 480 

assimilation greatly reduces the deviation between the forecast results and the satellite 481 

observation. It is not difficult to see from Figure 14 that the RMSE in Exp_SIC&SIT is 482 

always smaller than that in Exp_SIC no matter in which forecast period. Moreover, the 483 

difference between the RMSE in Exp_SIC&SIT and the RMSE in Exp_SIC is equal on the 484 

first day of the period (2 September) and the last day of the period (7 October). This indicates 485 

that the improvement of the initial field of SIT not only significantly improves the prediction 486 

accuracy of SIC, but also has a long-term stable effect. In addition, the relationship graph 487 

between the forecast error and the forecast time suggests that the RMSEs of 1-7 days SIC 488 

forecast results in Exp_SIC&SIT are significantly smaller than those in Exp_SIC, especially 489 

during the period from 2 September to 12 September and from 20 September to 27 490 

September (Figure 15). This indicates that the improvement of the SIT initial field not only 491 

significantly improves the SIC forecast accuracy, but also has a long-term stable effect. To 492 

sum up, the joint assimilation of SIC and SIT shows better stability and accuracy features for 493 

the SIC prediction compared to simulation and the single variable assimilation. 494 

 495 

 496 
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 497 

Figure 15. The RMSEs of the 1-day (orange), 2-day (blue), 3-day (green), 4-day (brown), 5-day (dark 498 

blue), 6-day (pink), 7-day (sky blue) SIC forecast results in Exp_SIC(a), Exp_SIC&SIT (b) relative to the 499 

SSMI observation during the period of 2 September to 7 October, 2011. 500 

 501 

6.2.2 Sea Ice Thickness forecast 502 

Figure 16 compares the 24h forecast SIT of Exp_Ctrl, Exp_SIC, and Exp_SIC&SIT 503 

with the observed SIT from ULS mooring facilities (BGEP_2011B, BGEP_2011D) and 504 

buoys (IMB_2011K, IMB_2011L). Among three experiments, the forecast SIT at the 505 

observation point is the weighted average of the 24-hour forecast value of SIT at all model 506 

grid points around it. The calculation formula is as follows: 507 

  (5) 508 

where,  is the number of model grid points within the influence radius,  represents the 509 

forecast value of SIT of the -th model grid point,  represents the forecast SIT at the 510 

observation point, and  represents the weight. The calculation formula is as follows: 511 

  (6) 512 
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where,  represents the influence radius, which is taken as 36km in the experiments.  513 

represents the distance between the -th model grid point and the observation point. 514 

The prediction results of SIT in Exp_Ctrl tends to be overestimated (Figure 16). 515 

Exp_Ctrl has a flat performance when the observation fluctuates sharply with time, while 516 

Exp_Ctrl shows an abnormal fluctuation when the observation is flat. It can be seen from 517 

Table 5 that the forecast results of the other two experiments with the data assimilation 518 

(Exp_SIC and Exp_SIC&SIT) are more precise than that of Exp_Ctrl. 519 

 520 

Table 5. Average absolute deviations of SIT (m) between 24h forecast results of Exp_Ctrl, Exp_SIC, 521 

Exp_SIC&SIT and observations 522 

 Exp_Ctrl Exp_SIC Exp_SIC&SIT 

BGEP_2011B 2.23 0.59 0.28 

BGEP_2011D 3.21 0.74 0.32 

IMB_2011K 2.72 1.63 0.43 

IMB_2011L 1.46 1.33 0.14 

 523 

Compared with the observations of the BGEP_2011B (Figure 16 (a)), the fluctuation 524 

trend of SIT decreasing first and then rising with time can be better captured in 525 

Exp_SIC&SIT. Although the decreasing trend of SIT before 12 September is captured in 526 

Exp_SIC, the SIT is much larger than the observation due to the large error of the initial SIT. 527 

Compared with the observations of BGEP_2011D (Figure 16 (b)), the SIT generally tends to 528 

be underestimated and cannot present the peak value of observed SIT for Exp_SIC&SIT. 529 

However, its average absolute deviation compared to observed data is 0.32m, which is much 530 

smaller than 0.74m in Exp_SIC. 531 

 532 
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 533 

Figure 16. Comparison of averaged SIT (unit: m) from 1 September to 30 September 2011 between the 534 

24h forecast results of Exp_Ctrl (purple dotted line), Exp_SIC (green dotted line) and Exp_SIC&SIT (red 535 

dotted line) and the observations (solid blue line) of BGEP_2011B (a), BGEP_2011D (b), IMB_2011K (c), 536 

IMB_2011L (d). 537 

 538 

The average of absolute deviations between the forecast results and the observation at 539 

IMB_2011K site are the largest among four groups of observations as shown in Table 5. As 540 

an example, we analyze the results on 21 September, when the absolute deviation between 541 

Exp_SIC&SIT and observations is biggest. In fact, on this day, according to the prediction 542 

results, the IMB_2011K buoy locates at the sea ice marginal area, but the observed sea ice 543 

extent is larger than the forecast sea, and the actual position of the buoy is in the sea ice inner 544 

area. Generally, the SIT in the sea ice marginal area is smaller than that in the sea ice inner 545 

area. So, the forecast SIT value is lower than the observed one. The IMB_2011L has been in 546 

operation since 13 September 2011, and a total 19-day data have been obtained until October 547 

1. Since it located in the central region of the Arctic, the SIT changes very little over time. It 548 

is worth noting that the absolute deviations of SIT at IMB_2011L site is minimum during 549 

four groups of observations, with a value of 0.14m, which indicates that EXP_SIC&SIT has a 550 
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better forecast effect in the multi-year ice area than that in the rapidly changing sea ice 551 

margin area. 552 

The average absolute deviations between 7-day forecast results and observations are also 553 

compared for three experiments (Table 6). As can be seen from the comparison between 554 

Table 5 and Table 6, the average absolute deviations of 7-day SIT forecast results increase 555 

compared with that of 24-hour forecast results in Exp_Ctrl, while a slightly decreasing trend 556 

is performed in Exp_SIC and Exp_SIC&SIT. In particular, the difference of average absolute 557 

deviations between 24-hour and 7-day forecast reaches to in order of magnitude 10
-2

 for 558 

Exp_SIC&SIT. Moreover, according to the comparison between the SIT forecast results of 559 

Exp_SIC&SIT at each prediction time and the observation in BGEP_2011B (Figure 17), joint 560 

assimilation makes the deviation between the forecast results and observations decrease with 561 

the increase of forecast time. 562 

 563 

Table 6. Average absolute deviations of SIT (m) between 7d forecast results of Exp_Ctrl, Exp_SIC, 564 

Exp_SIC&SIT and observations 565 

 Exp_Ctrl Exp_SIC Exp_SIC&SIT 

BGEP_2011B 2.25 0.25 0.22 

BGEP_2011D 3.29 0.69 0.27 

IMB_2011K 3.02 1.61 0.39 

IMB_2011L 1.52 1.39 0.12 

 566 
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 567 

Figure 17. Comparison of the forecast SIT of EXP_SIC&SIT in the prediction time of 24h, 48h, 72h, 96h, 568 

120h, 144h and 7d with the observations of BGEP_2011B during the period of 2 September to 7 October 569 

2011. 570 

 571 

6.2.3 Other elements forecast 572 

In order to explore whether improving the initial field of SIC and SIT has a positive 573 

impact on the forecast results of other elements, the SST and sea ice drift are taken as 574 

examples to analyze their forecast accuracy in the three experiments. 575 

Figure 18 is the time series of the SST RMSE in the whole forecast period in Exp_Ctrl, 576 

Exp_SIC, Exp_SIC&SIT compared to the OSTIA observation. It is not difficult to see from 577 

the figure that the overall trend of the RMSEs in the three experiments is basically consistent 578 

and decreases gradually with the increase of time. This phenomenon can be explained by 579 

Figure 19. On the first day of the forecast (2 September), since the SST is not assimilated, the 580 

initial SST field with a large range of cool area is still compatible with the initial SIC without 581 

SIC assimilation, which shows more sea ice. That is to say, the temperature in some area, 582 

where observation SIC and constructed SIT indicate that sea ice does not exist, is still at or 583 

below freezing point, leading to the inconsistency between the initial SST and initial SIC and 584 

SIT with assimilation; With the increase of dynamic mode integration time, the simulated 585 
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SST gradually matches to SIC. On the last day of the forecast (October 7), the prediction 586 

accuracy of SST is improved through continuous assimilation of SIC and SIT and model 587 

integration. It is worth noting that although the RMSEs of the forecast results among the three 588 

experiments are not significantly different, the performance of Exp_SIC&SIT is still slightly 589 

better than that of the other two experiments, which is consistent with the results of the twin 590 

tests. 591 

 592 

 593 

Figure 18. The RMSEs of sea surface temperature from 2 September to 7 October 2011 (each segment 594 

represents the 7 days forecast) between the forecast results of Exp_Ctrl, Exp_SIC, Exp_SIC&SIT and the 595 

OSTIA observed data. 596 

 597 

 598 



manuscript submitted to JGR-Oceans 

33 

 

 599 

Figure 19. Sea surface temperature observed field (a and d), forecast field of Exp_SIC&SIT (b and e), 600 

difference between forecast results and observation (c and f) on 2 September 2011 (a, b, c) and 7 October 601 

2011 (d, e, f) (Unit: ℃). 602 

 603 

The sea ice velocity forecast field of the three experiments on 2 September and 7 604 

October 2011 is compared with the TOPAZ reanalysis field (Figure 20). On the first day of 605 

prediction (Figure 20a, c and e), the difference between the results of the three experiments 606 

and the reanalysis field is greater in the outer sea ice region than in the inner sea ice region, 607 

because there is no assimilation of sea ice drift and the initial field of sea ice extent is large. It 608 

is noteworthy that the forecast results of the velocity and direction of sea ice drift in 609 

Exp_SIC&SIT in some regions are significantly better than those in the other experiments, 610 

such as the Greenland Sea, the Baffin Bay and the Chukchi Sea. The RMSE of sea ice 611 

velocity in Exp_SIC&SIT decreases by 11.4% compared with Exp_Ctrl and 10.9% compared 612 

with Exp_SIC. On the last day of prediction (Figure 20b, d and f), with the model integral 613 

correction, the difference of sea ice velocity in Exp_SIC and Exp_SIC&SIT is significantly 614 

smaller than that in Exp_Ctrl. Compared with the RMSE of sea ice velocity in Exp_Ctrl, 615 

EXP_SIC&SIT decreases by 26.3% and Exp_SIC decreases by 18.9%. However, the sea ice 616 

drift direction of three experiments still deviates from the reanalysis field. 617 

 618 
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 619 

 620 

 621 

Figure 20. Difference of the sea ice velocity (color map) between the TOPAZ reanalysis field and the 622 

forecast fields of Exp_Ctrl (a, b), Exp_SIC (c, d), Exp_SIC&SIT (e, f) on 2 September 2011 (a, c, e) and 7 623 
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October 2011 (b, d, f). And comparison of the sea ice drift (arrows) between the TOPAZ reanalysis field 624 

(blue) and the forecast fields (red) of Exp_Ctrl, Exp_SIC, Exp_SIC&SIT on 2 September 2011 and 7 625 

October 2011 (unit: m/s). 626 

 627 

From the above analysis of the forecast results, it can be seen that, although the error 628 

between the forecast results of Exp_SIC&SIT and the observation is smaller than that of the 629 

other two experiments under the effect of good initial fields, there are still errors that cannot 630 

be ignored. In the following study, the influence of the improvement of the multi-element 631 

initial fields on the prediction accuracy needs to be further discussed. 632 

6.3 Interaction between SIC and SIT 633 

In order to further explore the influence of the interaction between SIC and SIT on the 634 

prediction of SIT, BGEP_2011B is taken as an example. A line segment AB is drawn in 635 

Figure 21, which is the 550km long. The position BGEP_2011B is taken as the midpoint of 636 

AB, which is 275km away from A or B point. The position of point A is (80° 9.666′N, 637 

155° 20.322′W), and the position of point B is (75° 51.126′N, 144° 30.606′W). 638 

 639 

 640 

Figure 21. The schematic plot of mooring facility BGEP_2011B as the midpoint of line AB with a total 641 

length of 550km. 642 

 643 

In Figure 22, the correlation coefficients along AB between the 24h forecast results of 644 
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SIC and SIT in Exp_SIC and Exp_SIC&SIT from 1 to 30 September 2011 is shown. The 645 

white grid indicates that there is no sea ice at this location. As can be seen from Figure 22, 646 

both Exp_SIC and Exp_SIC&SIT show a positive correlation between SIC and SIT. It means 647 

that the larger the sea ice area, the thicker the sea thickness, which is consistent with the 648 

thermodynamics mechanism of sea ice proposed by Lister et al. (2003). 649 

It is noted that in Figure 22a, correlation coefficients between SIC and SIT within the 650 

range of 0-275km are mostly above 0.75, while there is a large area of no sea ice within the 651 

range of 275-550km and the rest values are mostly less than 0.75 except for the relatively 652 

high abnormal value of correlation coefficient due to the lack of data. This may be attributed 653 

that Exp_SIC only assimilates SIC, leading to poor dynamic coordination between SIC and 654 

SIT in the model integration process and the underestimation of sea ice extent. As a result, 655 

with the increase of the distance, the corresponding latitude gradually decreases and gets 656 

closer to the edge of the sea ice, so that the sea ice becomes thinner and its thermodynamic 657 

properties becomes more and more localized, resulting in the weak correlation. This also 658 

explains why the 24h SIT forecast results of Exp_SIC is significantly different from the 659 

BGEP_2011B observation and the forecast SIT is zero even after 12 September (Figure 16a). 660 

Similar to Figure 22a, the correlation coefficients in the range of 0-275km is higher than 661 

that in the range of 275-550km in Figure 22b. However, different from Figure 22a, the 662 

correlation coefficient corresponding to 96.7% grid points in Figure 22b is 0.95 or above, 663 

much higher than the 38.4% in Figure 22a, which is closely related to the coordination in the 664 

process of model integration between the SIC and the SIT in Exp_SIC&SIT. In particular, it 665 

is noted that the forecast SIT of Exp_SIC&SIT almost coincide with the observations from 7 666 

September to 12 September in Figure 16a. Correspondingly, the correlation coefficient during 667 

this period between forecast SIC and forecast SIT is close to 1 in the heart-shaped row of 668 

Figure 22b. In the same period, the forecast SIT of Exp_SIC is much larger than the 669 

observations (Figure 16a), which is related to the slight correlation coefficient between 670 

forecast SIC and forecast SIT in the heart-shaped row of Figure 22a. It can be said that the 671 

higher the correlation coefficient between the forecast SIC and forecast SIT is, the better the 672 
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forecast SIT is; otherwise, the worse the forecast SIT is. 673 

 674 

 675 

 676 

Figure 22. The correlation coefficients plots along AB between the 24h forecast results of SIC and SIT in 677 

Exp_SIC (a) and Exp_SIC&SIT (b) from 1 to 30 September 2011 (Line AB intersects BGEP_2011B at 275 678 

km (red heart)). 679 

7 Conclusions 680 

In this paper, a bivariate regression model is proposed to solve the problem that Arctic 681 

ice thickness in melting season cannot be detected by satellite remote sensing technology. 682 

The regression model is established by using the reanalysis data of SIC and SIT at each grid 683 
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point. Then, the SIT field can be constructed according to the SIC observational data at each 684 

grid point and the corresponding regression model. This method is simple and can quickly 685 

reconstruct SIT during Arctic melting season. 686 

In addition, The SMRF assimilation method and ice-ocean coupled model MITgcm are 687 

used to establish an Arctic forecast system. The twin experiment and real forecast 688 

experiments are performed in order to analyze the joint assimilation of observed SIC and 689 

constructed SIT on forecast accuracy in the melting season. 690 

The results show that the prediction results of sea ice and ocean elements in the 691 

experiment of joint assimilation are closer to observations than other experiments and the 692 

improvement has long-term stability. In particular, the average absolute deviation between the 693 

forecast SIT and the observations is only 0.14 m in the multi-year ice region of the central 694 

Arctic. In addition, the correlation coefficient of 96.7% grid points in the overall interaction 695 

plot of SIC and SIT is no less than 0.95 in the joint assimilation experiment, which means 696 

that there is a high dynamic coordination and consistency among various elements. At the 697 

same time, the results also demonstrate that the bivariate regression model can be applied to 698 

the actual SIT forecast in the future. 699 

In fact, the relationship between SIC and SIT is nonlinear and complicated. Generally, 700 

the same SIC value corresponds to multiple SIT values and the range of thickness values is 701 

large, so it is a little difficult to describe the relationship between them only by using the 702 

fitting relationship. The ability of neural network in self-learning and high-speed searching 703 

for optimal solutions is extremely suitable for building the nonlinear model. In the future, the 704 

research will be carried out to solve the missing SIT data in melting season by giving play to 705 

the advantages of deep learning. 706 

There are interactions and constraints among the sea ice parameters, ocean and climate 707 

elements. For the problems of how they interact and coordinate with each other in the ice-sea 708 

coupled model, the further in-depth analysis will be carried out from the perspective of 709 

dynamic and thermal processes of sea ice. It is hope to improve the physical process of the 710 

model and realize the accurate forecast in the Arctic sea ice edge. 711 
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