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Abstract

Mixed pixels are the rule, not the exception, in decameter terrestrial imaging. By definition, the reflectance spectrum of a

mixed pixel is a function of more than one generative process. Physically-based surface biology or geology retrievals must

therefore isolate the component of interest from a myriad of unrelated processes, heterogenously distributed across hundreds

of square meters. Foliar traits, for example, must be isolated from canopy structure and substrate composition which can

dominate overall variance of spatially integrated reflectance. We propose a new approach to isolate low-variance spectral

signatures. The reflectance of each pixel is modeled assuming linear geographic mixing due to a small library of generic

endmembers. The difference between the modeled and observed spectra is deemed the Mixture Residual (MR). The MR, a

residual reflectance spectrum that is presumed to carry the subtler and variable signals of interest, is then leveraged as a

source of signal. We illustrate the approach using three datasets: synthetic composites computed from field reflectance spectra,

NEON AOP airborne image compilations, and DESIS satellite data. The MR discriminates between land cover versus plant

trait signals and accentuates subtle absorption features. Mean band-to-band correlations within the visible, NIR, and SWIR

wavebands decrease from 0.97, 0.94, and 0.97 to 0.95, 0.04 and 0.31. The number of dimensions required to explain 99% of

image variance increases from 4 to 13. We focus on vegetation as an illustrative example, but note that the concept can be

extended to other applications and used as an input to other algorithms.
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Key Points: 

• Mixture residual spectrum can contain informative low-variance signals. 

• Average band-to-band correlations drop from 0.94 and 0.97 to 0.04 and 0.31 for near 
infrared and shortwave infrared, respectively. 

• Linear approach offers feature accentuation, interpretability, generalizability, and 
computational efficiency.  



 

 

Abstract 
Mixed pixels are the rule, not the exception, in decameter terrestrial imaging. By 

definition, the reflectance spectrum of a mixed pixel is a function of more than one generative 
process. Physically-based surface biology or geology retrievals must therefore isolate the 
component of interest from a myriad of unrelated processes, heterogenously distributed across 
hundreds of square meters. Foliar traits, for example, must be isolated from canopy structure and 
substrate composition which can dominate overall variance of spatially integrated reflectance.  

We propose a new approach to isolate low-variance spectral signatures. The reflectance 
of each pixel is modeled assuming linear geographic mixing due to a small library of generic 
endmembers. The difference between the modeled and observed spectra is deemed the Mixture 
Residual (MR). The MR, a residual reflectance spectrum that is presumed to carry the subtler 
and variable signals of interest, is then leveraged as a source of signal. 

We illustrate the approach using three datasets: synthetic composites computed from field 
reflectance spectra, NEON AOP airborne image compilations, and DESIS satellite data. The MR 
discriminates between land cover versus plant trait signals and accentuates subtle absorption 
features. Mean band-to-band correlations within the visible, NIR, and SWIR wavebands decrease 
from 0.97, 0.94, and 0.97 to 0.95, 0.04 and 0.31. The number of dimensions required to explain 
99% of image variance increases from 4 to 13. We focus on vegetation as an illustrative 
example, but note that the concept can be extended to other applications and used as an input to 
other algorithms. 

 
Plain Language Summary 

Imaging spectroscopy (IS) measures a rich superposition of signals generated by a wide range of 
biogeophysical processes. In many cases, subpixel mixing – variations in the abundance of broad 
land cover types like soil, foliage, and shadow – can dominate IS data at the expense of subtler 
signals like leaf chemistry and soil composition. This spatial mixing problem can seriously 
hinder surface biology and geology retrieval generalizability and accuracy. We propose a way to 
isolate the subtle signatures of interest from strong land cover mixing signals through a new 
approach called the mixture residual (MR). This approach models and removes the strong land 
cover mixing signal in a highly general, computationally efficient, and invertible way. We show 
the effectiveness of the method using synthetic imagery computed from mixtures of field spectra, 
a broad compilation of ecologically diverse airborne data, and DESIS satellite imagery. This 
approach can complement established algorithms by adding a degree of explicability, as well as 
improving generalizability and classification and regression results in some cases. 
  



 

 

1 Introduction 
Surface Biology and Geology (SBG) is an essential component of NASA’s Earth System 

Observatory (Margetta, 2021). SBG is a Designated Observable in the 2018 Decadal Survey, 
with a candidate measurement approach of “hyperspectral imagery in the visible and shortwave 
infrared (IR), multi- or hyperspectral imagery in the thermal IR” (National Academies of 
Sciences & Medicine, 2018). Photos collected by traditional digital cameras collect light in three 
broad wavelength intervals, or bands – visible red, green and blue. Hyperspectral imagery, 
referred to hereafter as imaging spectroscopy (IS), measures light in hundreds of narrow bands, 
extending beyond the visible spectrum to also include infrared light. 

Vegetation traits are listed in the Decadal Survey (DS) among the main science and 
applications targets of the SBG Designated Observable. Specific traits listed by the DS include 
leaf nitrogen concentration, leaf mass area, xanthophyll pigments, and stress indicators (National 
Academies of Sciences & Medicine, 2018). Decades of research have resulted in considerable 
progress in estimating such plant traits from imaging spectroscopy data, including both process-
based and statistical approaches (Gamon et al., 2019; Singh et al., 2015; Ustin & Gamon, 2010), 
recently reviewed in (Cavender-Bares et al., 2020). Common tools include narrowband spectral 
indices (e.g., (Thenkabail et al., 2018)) and regression approaches like Partial Least Squares 
(Asner & Martin, 2009; Smith et al., 2002; Townsend et al., 2003), often focusing on brightly lit 
closed canopies at high spatial resolution.  

In addition to these retrieval algorithms, researchers have developed biological, chemical, 
and physical understanding about the mechanisms expressing plant traits in imaging 
spectroscopy data (Asner, 1998; Kokaly et al., 2009; Ollinger, 2011). Such studies often tie 
laboratory chemistry measurements to laboratory or airborne reflectance spectroscopy. 
Laboratory chemical analyses of functional traits have been refined over centuries to quantify a 
range of important plant traits like bulk nutrient content. Established techniques in reflectance 
spectroscopy also exist (Clark, 1999; Hapke, 2012; Hunt, 1977), but it is a relatively newer field.  

One common laboratory reflectance spectroscopy approach decomposes reflectance 
spectra into two fundamental signal elements: a spectral continuum and specific absorption 
features that cause deviations from that continuum (Clark, 1999; Clark & King, 1987; Hapke, 
2012; Hunt, 1977). For many materials, the physical processes generating the continuum remain 
surprisingly elusive (Hapke, 2012). But specific absorption features can often be explained by 
relatively simple physical chemistry concepts (Nassau, 1987). Distinguishing between the 
continuum and absorptions allows the analyst to focus on the subset of the signal associated with 
a specific component of interest.  

Airborne and spaceborne IS implements the principles of laboratory reflectance 
spectroscopy at landscape scale, measuring light which has traveled twice through Earth’s 
atmosphere and spatially integrating on the scale of meters instead of centimeters. This 
introduces or amplifies numerous additional complexities like canopy structure, topography, and 
spatial mixing. Despite these complexities, the conceptual model of decomposing reflectance 
into continuum and absorptions remains useful in many cases, with a long history rooted in the 
Continuum Removal approach (CR; (Clark & Roush, 1984)). CR is often applied early in the IS 
processing chain, intended to condition the data for subsequent classification or regression 
algorithms (Féret & Asner, 2014; Huang et al., 2004; Mutanga et al., 2004). This conditioning is 
applied (in part) to compensate for limitations in corrections for atmospheric, bidirectional 



 

 

reflectance distribution function (BRDF), and illumination effects. In applications such as 
mineralogic analysis of rock outcrops, both convex spectral continua and absorption features are 
clearly present in IS data. For such cases, CR can be a successful approach for identifying 
mineral assemblages on the basis of the center wavelength, breadth, asymmetry and curvature of 
visible and infrared absorption features (Ghrefat et al., 2007; Kokaly et al., 2009; Oshigami et 
al., 2013).  

However, in many other cases, the problem is not so simple. A fundamental difference 
between laboratory reflectance spectroscopy and IS is the degree of environmental control. In the 
lab, samples can be prepared to optimize sample properties like purity, illumination, and sample 
surface roughness (Hapke, 2012). But field application of IS must contend with the full 
complexity of the Earth surface, which is rarely homogenous, flat, or smooth (Jensen, 2006). 
Physical realities such as compositional inhomogeneity, topographic complexity, and surface 
roughness result in complexities like photometric variability, cast shadows, flux density 
variations, and BRDF effects. These can result in serious complications in analyses of all types 
of Earth observations (Fisher, 1997), including IS. Such problems – evident even at submeter 
spatial resolutions achievable by low altitude airborne surveys – are especially important to 
consider at the decameter expected resolution of current and planned spaceborne IS missions. 

In the face of these complexities, challenges emerge for the continuum-and-absorption 
model. A typical 30 m pixel may contain a myriad of individual plants (live and/or dead; of 
multiple species; with widely varying traits) and soil types (wet and/or dry; of varying chemical 
composition and texture), with highly variable fractional coverage of canopy area and subpixel 
shadow (Sousa & Davis, 2020; Strahler et al., 1986; Woodcock & Strahler, 1987). When 
aggregated into a single reflectance measurement, fundamental questions arise: What should be 
considered the appropriate spectral continuum for a mixed pixel? How can this problem be 
systematically and efficiently approached at the global scale with sub-weekly revisit intervals?    

Answers to these questions may be guided by the observation that, in many cases, the 
signal due to subpixel mixing at the 30 m scale can be accurately captured using simple linear 
mixture models. Spectral Mixture Analysis (SMA, (Adams et al., 1986; Gillespie, 1990; Smith et 
al., 1990)) treats the observed reflectance as a linear combination of spectral endmember (EM) 
materials, plus misfit. In many common cases, a solid physical rationale exists to support the 
linear mixing assumption at decameter pixel resolution. Linear mixing is precise when single 
reflection events dominate, such as for surfaces or aggregates with vertical variability that is 
small relative to the pixel size. Moreover, SMA fractions can often be quite accurate even when 
these conditions are not met exactly. However, it is limited in that the reflectance spectra of the 
EMs must be known in advance. 

Which, and how many, EMs to use? Insight may come from decades of literature on the 
global multispectral feature space. Since the 1970s, multispectral image data have been known to 
be largely representable by three dimensions, referred to in early literature as “brightness”, 
“greenness”, and “third” (Crist & Cicone, 1984; Kauth & Thomas, 1976). Later studies refined 
these concepts to include geographically extensive, spectrally diverse image compilations of 
Landsat imagery (Small, 2004; Small & Milesi, 2013; Sousa & Small, 2017, 2019a), finding the 
global multispectral feature space to consistently be dominated (> 99% of variance) by three EM 
materials: 1) soil, rock, and nonphotosynthetic vegetation Substrates; 2) illuminated 
photosynthetic Vegetation, and 3) Dark targets like shadow and water (S, V, and D). Important 
exceptions to this observation include evaporites, ice, and shallow marine environments.  



 

 

Initial investigations using spatially limited but spectrally diverse IS data compilations 
reveal similar partition of IS image variance into low-order dimensions (Thompson et al., 2017) 
and domination of these low-order dimensions by S,V, and D EMs (Sousa & Small, 2018). 
Important differences may exist once thermal wavelengths are added (K. Cawse-Nicholson et al., 
2019), but coincident data are needed for study and not yet broadly available. These generic S, 
V, and D EMs are not representative of the complete global diversity of IS observations of the 
Earth surface. But they do suggest that for many important landscapes, the gross variance 
structure of Earth observing IS data – i.e., the component due to phenomena like variable 
illumination and broad land cover variability – can be understood as a mapping onto a linear 
mixing subspace bounded by the generic S, V, and D EMs.  

Viewed in this way, the rich information content unique to IS data can be conceptualized 
as potentially nonlinear, high dimensional excursions from a low dimensional simplex bounded 
by S, V, and D EMs. Under the traditional conventions of SMA, these excursions are often 
quantified as model misfit considered to be error. We propose to instead treat them as signal. 

The analysis below introduces the mixture residual approach. The method is first 
explained in detail, then applied across ecologically and spectrally diverse field, airborne, and 
satellite datasets. Our objective is to illustrate example applications and address the following 
questions: 

1) To what extent can wavelength-dependent deviations of linear spectral mixture 
models (i.e., mixture residual spectra) retain spectrally coherent absorption 
features known to be associated with ecological and pedological variability? 

2) How do mixture residual spectra, correlation structure, and dimensionality 
compare to those of full reflectance spectra and traditional convex hull-based 
continuum removal? 

3) How well can preconditioning with the mixture residual help differentiate subtle 
field-observed ecological differences which are not evident in unconditioned 
decameter IS reflectance spectra? 

2 Materials and Methods 

In this analysis, we consider spatially mixed reflectance spectra as comprised of two 
primary components: the broadband component which is described by location within the global 
ternary S, V, D mixing subspace, and the narrowband component which exists outside the 
broadband mixing subspace. This view is analogous to the “continuum-and-absorption” 
approach taken by CR, but differs importantly in that the broadband component (analogous to 
the continuum) is explicitly modeled as a linear combination of generic EMs, not fit as a 
multilinear convex hull. In so doing, the component of the signal due to subpixel mixing is 
estimated and removed while retaining the important narrowband information which is unique to 
IS. The approach is also conceptually similar to target detection algorithms like orthogonal 
subspace projection (OSP), but differs in that the “target” spectra are not known a priori and the 
“background” spectra are taken to be generic EMs based on the global covariance structure of a 
diverse spectral compilation. 

We deem this new approach the “Mixture Residual” (MR). Conceptually, MR proceeds 
in three stages (Figure 1): 1) estimation of EM fractions by model inversion, 2) reconstruction of 



 

 

modeled reflectance spectra, and 3) (observed – modeled) subtraction to compute the mixture 
residual. The analysis below examines the implementation, strengths, and limitations of this 
approach using synthetic spectral composites computed from linear combinations of field 
reflectance spectra, an ecologically diverse compilation of AVIRIS-ng-like images from the Core 
Terrestrial sites of the National Ecological Observatory Network (NEON), and DESIS satellite 
IS data. We explain each step in detail below, and then show how the entire procedure can be 
condensed into a computationally efficient, invertible, linear operation implementable in a single 
line of code.  
 

 
Figure 1. Conceptual overview. Analysis is completed in a three step, automatable procedure. 
First, observed surface reflectance is decomposed into area fractions (fs, fv, and fd) of Substrate 
(S), Vegetation (V) and Dark (D) constituent materials – plus residual (r) – using standard linear 
spectral unmixing with generalized endmembers (top). Modeled spectra for each pixel are then 
reconstructed by multiplying S, V, D endmember spectra by their local fs, fv, and fd fractions and 
summing (center). Mixture residual spectra (bottom) are then computed as the difference between 
observed and modeled reflectance. In theory, this should have the effect of isolating and removing 
spectrally broad, high amplitude signals from sources like land cover and illumination, and 
retaining spectrally narrow, lower amplitude signals from sources like foliar and soil chemistry. 

2.1 Spectral Mixture Analysis 

Step 1 uses the well-established, physically-based approach of SMA (Adams et al., 1986; 
Smith et al., 1990; Gillespie, 1990). SMA is frequently used in imaging spectroscopy to estimate 
the subpixel area fraction of spectrally distinct materials. Key benefits of linear SMA are 



 

 

computational efficiency (requiring only the solution of a constrained least squares problem), 
clear interpretability of result, and strong physical basis for subpixel linear mixing at the 
decameter scale in many (but not all) terrestrial environments. 

However, SMA does possess a potentially serious limitation – the necessity of 
determining which, and how many, endmember spectra to use in the analysis (Adams & 
Gillespie, 2006). Given the linear modeling framework, by definition a spectra with b bands 
unmixed with more than b endmembers does not have a unique solution.  In practice, this effect 
is exacerbated and the problem tends towards degeneracy far before b endmembers is reached.  
As such, it has been historically common to utilize a much smaller number of EMs.  

One commonly used approach for endmember selection is that of Multiple Endmember 
Spectral Mixture Analysis (MESMA; (Roberts et al., 1998)). Briefly, MESMA performs 
unmixing using several possible combinations of small numbers of EMs drawn from a larger 
library. The combination of EMs which minimizes 2-norm model misfit is then chosen for each 
pixel. This allows for a large number of potential materials to be mapped in a given image, while 
avoiding some of the problems associated with formulating the unmixing problem using a large 
number of EMs at once. The disadvantage is that MESMA requires a combinatorial search 
through possible EM combinations, a considerable computational cost. 

In contrast to MESMA, we use a single set of generic EMs for Step 1. In the case of this 
study, the S, V and D EMs consist of multipixel means manually selected from the apexes of the 
low-order PC space of the synthetic spectral composite. In particular, the D EM used here is not 
true photometric zero, but rather an average of reflectance signatures from targets in deep 
shadow and/or deep, low-turbidity water. We include EM spectra and a list of NEON AOP tiles 
in the Supplement. Once coverage becomes truly global, a standardized set of EMs could be 
developed from a global, or near-global, intercalibrated data compilation to observationally 
bound the low-order spectral mixing space of the entire terrestrial reflectance field. We 
emphasize that these endmembers are specifically chosen to provide a generic template with 
which to construct the mixture residual – they are not intended to be perfectly representative of 
the scene, or to minimize the local model misfit. We of course also recognize the value of scene-
specific EMs, as well as automated EM selection approaches, and suggest comparison between 
local and global results for targeted studies. 

The theoretical justification behind the three-endmember approach is rooted in the 
observation (Crist & Cicone, 1984; Kauth & Thomas, 1976) that much of the variance of 
terrestrial multispectral data is contained in three dimensions. Numerous studies using spectrally 
diverse compilations of Landsat images (Small, 2004; Small & Milesi, 2013; Sousa & Small, 
2017), along with Sentinel-2 (Small, 2018) and MODIS (Sousa & Small, 2019a), have quantified 
the three-dimensional variance of spectrally diverse compilations of multispectral data to be 
>98% and shown that the global multispectral mixing space of ice-free land surface is bounded 
by the S, V, and D EMs. While insufficient data currently exists for a comparably extensive 
study using imaging spectroscopy, the studies that do exist find that the first three dimensions of 
airborne AVIRIS-classic data dominate the variance structure of observations (Thompson et al., 
2017). When spectrally diverse collections of airborne VSWIR reflectance spectra are resampled 
to Landsat spectral resolution, % variance contained in the first three dimensions rises from 97% 
to 99%, and the low-order variance structure is dominated by the same S, V and D EMs in both 



 

 

cases (Sousa & Small, 2018). Again, we emphasize generality for the global case with minimal 
prior information about the reflectance of the study area, and recognize that in some cases 
models with more than 3 EMs, or with different EM choices, may be more effective for targeted 
studies. 

2.2 Reconstructing and differencing the modeled spectrum 

Considered geometrically, the S, V, and D EMs form a three-point simplex that (ideally) 
bounds all measured spectra. The SMA performed in Step 1 can be considered a projection of the 
high-dimensional reflectance observation onto this low-dimensional linear manifold. If the world 
were comprised only of the materials with reflectance equal to the EM spectra, and perfectly 
linear mixing were ubiquitous, misfit from this model would be negligible. The data would lie 
perfectly on this linear subspace, and the hundreds of narrow bands measured by IS would be 
redundant. This is not the case. Instead, the full complexity of Earth’s terrestrial surface results in 
important deviations from the generic global model. We view these deviations – the offsets of 
the high dimensional IS measurement from the low dimensional generic mixing space – as a 
primary subcomponent of signal in IS data. 

One way of quantifying this variability is through summary error statistics like the root-
mean-square misfit. While useful in determining spatial variations in overall model fit, 
approaches which summarize model misfit as a single number are not capable of showing the 
wavelength-dependence of the deviation. The fundamental purpose of this manuscript is to 
demonstrate that this wavelength dependence can be an important source of signal, and may in 
fact hold the key to identifying the biophysical sources of variability unique to IS data. 

This wavelength dependence is captured by Steps 2 and 3. Conceptually, Step 2 asks the 
question: what would the reflectance of each pixel be if the generic global model were perfectly 
accurate? This reconstructed spectrum reflects only the projection of each pixel onto the S, V, 
and D mixing space. Step 3 then completes the exercise, asking: what signal is present in the IS 
observations that is not adequately represented by a generic S,V, and D EM model? This 
quantifies the high-dimensional difference between each pixel’s observed position and its 
projection onto the mixing subspace, isolating the low-variance but coherent information which 
is typically relegated into higher dimensions of IS data. When plotted against wavelength as a 
residual “spectrum”, this (observed – modeled) difference can contain signal interpretable in the 
context of known plant traits (e.g., chlorophylls, liquid water, cellulose/lignin). 

2.3 Algebraic expression 

The above textual description can be summarized in the following matrix equations.  

Let the endmember spectra form the column space of a matrix G with dimensions [l, n], where l 
is the number of spectral bands in the imaging spectroscopy dataset and n is the number of 
endmembers. Let also the dataset D be a matrix of spectra with dimensions [l, x], where x is the 
total number of spectra (or total number of pixels, for image data). 

Then, Step 1 (unmixing) can be written in the context of ordinary least squares using the familiar 
formulation (Settle & Drake, 1993): 



 

 

𝑀 = (𝐺!𝐺)"#𝐺!𝐷 
 

Where M is the matrix of endmember fraction estimates with dimensions [n, x]. In the case of this 
analysis, we also implement a simple unit sum constraint without changing the functional form by 
adding a row of 1’s to both the G and D matrices, but note that this is optional. 

Step 2 (reconstruction) can be formulated as matrix multiplication between the endmember and 
data matrices: 

𝐷′ = 	𝐺𝑀 

Where 𝐷′ is the matrix of modeled spectra of dimensions [l, x]. 

Step 3 (differencing) then takes the simple form: 

𝑅 = 	𝐷 −	𝐷$ 

Where R is the mixture residual with dimensions [l, x’].  

If desired, all three steps can be condensed into a single linear operation of the form: 

𝑅 = [1 − 𝐺(𝐺!𝐺)"#𝐺!]𝐷 

The ability to formulate the mixture residual as a linear function of the original spectrum has 
important implications for its utility. First, this supports the view of the mixture residual as 
isolating a specific subspace of the data which is most informative. Second, this implies that the 
mixture residual might not improve overall training accuracy for methods like partial least squares 
regression (PLSR), although generalizability on held-out validation sets might improve by 
withholding an uninformative subspace. Third, this also implies that the largest impact of 
implementing the mixture residual may be on Euclidean-distance-based classification and 
regression analyses. This effect is illustrated with the synthetic example below. 

3 Analysis 

3.1 Synthetic Example 

We begin by illustrating the approach using a synthetic example (Figure 2). We use 
hemispherical reflectance spectra collected at the Jasper Ridge Biological Reserve using a 
Beckman UV-5240 spectrophotometer [complete description in (Elvidge, 1990)] to construct 
1,000,000 synthetic mixed pixel reflectance spectra comprised of linear combinations of three 
substrate EMs, three vegetation EMs, and a null (shade) EM. The substrate EMs (soil, sandstone, 
and gravel) differ primarily in the curvature and amplitude of the spectral continua, while the 
vegetation EMs (Valley Oak, Live Oak, and Blue Oak) differ primarily in amplitude of the red 
edge, and depth of photosynthetic pigment and liquid water absorptions. The three oak species 
captured here are common across California and capture a significant and ecologically-relevant 



 

 

subset of global Mediterranean-climate oak woodlands and savannas (Davis et al., 2016; Sousa 
& Davis, 2020). 

As found in global studies, the first two Principal Components (PCs) of the synthetic IS 
image capture broad mixtures of S, V, and D materials. Dimensions 3 and 4 are able to 
discriminate among the three substrate EMs, but the oak species remain indistinct in the first 4 
dimensions. This is typical of characterization of IS datasets with PCs – while the data do 
capture coherent variability among vegetation EMs, the differences in continuum amplitude and 
curvature typical of substrates dominate the low-order variance structure and vegetation 
differences are relegated to higher dimensions. 

We then apply the mixture residual, using the global endmembers described above. In 
contrast, the first 2 PCs of the mixture residual image clearly separate all three substrate EMs 
and two of the vegetation EMs. The third vegetation EM is unambiguously distinct in 
dimensions 3 and 4. This occurs because the mixture residual effectively removes the projection 
of the IS observations onto the ternary mixing subspace which is evident in the PC 1 vs PC 2 
projection of the raw surface reflectance data. While the subpixel abundance of generic EMs can 
be estimated from multispectral data like Landsat, the high-dimensional deviation from the 
generic SVD mixing subspace cannot. It is the structure of this deviation – the difference 
between observed reflectance, and the modeled reflectance expected from the generic mixture 
model – that is uniquely captured by IS data. The amplitude of this difference is low in terms of 
overall image variance, effectively representing the difference between 97% and 99% of 
variance found in (Sousa & Small, 2018). But despite its low variance, the information content is 
sufficiently high to, for instance, discriminate among species of oak trees (at least in this 
synthetic dataset). 

It is also informative to compare the result of this approach to traditional methods of 
continuum removal. Continuum removal (CR; (Clark & Roush, 1984)) is commonly used to 
separate the information present in narrowband absorptions from the spectral continuum, 
generally by estimating the continuum using a convex hull of local spectral maxima. The 
continuum is then removed in order to accentuate the specific absorptions, either by subtraction 
or division. Here, we illustrate division. The approach succeeds in separating the substrate EMs, 
but not the vegetation EMs (at least, in the first four dimensions). It is also informative to show 
how CR by division can nonlinearize a linear problem, resulting in an increase in the number of 
dimensions of the space required to accurately describe the low-order data manifold. 



 

 

 
 

 

Figure 2. Mixture residual improves discrimination of pixel composition in a synthetic image. 
We generate 1 million spectra using weighted sums of 1 random substrate EM, 1 random 
vegetation EM, a single dark EM, and 5% noise. EM weights are random and forced to sum to 
unity, representing the idealized theoretical case of perfect linear mixing. The S EMs represent a 
range of spectral slopes, brightnesses, and narrow absorption features. The V EMs represent 
species-level differences within a single genus (Quercus) and show relatively modest spectral 
differences, largely in the signatures of photosynthetic pigments, red edge, and leaf water. As 
repeatedly observed in satellite and airborne image compilations, the low-order variance 
structure of the full synthetic image (left) is dominated by S, V, and D subpixel mixing. Two S 
EMs group together in one corner of the PC 1 vs 2 mixing space and all 3 V EMs group in 
another corner. S EMs are clearly distinct in PC 1 vs 3, but V EMs remain clustered until 
dimension 5 and higher. When k-means unsupervised clustering is applied using 3 classes, class 
purity is low even for the soil endmembers (0.67, 0.61, 0.58). In contrast, mixture residual 
(center) distinguishes all 6 EMs in the first three dimensions, successfully dampening the high 
variance signal from subpixel mixing. This allows the subtle signals due to plant trait and soil 
chemistry differences to be better expressed by Euclidean distance, as evidenced by markedly 
higher class purity using the same k-means approach (1.0, 0.99, 0.67). Clear species-level 



 

 

separation is evident event in high correlated (r > 0.98) V spectra. In contrast, continuum 
removal by division (right) nonlinearizes an otherwise linear problem because absorption 
troughs scale more slowly than absorption shoulders. In the continuum removal approach, three 
distinct nonlinear manifolds radiate outward from each S EM. The introduction of this 
nonlinearity results in an artificially high dimensionality of the linear subspace occupied by the 
CR product, and yields intermediate k-means cluster purity (0.71, 0.70, 0.69). Scatterplots show 
unitless subspaces, so quantitative axis labels are unncessary. 

3.2 Real-world complexity 
We next apply this approach to a spectrally diverse, ecologically-relevant dataset: a 

compilation of IS data collected by the National Ecological Observatory Network (NEON) 
Airborne Observational Platform (AOP). NEON AOP operates an AVIRIS-NG-like instrument, 
capturing data across the full VSWIR range at approximately 5 nm wavelength intervals. AOP is 
typically flown at low altitude, allowing for measurements with a 1 m ground sampling distance. 
We use data compiled from each Core Terrestrial site, sampling each of the 20 ecoclimatic domains 
determined by the NEON program across the contiguous US, Alaska, Hawaii, and Puerto Rico 
(locations shown in Figure 3; NEON 2021a). These domains were determined by a multivariate 
graphical cluster analysis of nine climatic variables (Hargrove & Hoffman, 1999). Sites differ 
greatly in a wide range of factors including plant traits, community composition, soil chemistry, 
providing an ideal range of vegetation types with which to examine the mixture residual method. 
Lists of specific data tiles are given in the Supplement. 
 

 
Figure 3. Locations of the 20 NEON Core terrestrial field sites used for the subsequent analysis 
(red circles), each representing a different ecoclimatic domain. 

Spectrally diverse 1 km2 tiles of orthorectified surface directional reflectance (NEON data 
product DP3.30006.001) were downloaded from the NEON data portal using the ‘neonUtilities’ 
R package. Data were used as-is from the NEON portal, without additional BRDF or atmospheric 
correction reprocessing. Data collected in the wavelength intervals of 383-428, 1280-1480, 1780-
2106, and 2386-2500 nm (bands 1-10, 180-220, 280-345, and 401-426) were excluded due to 
contamination from deep water vapor absorptions and/or sensor noise. 

Figure 4 shows the data mosaic as a false color composite with red, green, and blue 
channels of the image displaying SWIR, NIR, and visible reflectance (upper left), as well as with 
subpixel abundance of generic S, V and D EMs derived from the AOP composite (upper right). 
Clearly, the EM fraction composite image captures the broad land cover patterns evident from the 
false color composite image. The mixture residual image (lower right) shows richer spatial 



 

 

variability in both the photosynthetic vegetation and NPV/soils. The first three dimensions of 
continuum removal by division (lower left) are also shown for comparison. 

 
Figure 4. 20 Core Terrestrial field sites from the National Ecological Observatory Network 
(NEON) as observed at 1 m spatial resolution by the Airborne Observational Platform (AOP)’s 
spectrometer. Surface reflectance image (Upper Left) shows broadband land cover patterns which 
are captured by linear SMA using generic EMs (Upper Right). Informative spatial patterns are 
present in the low-order PCs of the residual (Lower Right) which are not visible in any of the other 
images. Continuum Removal results (Lower Left) are shown for comparison. 

Figure 5 illustrates quantitatively the effect of the approach using the partition of variance 
computed from the eigenvalues. In addition to the results from the full NEON AOP dataset (black), 
an additional comparison is shown with the data spectrally resampled by convolving with the 
spectral response functions of the Landsat 8 instrument (red). It is unclear from examination of the 
partition of variance computed from the raw surface reflectance (left) that significantly more 
information is present in the full spectral resolution dataset. 

The opposite is true in the partition of variance computed from the mixture residual (right). 
In this case, over 90% of the variance remaining in the Landsat mixture residual is present in the 



 

 

first dimension, while only 65% of variance in the AOP mixture residual is present in the first 
dimension. The structure of the residual spectrum thus requires a high dimensional space to 
represent, while 99% of the variance in the difference between Landsat observations and 
reflectance predicted by S, V, and D mixture fractions can be expressed in only 3 dimensions. 

 
Figure 5. Partition of Variance. Normalized eigenvalues for surface reflectance (left) and mixture 
residual (right). Full 5 nm spectral resolution data (black) are compared to simulated Landsat 
data (red) produced by convolving imaging spectrometer data with Landsat 8 spectral response 
functions. Cumulative variance shown in inset. Variance partitioning in narrowband and 
broadband is remarkably similar when full reflectance spectra are used. Differences are much 
more prominent when the residual of a 3 EM mixture model is examined. >90% of the variance in 
broadband mixture residual can be represented by 1 dimension, and >99% can be represented 
with 3 dimensions. In contrast, expression of 90% of narrowband mixture residual variance 
requires 4 dimensions, and 99% requires 13 dimensions. 

The plant trait-specific information contained in the mixture residual can be understood in 
the context of covariability matrices. Figure 6 shows covariance (upper triangular) and correlation 
(lower triangular) matrices for the AOP surface reflectance (left) and mixture residual (right). The 
structure of the surface reflectance covariability matrices effectively reflects the information 
present in a generic vegetation spectrum: band-to-band correlations are high within the visible 
[mean (m)= 0.97 and standard deviation (s) = 0.027], NIR (m = 0.94 and s = 0.057), and SWIR (m 
= 0.97 and s = 0.031) portions of the spectrum, indicating redundancy of information. Covariance 
is dominated by the high-amplitude red edge signal in the NIR, a highly generic signal indicative 
of the presence of green vegetation, but not specific traits. Liquid water absorptions are 950 and 
1140 nm are evident, but minor.  

In contrast, plant trait signatures are considerably more evident in the covariability 
structure of the mixture residual. Narrow NIR and SWIR absorption features associated with leaf 
water and dry matter are clearly distinct in both correlation and covariance. Mixture residual band-
to-band correlations in the visible spectral domain remain high, albeit statistically distinct from 
surface reflectance (m = 0.95 and s = 0.040). Greater asymmetry is seen at visible wavelengths, 
consistent with xanthophyll- or anthocyanin-type processes. The effect of mixture residual 
decorrelation is more pronounced in the NIR (m = 0.04 and s = 0.61) and SWIR (m = 0.31 and s 
= 0.58) spectral domains, significantly exceeding decorrelation achieved by continuum removal 
by division (visible m = 0.95 and s = 0.045; NIR m = 0.90 and s = 0.088; SWIR m = 0.85 and s = 



 

 

0.14). Differences at NIR and SWIR wavelengths in both narrow absorptions and broader spectral 
slopes clearly resolve leaf water and cellulose/lignin signatures, with intriguing additional 
structure potentially suggestive of additional leaf chemistry. These patterns provide another 
illustration of how the narrowband signal unique to IS data can be more readily accessed once the 
variance due to spatial land cover mixtures is removed. 
 

 
Figure 6. Covariability matrices for the surface reflectance (left) and mixture residual (observed 
- modeled; right) datasets. Covariability structure of surface reflectance data is dominated by the 
absorption features of photosynthetic vegetation. Covariability of the mixture residual reveals 
greater complexity, accentuating narrowband absorption features. Wavelengths 383-428, 884-
1000, 1094-1224, 1355-1480, 1780-2106, and 2386-2500 nm (bands 1-10, 101-124, 143-169, 195-
220, 280-345, and 401-426) were excluded due to potential contamination from atmospheric 
absorptions and/or sensor noise. MR asymmetry at 430-680 nm is suggestive of anthocyanins 
and/or xanthophylls; decorrelation near 2200 nm is associated with celluluose/lignins; and 
complex structure in the 950 – 1780 nm range both clearly resolves leaf water absorptions and 
indicates additional potential information about other leaf chemistry constituents. 

The context explained above informs examination of the spectral feature space (Figure 7). 
Low-order dimensions of the surface reflectance (left), mixture residual (center) and continuum 
removal (right) feature spaces illustrate the effect of the approach. Low order dimensions of 
surface reflectance are dominated by the signal from S, V, D land cover mixing. The broadband 
nature of this information is reflected in the similarity to the low-order feature space of the Landsat 
resolution data (bottom row).  

In contrast, differences are far more evident between the low-order feature space of the 
mixture residual at full vs reduced spectral resolution. The feature spaces are clearly characterized 
by different structures, with considerable spectral separability and distinct apexes in the full 
resolution data which are not clearly present at reduced resolution. These differences are also not 



 

 

clearly present using the traditional Continuum Removal approach, which is dominated at low 
order by relatively sparse but complex signals from shallow water targets.  
 

 
Figure 7. Spectral feature spaces. Low-order spectral feature space topology is remarkably 
similar for narrowband and broadband surface reflectance spectra (left). This similarity does not 
hold for the spectral feature space of narrowband and broadband mixture residuals (center). 
Continuum removal is also shown for both narrowband (upper right) and broadband (lower right) 
comparison. Scatterplots show unitless subspaces, so quantitative axis labels are unncessary. 

The differences captured in the low-order mixture residual space show clear plant trait 
signatures (Figure 8). Example spectra from 9 positions, indicated by squares of different colors, 
are chosen from the PC 3 vs 2 projection of the mixture residual feature space. Spectra are plotted 
from each position. The full reflectance observations of each point are plotted (left), as well as the 
mixture residual (center) and continuum removal (right) spectra. Enlargements of visible, NIR, 
and SWIR2 portions of the spectrum are shown below for ease of viewing. 

Many of spectra found at the periphery of the mixture residual space have the broad 
appearance of green vegetation spectra. However, as expected from the correlation structure, subtle 
differences at wavelengths corresponding to known absorptions of biophysical markers like 
photosynthetic pigments, leaf water, and cellulose/lignin are evident. A wide range of signatures 
– including slope, curvature, and amplitude signals – are evident in the mixture residual spectra. 
Comparison the mixture residual PC 3 vs PC 2 feature space projection against surface reflectance 
and continuum removal spaces (top row), again shows the mixture residual to accentuate 
differences in vegetation spectra which are superimposed near the bottom apex of the surface 
reflectance feature space. The continuum removal feature space contains interesting information, 
but is distorted due to the nonlinearity introduced by division and dominated by high amplitude 
variability along the PC 2 axis. 



 

 

 
Figure 8. Example spectral endmembers from the mixture residual feature space. Low dimensions 
of SR feature space (Upper Left) show characteristic broadband land cover variations, and low 
dimensions of CR residual feature space (Upper Right) are dominated by intimate mixing in lakes. 
Top row of spectra show full VSWIR continua (with atmospheric absorptions removed) as SR 
(Left), mixture residual (Center) and CR residual (Right). Bottom rows show enlargements for 
three spectral regions. Differences in curvature at visible wavelengths, location and amplitude of 
red edge, spectral slope in the VNIR, and curvature in the SWIR 2 are all more evident from MR 
residuals than SR. CR residuals amplify curvature differences, but do not capture important 
deviations in slope of the spectral continuum and are forced to unity at bounding wavelengths. 



 

 

3.3 Application to Spaceborne Imaging Spectroscopy 

Next, we extend these results to a spaceborne IS dataset. The data used here were collected 
by DESIS, an imaging spectrometer built and maintained by the German Aerospace Center (DLR) 
with 235 spectral bands in the 400 – 1000 nm spectral range (Krutz et al., 2019). DESIS is currently 
hosted on the International Space Station, with data delivered at 30 m ground sampling distance. 
Here, we analyze a summer image of one of the NEON sites used in the previous compilation, the 
University of Notre Dame Envrionmental Research Center field site (NEON site code “UNDE”). 
These data pose a challenging test of the viability of the mixture residual approach to yield useful 
information in the face of full two-way atmospheric transmission, decameter spatial resolution, 
and variations in orbit and sun-sensor geometry which are at least as formidable as those expected 
for a future sensor onboard a free flying sun-sychronous platform. Notably, the spectral range of 
the DESIS sensor is also a subset of the full 400 – 2500 nm spectral range planned for some future 
misisons. 

Figure 9 illustrates the ability of the mixture residual approach to extract subtle yet useful 
ecological information for such real-world spaceborne IS data. In comparison to a traditional false 
color reflectance image (far left), a false color composite showing three mixture residual bands 
(center left) reveals considerably greater nuance, capturing spatially coherent patterns which track 
field-observed ecological observations. One example of such information is illustrated by the case 
of three NEON plant plots (UNDE # 012, 017, and 030; NEON 2021b), indicated as yellow dots 
on the figure. These three plots are categorized into three distinct land cover classes (woody 
wetland, mixed forest, and deciduous forest), with substantial variability in field-observed plant 
species lists. Investigation of surface reflectance spectra from individual pixels from the 
coordinates corresponding to each plot center (bottom left) does not reveal obvious high amplitude 
differences in spectral shape, a feature which can be quantified by the observation that all three 
pairs of spectra are correlated at the 0.98 level or higher. In contrast, correlations for each pair of 
mixture residual spectra for each plot (bottom right) are considerably lower (0.68, -0.32, and -
0.07). By removing the contribution of the spatial mixing signal, the low-variance – but highly 
informative – spectral indicators of plant traits are effecetively accentuated. 



 

 

 
Figure 9. The mixture residual approach isolates ecologically meaningful differences in 30 m 
spaceborne imaging spectroscopy data. A traditional visible + NIR false color composite DESIS 
image of the University of Notre Dame Environmental Research Center (NEON site UNDE) is 
shown on the left. Three mixture residual wavelengths are shown on the right. The mixture 
residual clearly resolves patterns within and among vegetation communities. Reflectance and 
mixture residual spectra are shown for pixels centered on NEON plots of three different NLCD 
Land Cover classes, centered on the yellow dots in the DESIS image: UNDE 030 (A; Deciduous 
Forest; Green); UNDE 012 (B; Woody Wetland; Red); and UNDE 017 (C; Mixed Forest; Blue). 
10 cm true color airphotos (not shown) collected by NEON AOP confirm clear biophysical 
differences among these sites, but 30 m spatial resolution DESIS reflectance spectra are highly 
correlated (all pairs 0.98 or higher). Correlations among pairs of mixture residual spectra are 
lower (0.68, -0.32, and -0.07), quantifying improved separability. Differences in chlorophyll 
bump and red edge amplitdue and position are subtle in reflectance spectra but unambiguous in 
mixture residual. Lakes, common in the UNDE study area landscape, appear black or dark 
magenta on the reflectance image.  

Additionally, we expect the mixture residual to impact different retrieval approaches in 
different ways. There is good theoretical justification to expect a significant difference in result 
for in approaches that only use a subset of the spectral information, e.g. narrowband spectral 
indexes (Thenkabail et al., 2018)). An example using the mixture residual as a pretreatment for 
spectral indices is shown in Figure 10. 



 

 

Here, we use the simple ratio of reflectance at 708 and 775 nm (RI708,775), found by (Féret 
et al., 2011) to show a strong quadratic relationship to total chlorophyll content. Using the synthetic 
dataset from Figure 2, we illustrate the nonlinear dependence of RI708,775 on subpixel fractional 
vegetation cover (left). Two of the three oak species used for this analysis (Blue and Live Oak) are 
clearly ambiguous at all but the highest fractional covers, and the third (Valley Oak) is ambiguous 
at values below 70% cover – including shadow. The quadratic transfer function introduced by 
(Féret et al., 2011) is then applied to yield estimates of total chlorophyll (Cab) for each simulated 
pixel. In theory, one might expect total pixel-level chlorophyll to vary linearly with subpixel 
vegetation abundance from 0 (in unvegetated pixels) to a maximum value determined by the 
species-specific spectrum. This theoretical behavior would follow the lines on the center plot. 
Instead, some concavity remains and considerable scatter is observed, especially towards high Cab 
values, and especially in the 10-60% fractional cover range.  

In contrast, the right panel shows RI708,775 computed on the mixture residual spectrum 
instead of the reflectance spectrum. Clearly, the RI708,775 applied to the residual is characterized by 
a more linear relationship to vegetation fraction, reduced scatter, and significantly enhanced 
species-level separability. No overlap is observed within these three species at subpixel areas 
above 50%, and the bulk of the distributions are resolvable at lower values still. We do not apply 
the transfer function developed by (Féret et al., 2011) here because the model would need to be 
retrained on the residual spectrum, not the full reflectance spectrum. Further, the behavior of at 
least this spectral index suggests that a simpler linear model may be sufficient for this particular 
plant trait. 

As an aside, we note that a simple bias shift was applied to the residual before computing 
the index in order to ensure positivity. This is because residuals are centered on zero, and the 
functional form of the spectral index becomes unstable with sign changes and division by zero. 
This bias shift is easily implemented by adding a constant slightly larger than the minimum 
observed residual value at the wavelengths of interest. 
 

 
Figure 10. The mixture residual can be an effective pretreatment for narrowband spectral indices. 
Here we illustrate for the case of estimating total chlorophyll. We compute the simple ratio of 
reflectance at 708 and 775 nm (left) and the quadratic transfer function suggested by (Féret et al., 
2011) (center), comparing to the “true” input subpixel area of illuminated photosynthetic 
vegetation. In both cases, sufficient dispersion is observed to result in Blue vs Live Oak to be 
indistinct below 85% subpixel area, with Valley Oak distinct down to levels nearer 70%. When the 
same index is applied to the mixture residual (right), species-level distinctions are much clearer, 
with no observable ambiguity at 50% fractional cover or higher. We do not apply the quadratic 
transfer function because it would need to be retrained. Because residuals are centered around 



 

 

zero, a simple bias shift equal to the minimum residual value is first applied to avoid issues 
associated with positivity and division of values near zero. 

5 Discussion 

Imaging spectroscopy offers an exceptional tool to observe Earth surface biology and 
geology (National Academies of Sciences & Medicine, 2018). But in order to unlock the full 
potential that this tool offers, analysis approaches must contend with the high dimensionality 
inherent to image data with hundreds of channels. These challenges are especially relevant for 
retrieving plant traits because important indicators of plant composition and function like 
photosynthetic pigments, leaf water, nutrients, and dry matter are often minor contributors to the 
observed reflectance signal in terms of overall variance (Asner, 1998). For the decameter-scale 
pixels which might be captured by a future satellite-based sensor, spatial mixing processes further 
accentuate this challenge (Strahler et al., 1986; Woodcock & Strahler, 1987).  

The analysis presented here uses the convex geometry tools of (Boardman, 1993) to 
provide a mechanism for exploring the biophysically relevant variability within a scene, 
synthesizing the continuum-plus-absorption model of (R. N. Clark & King, 1987) with the spectral 
mixture approach of (Adams et al., 1986; Gillespie, 1990; M. O. Smith et al., 1990). The generality 
of a global mixing subspace is supported by both decades of global multispectral observation (Crist 
& Cicone, 1984; Kauth & Thomas, 1976; Small, 2004; Small & Milesi, 2013) and more local but 
diverse imaging spectroscopy observations (K. Cawse-Nicholson et al., 2019; Sousa & Small, 
2018; Thompson et al., 2017). The key insight is in recognizing that spectral variance is an 
imperfect metric for biological and geologic information content. While 97% of variance in diverse 
decameter reflectance compilations may reside in the continuum-dominated S, V, and D land cover 
mixtures, the remaining 3% of variance can contain a nontrivial subset of the overall useful 
information. Utilizing spectral residuals from generic priors provides a conceptually simple and 
computationaly tractable means to circumvent this characteristic and still make use of highly 
informative principal components.  

The challenges of imaging spectroscopy are sufficiently complex, and Earth’s surface 
biology and geology are sufficiently multifaceted, to warrant multiple different analysis 
approaches for different application scenarios. The mixture residual approach is not intended to 
replace longstanding imaging spectroscopy algorithms. Instead, we suggest that the approach 
presented here might be used in conjunction with established approaches as one link in a 
processing chain to help interpret results, and, in some cases, improve accuracy.  

Other retrieval algorithms that operate on surface reflectance using Euclidean distance 
metrics are likely to be similarly impacted. Examples of such approaches include nearest neighbors 
(e.g. (Larsolle & Hamid Muhammed, 2007; Voss & Sugumaran, 2008)), random forests (e.g. 
(Asner et al., 2016; M. L. Clark & Roberts, 2012; Huesca et al., 2016; Naidoo et al., 2012)), 
spectral angle mapper (e.g. (Yen-Ben Cheng et al., 2007), maximum likelihood classification (e.g. 
(Boschetti et al., 2007; F. M. Lacar et al., 2001)), and some neural networks (e.g. (Plaza et al., 
2009; Zhang & Xie, 2012)). The level of impact is likely to vary with study area, physical process 
being retrieved, and algorithm being used. It is reasonable to expect that the difference may be 
significant in many cases. As noted earlier, S, V, and D mixture models have been shown to 
generally represent >95% of diverse Landsat (Small, 2004) and MODIS (Sousa & Small, 2019a) 



 

 

spectra with <5% RMS misfit. One implication of such low mixture model misfit is that a 
comparably high fraction of observed spectral variance can be explained by linear S, V, and D 
mixtures. Such a high variance process will inevitably impact the outcome of any variance-based 
algorithm. 

In contrast, because the mixture residual is a linear function of reflectance, it is unlikely 
that its application will significantly impact the training accuracy of high dimensional retrieval 
approaches like partial least squares regression (e.g., (Hacker et al., 2020; Townsend et al., 2003)). 
However, using a generalized, physically-based set of loadings for the low-order dimensions of 
PLSR still offers significant benefits. First, the physical meaning of the fraction estimates offers 
an important level of interpretability to an otherwise purely statistical algorithm. This could be 
considered a modest step toward explainable machine learning for imaging spectroscopy. Second, 
the generalizability of the mixture model may serve to stabilize the structure of the PLSR, 
potentially increasing performance on held-out validation sets, especially for models with limited 
training data. Third, empirical examination of the structure of the mixture residual and 
experimental tests against laboratory chemistry measurements and known absorption features 
could be used to determine which, and how many, additional plant traits could be reliably retrieved 
beyond those currently used. 

While the analysis presented here focuses on applications for surface biology retrievals, 
the fundamental approach is highly generalizable. For instance, agricultural monitoring is an 
important use case of imaging spectroscopy (Thenkabail et al., 2000), and the mixture residual 
could add considerable value in separating crop and soil reflectance. Applications also exist for 
the surface geology observable, including both soils (Ben-Dor et al., 2009) and rock outcrops 
(Calvin & Pace, 2016; Kruse et al., 1993), where the mixture residual could be used to help 
mitigate the signal from vegetation cover and accentuate narrowband absorption features from 
surficial geology. Imaging spectroscopy of the cryosphere is also an important area of study 
(Dozier et al., 2009; Nolin & Dozier, 1993), and additional applications for the mixture residual 
may exist for remote sensing of the cryosphere by extending the cryospheric spectral mixing space 
concept proposed by (Small & Das, 2018). 

Further, we note that modifications may be useful for specific applications. The first 
obvious modification to consider is the number and spectra of endmembers used for the global 
model. The endmembers used in this analysis are derived from the feature space of the data 
compiled here because, to our knowledge, data have not yet been available for a comprehensive 
study with global, or near-global, spatial extent. This is likely to change in coming years. 

In continuum removal, the continuum is generally spectrum-specific: i.e., the continuum is 
computed from each individual spectrum itself and may vary in unknown ways from spectrum to 
spectrum. In contrast, MR removes a known S, V, and D mixture having fractions that can be 
retained and incorporated into interpretation of the MR in subsequent analysis. In other words, the 
S, V, and D fractions contain valuable information whereas the continuum removed is CR is 
generally not used in subsequent analysis. These properties of generality and interpretability are a 
fundamental aspect of the MR approach introduced here. 

Once the time series IS data are available, another straightforward extension of this 
approach will be for spatiotemporal analysis (Small, 2012). Conceptual parallels exist between the 



 

 

hundreds of channels in a given IS acquisition, and the hundreds of time steps available for image 
time series. Some studies exist extending fundamental tools like convex geometry, spatial mixing, 
and continuum removal to the time domain, e.g. (Chi et al., 2016; Li & Wu, 2014; Piwowar et al., 
1998; Sousa & Davis, 2020; Sousa & Small, 2019b; Yang et al., 2012), but further research on 
topic is needed.  

It will also likely be informative to compare the results of the mixture residual with local 
versus global sets of endmembers. This is most likely to be impactful in the S EM, where previous 
multispectral studies have shown the global feature space to be bounded by exceptionally bright, 
spectrally convex sands (Small, 2004; Small & Milesi, 2013; Sousa & Small, 2017). Such 
materials may not be representative of the substrates present in most locations on earth. Using both 
global and local endmembers would allow studies to made easily intercomparable while also 
facilitating greater accuracy at specific study sites. Using well-characterized EMs to compute the 
residual is also important. Any absorptions included in the EM will be encoded in the endmember 
fraction estimates and thus erased in the orthogonal projection, so guarding against endmember 
variability in traits of interest will be important.  

No method is without its limitations, and the mixture residual approach is no different. The 
fundamental link between information and variance remains implicit in the methodology. But as 
shown here, this link is tenuous in the case of imaging spectroscopy. Few would agree, for instance, 
that 97% of the potentially useful information in a reflectance dataset is contained in the S, V, and 
D mixtures that drive 97% of its variance. It is clear that the global variance structure of VSWIR 
surface reflectance is an imperfect proxy for the information structure of the data. Further research 
is needed to determine key characteristics of the data like the optimal information metric(s) and 
scales of variance at which information is encoded. Ultimately, the primary value of the mixture 
residual approach is likely the capacity to improve the ease and speed of data interpretation and 
exploratory analyses – an important advance in the face of the rapidly increasing volumes of IS 
data available. 

5 Conclusions 

This analysis explores a novel approach for improving plant trait retrievals by extracting 
low-variance information of biophysical significance from imaging spectroscopy. The approach is 
guided by a fusion of concepts from convex geometry, spectral mixture modeling, and continuum 
removal. Three fundamental dimensions are observed to dominate the low-order structure of 
diverse imaging spectroscopy compilations: soil, rock, and non-photosynthetic vegetation 
Substrates (S), illuminated photosynthetic Vegetation (V), and Dark materials like water and 
shadow (D). Subpixel mixtures of S, V, and D materials often drive overall spectral variance in 
imaging spectroscopy, often overprinting signatures of important plant traits like photosynthetic 
pigments, leaf composition, and dry matter. Our simple approach to accessing these narrowband, 
low-variance signals uses a three-step procedure: 1) linear spectral mixture analysis using a single 
set of generic endmembers; 2) pixelwise reconstruction of modeled reflectance; and 3) subtracting 
(observed – modeled) reflectance spectra to obtain a residual spectrum, deemed the Mixture 
Residual (MR). We illustrate the approach using a compilation of airborne imaging spectroscopy 
data from the National Ecological Observatory Network (NEON) Airborne Observation Platform 
(AOP). The spectral feature space of the MR image is observed to capture information consistent 
with known cholorophyll, xanthophyll/anthocyanin, leaf water, and cellulose/lignin plant traits, 



 

 

rather than overall subpixel areal abundances of land cover types. Mixture residuals offer 
conceptual simplicity, computational efficiency, and global applicability and can be used as inputs 
to enhance commonly applied variance-based approaches for retrievals of key surface biology and 
geology observables.  
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