Long Term study of the Schumann Resonance Regular Variations Using the Sierra Nevada station ground-based magnetometers

Alfonso Salinas¹, Jesus Rodriguez-Camacho¹, Maria C. Carrión¹, Jorge A. Portí¹, Jesús Fornieles¹, and Sergio Toledo-Redondo²

¹University of Granada ²Department of Electromagnetism and Electronics, University of Murcia

November 23, 2022

Abstract

We present a study of the Schumann Resonance (SR) regular variations (March 2013-February 2017) using the ground-based magnetometers from the Sierra Nevada station, Spain (37*02'N, 3*19'W). The study is based on the fitting parameters obtained by the Lorentzian fit, calculated for each 10-min interval record, namely, peak amplitudes, central frequencies, width of the resonances and the power spectrum integral for the first 3 SR modes. We consider three time-scales in the study: seasonal, monthly and daily variations. The processed data collected by the Sierra Nevada station are also made public with this work. The general characteristics of the long-term evolution of the Schumann resonance are confirmed, but discrepancies appear that require further study comparing recent measurements from different stations. Signatures of the influences of the El Niño phenomenon and the solar cycle to SR have been found.

1 2 3 4	Long Term study of the Schumann Resonance Regular Variations Using the Sierra Nevada station ground-based magnetometers
5 6	J.Rodríguez-Camacho ¹ , A. Salinas ² , M.C. Carrión ¹ , J. Portí ¹ , J. Fornieles-Callejón ² , S. Toledo-Redondo ³ .
7	¹ Department of Applied Physics, University of Granada, Granada, Spain
8	² Department of Electromagnetism and Matter Physics, University of Granada, Granada, Spain
9	³ Department of Electromagnetism and Electronics, University of Murcia, Murcia, Spain
10	Corresponding author: Alfonso Salinas (asalinas@ugr.es)
11	Key Points:
12 13	• Long term analysis of the Schumann resonance records at Sierra Nevada, from March 2013 to February 2017.
14 15	• The conclusions obtained partially confirm the general aspects of the long-term evolution of the Schumann resonances, but new aspects have appeared.
16 17 18	• Recent results on the influence of the El Niño phenomenon and the solar cycle on the Schumann resonances are confirmed.

19 Abstract

20 We present a study of the Schumann Resonance (SR) regular variations (March 2013 – February

21 2017) using the ground-based magnetometers from the Sierra Nevada station, Spain (37°02'N,

22 3°19'W). The study is based on the fitting parameters obtained by the Lorentzian fit, calculated

23 for each 10-min interval record, namely, peak amplitudes, central frequencies, width of the

- resonances and the power spectrum integral for the first 3 SR modes. We consider three time-
- 25 scales in the study: seasonal, monthly and daily variations. The processed data collected by the
- 26 Sierra Nevada station are also made public with this work. The general characteristics of the
- 27 long-term evolution of the Schumann resonance are confirmed, but discrepancies appear that
- require further study comparing recent measurements from different stations. Signatures of the
- 29 influences of the El Niño phenomenon and the solar cycle to SR have been found.

30 1 INTRODUCTION

The Schumann Resonances (SRs) are related to the propagation of the electromagnetic (EM) field generated mainly by lightning events in the EM cavity delimited by the lower ionosphere and the Earth's surface. This EM field belongs to the Extremely Low Frequency (ELF) band of the EM spectrum, which goes from a few hertz to 50 Hz, and its spectrum shows resonances at certain frequencies. This phenomenon is called SRs. In addition to the lightning events produced in thunderstorms, there are some other phenomena that may contribute to the SRs, like the Transient Luminous Events, TLE (Price, 2016).

38 The SR were theoretically predicted by Schumann (1952), and measured for the first time 39 by Balser & Wagner (1960). A historical review of the SRs and of Schumann can be found in 40 Besser (2007), which shows a review of relevant works about the physical and mathematical concerns of the SRs. A wide review of the theoretical bases and the experimental works aimed at 41 42 the study of SRs, with an emphasis on the ELF band measurement stations, can be found in 43 Nickolaenko & Havakawa (2002). More recent works about the SRs are Simões et al. (2012), 44 Nickolaenko et al. (2016), and Price (2016). In Simões et al. (2012), the authors point out as 'one 45 of the most challenging issues identifying possible correlations between long term Schumann 46 resonance variability and climate trends. Also, the books Nickolaenko & Hayakawa (2014) and 47 Surkov & Hayakawa (2014) make up an extensive bibliographical source about the SRs and the 48 ELF field propagation in the atmosphere. The chapter about the SRs written by Sátori, Mustak 49 and Williams in Betz et al. (2009) is also of great interest.

50 The research on the SRs had a resurgence at the end of the 20th century due to its relation 51 to different climate concerns. The relation between the average temperature in the tropic surface 52 and the monthly variations in the SR parameters is shown in Williams (1992). This study was 53 strengthened by Füllekrug & Fraser-Smith (1997), which linked the global lightning activity on a 54 seasonal time scale and the magnetic field variations in the lower ELF range. The SRs are a 55 useful tool to study other climatic phenomena that are influenced by the global thunderstorm activity. In Sátori & Zieger (1999), the variation of the global thunderstorm position southwards 56 57 in warm El Niño years and northwards in cool La Niña years is observed in the self-consistent 58 behaviour of the frequency level and semiannual intensity variations of the first three SR modes. 59 In a latter work, the global lightning activity on the ENSO (El Niño Southern Oscillation) time 60 scale is studied using the SRs together with data from OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) satellites in space (Sátori et al., 2009). More recently, Williams et al. 61 62 (2021) have studied the transition between two Super-Niño periods, occurring in 1997/98 and in

63 2015/16, using data from different stations. The main conclusion is that the variations in the

64 intensity of the SRs may serve as a precursor for these extreme climate events (Williams et al.,65 2021).

66 The solar cycle has also an impact on the SRs. In Kulak et al. (2003), it is shown that 67 when the solar activity increases the first resonant frequency also increases, and there is a small 68 decrease in the attenuation coefficient of the NS component of the horizontal magnetic field 69 measured in the East Carpathian mountains for 6 years —with some gaps in the recordings. In 70 Sátori et al. (2005), data from three different ELF stations are used to confirm a rise in the 71 frequencies and in the quality factor when the solar activity increases, due to an increase in the 72 X-ray radiation. In addition to the previous results, Ondrášková et al. (2011) uses electric field 73 records to find a reduction of the differences between effective thunderstorm areas during the 74 austral and the boreal summer, and thus a prevalence of the semi-annual variations, during the 75 years of the deep solar minimum. Toledo-Redondo et al. (2012) showed a possible dependence 76 of the effective reflection height of the Earth-ionosphere cavity and the solar cycle. In 77 Nickolaenko et al. (2015), the 11-year solar cycle is analyzed using data from an ELF station in 78 Antartica, and another ELF station located on the North Pole is added in Koloskov et al. (2020).

79 The experimental observations of these works can be explained by the point source model.

80 The importance of lightning for climate studies is increasingly recognized (Williams, 81 2005). The use of the SRs for inferring the global lightning activity achieved a broad interest, see 82 for example Nickolaenko & Rabinowicz (1995) and included bibliography. The relation between 83 the global thunderstorm activity and the diurnal first mode resonant frequency in the vertical 84 electric field component is studied in this work. This connection between the global 85 thunderstorm activity and the SRs also affects the SR amplitudes via annual and semi-annual 86 variations (Nickolaenko et al., 1998; Nickolaenko et al., 1999). A similar analysis can be found in Füllekrug & Fraser-Smith (1997), where the profiling of the global thunderstorm activity is 87 88 made on a seasonal timescale. Another verification of the relation between the SR intensity and 89 the the global surface temperature can be found in Sekiguchi et al. (2006), where the annual and 90 semi-annual variations are also studied using Principal Component Analysis (PCA). In Belyaev et al. (1999), the thunderstorms are determined making use of the Poynting vector, obtained with 91 92 the horizontal components of the magnetic field and the vertical component of the electric field. 93 Some advantages of the use of the Poynting vector are noted in this paper, especially when 94 records from only one station are used. This work finds a night-time peak in African

95 thunderstorm activity.

96 The thunderstorm activity in the Earth occurs mainly in three regions, located at different 97 longitudes, with a predominance of land areas. These zones are located in Central Africa and 98 Madagascar (African chimney), South and Central America, Caribbean Basin (American 99 chimney), and South-East Asia and Indonesia (Asian chimney), as shown by Christian et al. 100 (2003). These locations have their peak of activity during the local afternoon, and they largely 101 modulate the diurnal variations of the SR (e.g., Toledo-Redondo et al., 2010).

First studies of the long-term observations of SR can be found in Sátori (1996) and Sátori & Zieger (1996) with data from the ELF station at the Nagycenk Observatory (47.6°N, 16,7°E), Hungary. These works analyze the SR peak frequencies and amplitudes for the first three modes for two years in a row. In Nickolaenko et al. (1998), records for an extra year are added to the previous works and the daily frequency range variations are explored. The seasonal variations of the average daily frequency pattern are also studied. A study of the long-term (4 years) diurnal,

108 seasonal and inter-annual variations in the SR parameters can be found in Price & Melnikov 109 (2004). The data are obtained from the ELF station (35.45°E, 30.35°N) near the town of Mitzpe 110 Ramon, in the Negev desert, Israel. The influence of the solar terminator passages on the SR 111 parameters in these records is addressed in Melnikov et al. (2004). In Ondrášková et al. (2007), a 112 summary of more than 4 years of continuous SR monitoring of the vertical electric component at Modra Observatory (48.37°N 17.27°E) in Slovakia is presented. The monthly averaged diurnal 113 114 variations of the four firsts modes are analyzed. In addition, the diurnal-seasonal variations of the 115 amplitudes, frequencies and quality factors for each year are also studied. The overall pattern of 116 diurnal and seasonal variations in SR frequencies is confirmed from measurements as reported 117 from other observatory sites. In Zhou et al. (2013) and Ouyang et al. (2015), two year long 118 records from some low latitude ELF stations in China are examined. The diurnal and seasonal 119 variations in mode amplitudes and frequencies of the first four modes of SR magnetic 120 components are presented.

121 In this work, the SR regular variations obtained from the ELF station at Sierra Nevada, 122 Spain (Fornieles-Callejón et al., 2015), are analyzed from March 2013 to February 2017. This 123 ELF station records both horizontal magnetic field components, NS and EW. The processing of 124 the records is described in Rodríguez-Camacho et al. (2018). With this work the scientific 125 community is granted access to the processed data from the Sierra Nevada ELF station records. 126 The format of these data is also described in Rodríguez-Camacho et al. (2018). We consider that 127 providing the data is needed to pursue a common goal set by the SR research community, and in 128 general by the atmospheric electrodynamics research community, which is the creation of a 129 shared database of the different worldwide ELF stations. Our intention is not to set a standard for 130 the processing and the format of the data but to propose a starting point.

131 The data used in the analysis presented in this work is the output of the processing 132 scheme on the raw data, a brief explanation of this scheme is found in Rodríguez-Camacho et al. 133 (2018). Basically, each file corresponds to the amplitude spectrum of each 10 min interval and 134 the corresponding Lorentzian fitting parameters for each month in the measurement period of the 135 Sierra Nevada ELF station.

This paper is structured as follows: the features and structure of the Sierra Nevada ELF station records are described in Section 2; the diurnal variations of the different SR parameters are studied in Section 3: the seasonal variations are addressed in subsection 3.1, and the annual variations from monthly averages are addressed in subsection 3.2. The time evolution of the SR parameters averaging over a certain number of days, weeks or months is shown in Section 4.

141 Lastly, Section 5 corresponds to the conclusions of this work.

142

143 2 THE SIERRA NEVADA ELF STATION RECORDS

The ELF station is located in the heart of the Sierra Nevada mountains, Granada, Spain,
2500 m above sea level, in the area surrounding the mountain hut "Refugio del Poqueira"

146 (37°02'N, 3°19'W) (Fornieles-Callejón et al., 2015). The ELF station at Sierra Nevada is

147 equipped with two magnetometers, North-South (NS) and East-west (EW) oriented. The signal

148 detected by these magnetometers is amplified, digitized, and registered directly in the time

149 domain. The station is provided with a data acquisition system with a sampling frequency of

150 *fs*=256 Hz. The frequency response of the magnetometers ranges from a few tenths of a hertz to

151 45 Hz. Frequencies from 6 to 25 Hz have been calibrated, thus including the first three SR

modes, located around 8, 14, and 21 Hz, which are the target of the Sierra Nevada ELF station.

- 153 The analog to digital converter uses 16 bit to digitize samples in the range ± 10 V. The system
- 154 minimum resolution is therefore $10/215 = 3.052 \times 10^{-4}$ V. Saturation limits are fixed at ± 9.990
- 155 V.

The time domain data are processed using 10-minute long windows. For each window, the average of the amplitude spectra obtained using FFT in 10-second long intervals is calculated using the Hann window and a 5-second overlap (Welch method). A Lorentzian curve, which is the combination of three Lorentzian functions and a straight line, is fitted to the amplitude spectrum between the frequencies 6.35 Hz and 23.75 Hz, named in this paper as the fitting band. For further details of this method, see Rodríguez-Camacho et al. (2018). As a final result of the process, a file is generated for each month and sensor containing the following data:

- saturation level (ratio of saturated 10s long segments for each 10 min interval),
- amplitude spectrum for each 10 min interval,
- amplitude spectrum of the fitted signal, (the fitting curve)
- calibrated and fitting frequencies,
- fitting parameters, and
- UTC hour for the beginning of each 10 min interval.

169 The format is that generated by Numpy, a Python-based package (http://www.numpy.org). 170 As explained in Rodríguez-Camacho et al. (2018), there are 11 fitting parameters in the Lorentzian fitting function: 3 individual mode amplitudes, 3 resonant frequencies, 3 half peak 171 172 widths and 2 parameters corresponding to the linear part (the slope and the intercept). Once this fitting curve has been obtained, the global mode amplitudes are obtained as the value of the 173 174 function at resonant frequencies. Also, from the maximum values of the fitting curve, we get the 175 local maximum amplitudes, and the frequencies at which these maximum values appear are the 176 local maximum frequencies. The local maximum amplitudes, together with the local maximum 177 frequencies, will be used for the long-term analysis as they best describe the global behavior of 178 the SRs. They will be noted as P_i (local maximum amplitudes) and fp_i (local maximum 179 frequencies), the subindex i representing the mode (i=1,2,3). The integral of the power spectrum 180 over the fitting bandwidth (6.35 - 23.75 Hz) has also been included as a parameter for the study 181 as the power spectrum integral (PSI) of the magnetic field recorded in each sensor.

As commented above, the study of the regular variations of the SRs is based on the fitting parameters obtained by the Lorentzian fit, calculated for each 10-min interval records. For some intervals, the parameter values are unacceptable. This can be due to different reasons (strong lightning activity near the station, bad performance of the Lorentzian fitting algorithm, etc). For this reason, a mask is used to discard the 10-min intervals for which the values of the amplitudes 187 or the central frequencies are unacceptable. The acceptable values for the amplitudes and for the

188 central frequencies are shown in Table 1.

189

	P ₁ (pT/sqrt(Hz)	fp ₁ (Hz)	P ₂ (pT/sqrt(Hz)	fp ₂ (Hz)	P ₃ (pT/sqrt(Hz)	fp ₃ (Hz)
Lower limit	0.13 - 0.10	6.80 - 6.70	0.10 - 0.08	13.18 -12.82	0.08 - 0.08	19.15 - 18.40
Upper limit	0.80 - 0.80	8.35 - 8.22	0.80 - 0.80	15.19 - 14.98	0.80 - 0.80	21.98 - 22.60

190 Table 1. Lowest and highest acceptable values for the local maximum amplitudes (P₁, P₂, P₃₎ and

191 the local maximum frequencies (fp_1, fp_2, fp_3) for the three first modes. In each cell, the first and

192 the second values correspond, respectively, to the NS and to the EW components.

194 In order to have a global picture of the data recorded by the Sierra Nevada ELF station,

the power spectrum integral (PSI) is shown in Figure 1 for both sensors. The days are

196 represented in the horizontal axis and the 10 min intervals of the day are represented in the

vertical axis. The PSI values are shown using the colormap on the right side of the chart. The

dashed white line indicates the dusk and dawn times. Vertical white lines correspond to missingdata.

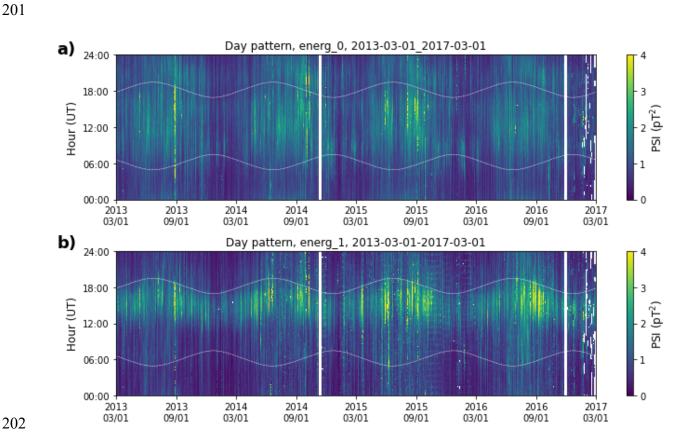
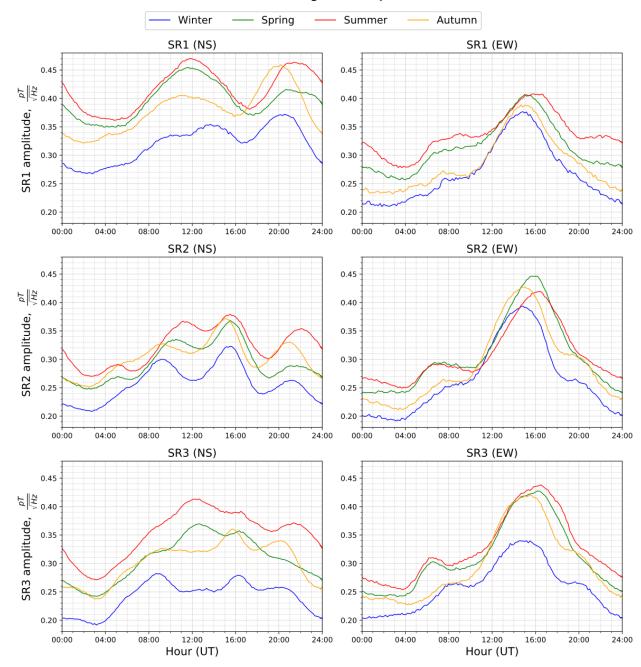
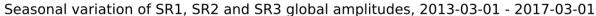


Figure 1. Power spectrum integral (PSI) for the recordings at Sierra Nevada ELF station, from 203 03/2013 to 02/2017. 204

205 **3 DIURNAL VARIATIONS**

206 3.1 DIURNAL VARIATIONS FOR SEASONAL PERIODS


207 The local maximum amplitudes of each horizontal magnetic field component are shown 208 in Figure 2 for each mode through a day (diurnal variations), averaged within each one of the 4 astronomical seasons for the period of 4 years (from March 2013 to February 2017). A 209 comparison of the amplitude of each magnetic field component with those shown in Zhou et al. 210 211 (2013) from ELF stations located in China, the proximity of the MC thunderstorms make the 212 amplitude in the Chinese stations be higher than in the Sierra Nevada station. The amplitude obtained in Sierra Nevada station oscillates between 0.20 and 0.45 pT/sqrt(Hz) whereas in Zhou 213 214 et al. (2013) it oscillates between 0.4 and 1.2 pT/sqrt(Hz). The different thunderstorm chimneys and their impact on each component of the horizontal magnetic field can be clearly noted. It can 215 be seen that the African thunderstorms are dominant about 1500 UT in the EW component, 216 217 whereas in the NS magnetometer the thunderstorms in the Maritime Continent (MC) and 218 America are detected with intensity peaks at 1030 and 2000 UT respectively, although the exact 219 maximum time varies with the season.

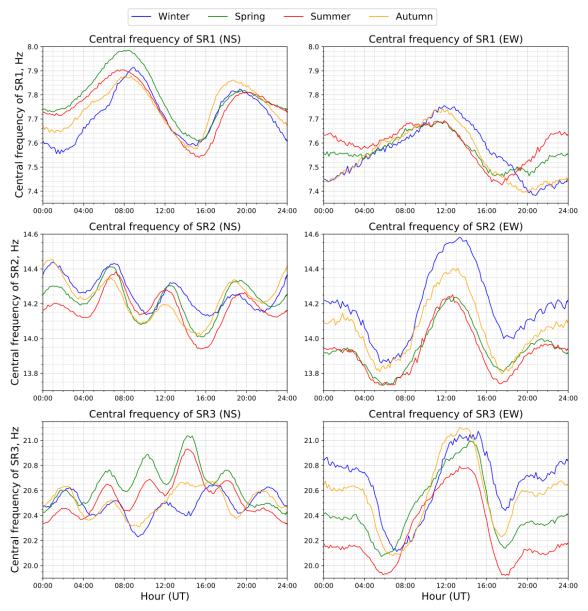

220 In the NS component the MC activity starts rising at 0400 UT and hits a maximum about 221 1030 UT for the first mode. This maximum amplitude recorded at Sierra Nevada in this sensor

222 may be due to the superposition of the MC thunderstorms and other thunderstorms that would be

- located at an intermediate distance, like India. Other authors, like Price & Melnikov (2004) and
- 224 Zhou et al. (2013), report that the maximum amplitude for the first mode about 0800 UT
- corresponds to the MC thunderstorms but this peak does not appear in the Sierra Nevada data.
 The reason for this may be due to the different years of the data used in the three works. For this
- chimney, the amplitude is dominant in the summer, followed by the spring, the autumn and far
- below the winter. This situation also occurs for the American thunderstorms, but this chimney
- shows more activity in the autumn than in the spring. The time at which this American peak
- happens has a strong seasonal dependence. The smallest intensity for this chimney is observed in
- the winter, though it is the most active thunderstorm center in the winter and for the first mode
- for all the day. In addition, throughout the day a drop in the amplitude of the 2nd and 3rd modes
- is observed with regard to the 1st mode, and the 2nd and 3rd modes are very sensitive to the A frican thunderstorms (between 1500 and 1600 UT)
- African thunderstorms (between 1500 and 1600 UT).

235 For the EW component, which is more sensitive to the African thunderstorms, the 236 amplitude and shape are similar in the three modes. An amplitude peak is observed in the three modes about 1500 UT and it has a stronger activity in the summer for the 1st and the 3rd modes, 237 238 whereas the 2nd mode is higher in the spring. A change in the time of this maximum is observed 239 when the seasons change. It goes from 1600 to 1500 UT from the summer, spring, autumn and 240 winter, and its amplitude also decreases in this order (except in the 2nd mode, for which summer 241 and spring exchange maximum amplitudes as previously noted). This peak in the summer, due to 242 the African thunderstorms, cannot be justified by the lightning observations in Blakeslee (2014), 243 where the African thunderstorms have a minimum activity in the summer. This discrepancy 244 could be due to the different years used for observation in both studies. The EW magnetometer 245 also collects a minor peak about 0600 UT, observed mainly in summer and spring, which could 246 be connected to the nighttime thunderstorms in Africa (Belyaev et al., 1999). This nighttime 247 peak is also present in Price & Melnikov (2004).

250

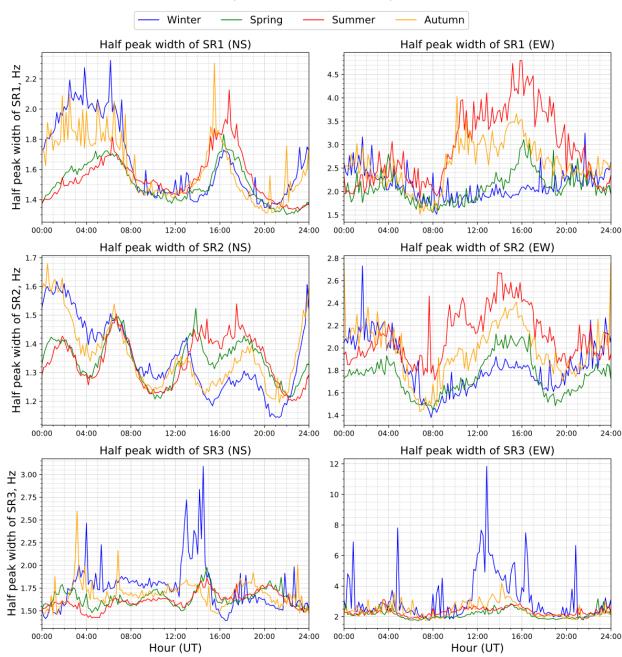

Figure 2. Diurnal variations of the peak amplitudes (global maximum amplitudes) for the three
 first modes (SR1, SR2 and SR3), in the different seasons over the recording period (2013-2017).
 The left column corresponds to the NS magnetometer and the right one to the EW magnetometer.

Each row corresponds to a different mode (SR1, SR2 and SR3).

The diurnal variations of the mode central frequencies (the local maximum frequencies) for the first three modes, seasonally averaged, are shown in Figure 3. These variations of the

- 257 central frequencies are linked to the source-observer geometry (e.g., Toledo-Redondo et al.,
- 258 2010, 2016). For both sensors, the minimum and maximum frequencies observed depend a lot on
- the mode, the hour of the day and the temporal definitions of the seasons themselves, as it will be
- shown below. In the Sierra Nevada records, unlike in other ELF stations (Price & Melnikov,
- 261 2004; Zhou et al., 2013), there is not a strong seasonal dependence of the diurnal frequency
- variation. A transition from 'winter-type' to 'summer-type' diurnal frequency variation is not
- 263 observed.

Seasonal variation of SR1, SR2 and SR3 central frequencies, 2013-03-01 - 2017-03-01

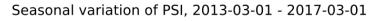

Figure 3. Diurnal variations of the central frequencies (global maximum frequencies) for the three first modes, in the different seasons over the recording period (2013-2017). The

- left column corresponds to the NS magnetometer and the right one to the EW
 magnetometer. Each row corresponds to a different mode (SR1, SR2 and SR3).
- 269

270 The analysis of the resonant peak frequency diurnal variations shows a different behavior 271 for the NS and EW components. For the NS component, the number of maxima and minima 272 observed increases by two for each mode, starting from two maxima and two minima for the first 273 mode. The first mode frequency is highest about 0800 UT and 2000 UT, and lowest about 0300 274 UT and 1500-1600 UT. These maxima and minima are also observed in the second mode at the same times, together with two more maxima about 0100 UT and 1200 UT and two more minima 275 276 about 1000 UT and 2300 UT. In the second mode, more evident distinctions appear among the different seasons, but the general pattern is still conserved. However, for the third mode there is a 277 278 clear distinction between the spring-summer seasons and the autumn-winter seasons. It is 279 remarkable that the third mode frequency is highest about 1400 UT in spring-summer while it 280 shows a relative minimum in winter at the same hour.

281 For the EW component the diurnal peak frequency variation for the three modes reflects a 282 rather similar pattern, with a remarkable maximum value. The highest frequency appears at 1200 283 UT, 1300 UT and 1400 UT respectively, for each mode in all season. Also, a relative maximum 284 is seen around 0000 UT that, for the first mode, is highest in the summer and it is smaller, in a 285 decreasing order, in spring, autumn and winter. For the second and third modes, the order is reversed. Minimum frequencies appear about 0600-0700 UT and 1800 UT for the second and the 286 287 third modes, while for the first mode there is a clear lowest that occurs about 1700 UT in spring-288 summer and about 2000 and 2100 UT in autumn and winter respectively.

Regarding the widths of the resonances, they show a more fluctuating behavior than the other parameters. In Figure 4, it can be observed that these fluctuations do not depend much on the season and they are similar for both NS and EW components. The widths are higher for the EW sensor than for the NS sensor for all the modes. It is lowest in the second mode. For the third mode, in the winter, several peaks are observed in the width in the EW sensor: it shows values around or higher than 7 Hz, whereas it shows values between 3 and 3.5 Hz in the other seasons.



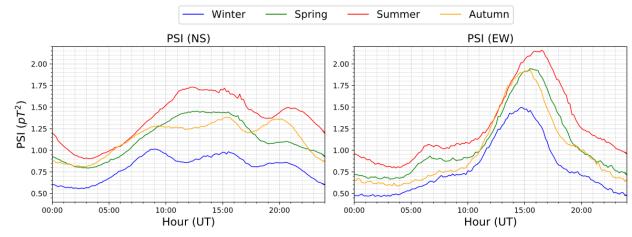

297

Figure 4. Diurnal variations of the widths of the resonances for the three first modes, in the different seasons over the recording period (2013-2017). The left column corresponds to the NS magnetometer and the right one to the EW magnetometer. Each row corresponds to a different mode (SR1, SR2 and SR3).

An analysis of the power spectrum integral (PSI) is shown in Figure 5 for the different seasons. This parameter is sensitive (in a nonlinear way) to the contributions of the three modes,

- 304 thus it can be a good indicator to be compared to the direct lightning observations from satellites,
- 305 like that presented in Blakeslee et al. (2014). As in previous results, we can observe in sensor NS
- 306 the activation of the thunderstorms in North America in the summer and autumn and in South 307 America in the winter about 2100; with respect to the Asian thunderstorms (mainly observed in
- 308 the NS sensor) they are maximum in the summer and the spring and we can also see the
- activation of Australian thunderstorms in the winter about 0800 UT. There are though some
- 310 differences between the observations via satellite and those obtained from the SRs: the peak
- 311 detected in the EW sensor about 0500 UT in the summer and spring (which possibly comes from
- 312 African thunderstorms, as it has been commented previously) does not appear in Blakeslee et al.
- 313 (2014); in the EW sensor, the African thunderstorms cause a maximum around 1600 UT in the
- 314 (boreal) summer, whereas in Blakeslee et al. (2014) they show a minimum activity in the
- 315 (boreal) summer.

316

Figure 5. Diurnal variations of the power spectrum integral (PSI) for the different
seasons over the recording period (2013-2017), in the frequency range 6.35 – 23.75 Hz.
The left chart corresponds to the NS magnetometer and the right one to the EW
magnetometer.

321 A definition of 'Electromagnetic Seasons' (EM) based on SR measurements and a 322 numerical model is made in Nickolaenko et al. (2015). The summer is set to last from June to 323 September, the winter is set to last from February until March, and the rest of months belong to 324 the spring or to the autumn. The diurnal variations seasonally averaged, taking into account the 325 setting of the seasons made by Nickolaenko et al. (2015), are shown in Figure 6 for the PSI 326 parameter. It is interesting to compare the diurnal variations of the different parameters for both 327 sets of seasons, the astronomical seasons in Figure 5 to the electromagnetic seasons in Figure 6. 328 It can be noted that the seasonally averaged diurnal variations are in phase for the different

329 seasons, i.e. the maxima and minima appear at the same UT hour for all seasons. A clear 330 difference between EM summer and the other EM seasons is also clearly shown.

Seasonal variation of PSI, 2013-03-01 - 2017-03-01

332 Figure 6. Diurnal variations of the power spectrum integral (PSI) for the different 333 electromagnetic seasons over the recording period (2013-2017). The left chart 334 corresponds to the NS magnetometer and the right one to the EW magnetometer.

335

331

336 **3.2 ANNUAL DIURNAL VARIATIONS**

337 Another interesting indicator is the study of the diurnal variations of a parameter for a 338 specific month over different years. The diurnal variations for the months of September, 339 December and February are shown in Figure 7 over several years for which the recordings at the 340 Sierra Nevada station are available. The parameter plotted is the first mode peak amplitude for 341 each one of the horizontal components. This figure is similar to (c), (d) and (e) in figure 3 in E. 342 Williams et al. (2021). More precisely, Figure 7 is similar to the plot of the data from 343 Eskdalemuir station, located in a similar latitude to the Sierra Nevada station, with the only 344 difference that the amplitude in the EW component was slightly higher in February 2016, than in 345 2014. These results confirm the conclusions on an intensification of the SRs during the transition 346 months that precede the super El Niño episode that happened at the end of 2015 and the 347 beginning of 2016. We can note an intensification of the SRs in September 2014, with a 348 maximum intensification from December 2014 to February 2015. We can also confirm a 349 decrease in the thunderstorm activity in the declining phase of the phenomenon in February 350 2016, though in Sierra Nevada this decrease is lower in the EW sensor than that observed in the Eskadalemuir station (Williams et al., 2021). 351

352 Another interesting result is related to the power spectrum integral (PSI). In Figure 8 the 353 NS component is shown and it can be observed that two different patterns can be noted. One of them corresponds to the autumn-winter, where the three main thunderstorm centers are observed, 354 355 with a predominance of the MC center in winter and American center in autumn. The other one 356 corresponds to the summer, where African thunderstorms are dominant. However, in Figure 9, 357 for the EW component -the most sensitive to Africa- and over the different years of recording,

- 358 the pattern repeats all the months with only a slight reduction in the maximum during winter
- 359 months, especially in December and January.

360 In Figures 8 and 9 it can be noted that the differences among the years last for the whole 361 day, i.e., when a parameter is higher than usual for a certain year, it is higher for every time of 362 the day. This feature is observed in all the parameters analyzed, even those not shown in these

363 figures. This could indicate that there is some mechanism that affects SR on a global scale.

364

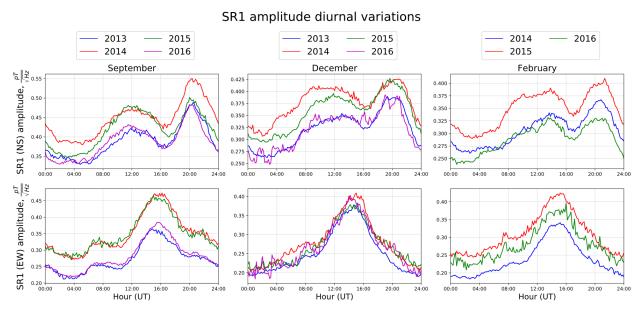
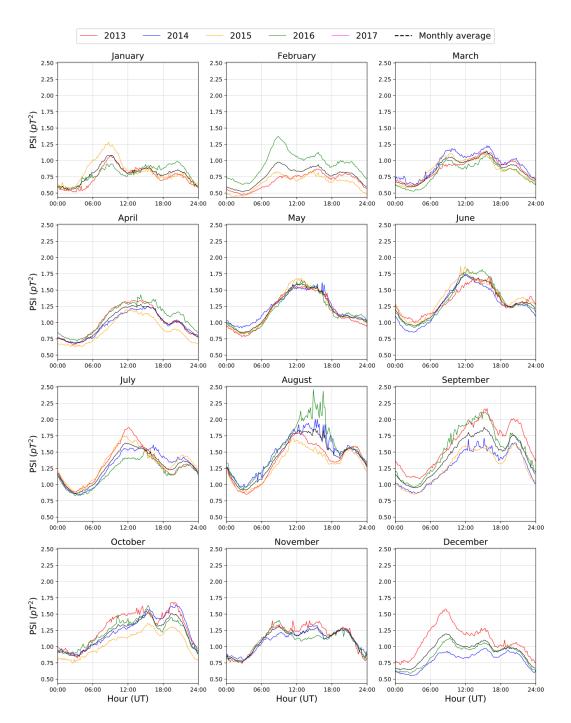
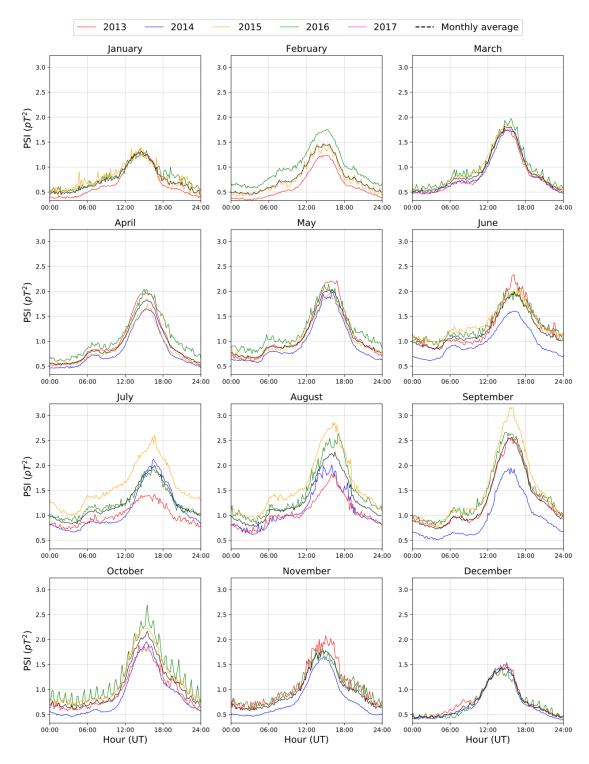



Figure 7. First mode peak amplitude annual diurnal variations for each one of the
 horizontal components for the months of September, December and February, for several
 years.


369

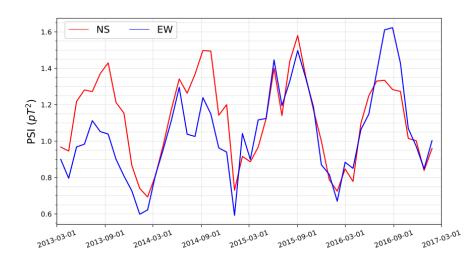
373

Figure 8. Monthly averaged diurnal variations of the power spectrum integral (PSI) during the whole recording period of the station for the NS sensors.

374

Figure. 9. Monthly averaged diurnal variations of the power spectrum integral (PSI)
during the whole recording period of the station for the EW sensors.

378 **4 DAILY VARIATIONS**

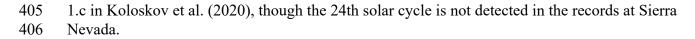

379 After studying the diurnal variations, the evolution of the parameters over the time will

380 be addressed by averaging their values for a certain time span, which will range from 1 to 6

381 months. In all the cases, the variation of this average is shown for the 4 years for which the records are available.

382

383



384

385 Figure 10. Power Spectrum Integral (PSI) averaged every 30 days, for both NS (red) and 386 EW (blue) components.

387 The PSI for both NS and EW sensors, averaged every 30 days, is shown in Figure 10. 388 Three clear periods can be observed. The first one goes from 2013 to the beginning of 2015, 389 where the NS component amplitude exceeds the EW one. The second period extends over almost 390 the whole 2015, where both components have the same amplitude. The third period begins in 391 2016, and the EW amplitude exceeds the NS one. It is difficult to determine which 392 thunderstorms centers are most active from the PSI observations, since the contribution of the 393 different modes varies with each center due to the source-observer distance. But it is clear that 394 from the end of 2014 to the beginning of 2015 there was a transition period in which the source 395 of the SRs changed. These results agree with the ENS-ONI Index values presented in Williams 396 et al. (2021), since this period corresponds to a transition year from the Niña period to the Super 397 El Niño phenomenon.

398 In order to study the inter annual parameter variations and to correlate them to different 399 phenomena in this time scale (e.g. the solar cycle), the mode peak frequency variations are 400 shown in Figure 11 for the three modes, semi-annually averaged, to identify the referred inter 401 annual variations. We can see some of the conclusions in Koloskov et al. (2020), connected to a 402 tracking of the first mode resonant frequency and the 11-years cycle solar activity, during a period of large solar activity (2011 to 2017), which had a rise in 2014. The evolution of the peak 403 404 frequency for the first mode presented in Figure 11, upper row, is very similar to that in figure

408 Figure 11. Peak frequency daily variations averaged for a 180 days time span for both
409 NS (red) and EW (blue) sensors. Each row corresponds to a mode, from the first to the
410 third respectively.

407

412 Regarding the peak frequencies for the second and third modes it can be noted, in the 413 semi-annually averaged data, that the frequencies also tend to decrease during the years except 414 for the sensor EW in the third mode, when a notable rise occurs in 2016, but it is soon followed

- 415 by a new decreasing trend. In these modes, in particular for the EW sensor, a steady semi-annual
- 416 periodicity is observed in the maxima and the minima of the peak frequency.
- 417

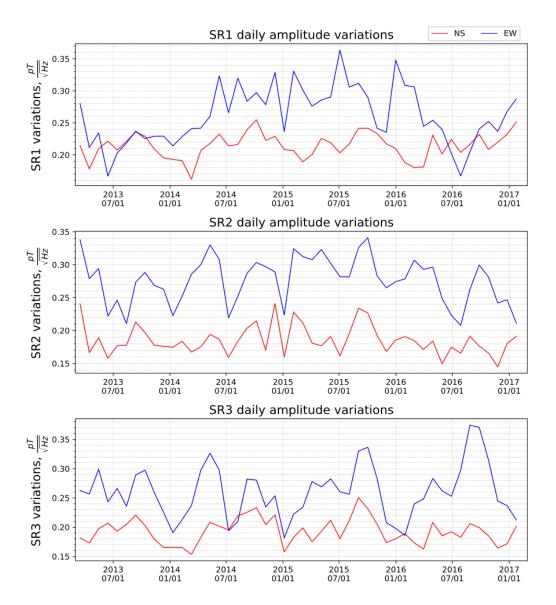


Figure 12. Daily variations of the peak amplitudes, averaged over 30 days, for the three
first modes SR1, SR2 and SR3, in the first, the second and the third row, respectively.
The NS sensor is plotted in red, and the EW sensor is in blue.

Another relevant concern about the time evolution of the different parameters is the minimum to maximum range of their diurnal variations. The variation of the first mode frequency for the electric field has been linked to the size of the thunderstorm center, but there is not a theoretical base on the magnetic field parameters. Figures 12 and 13 show the peak and frequency daily ranges respectively. We can see that for a 30 days average, the variations that show all the parameters in all the modes are higher for the EW sensor than for the NS sensor. In

- 428 the EW sensor we can clearly see an increase in the variations of the central frequency of the
- second mode in the year 2015. It can also be noted that no annual variations are observed in anyparameter.

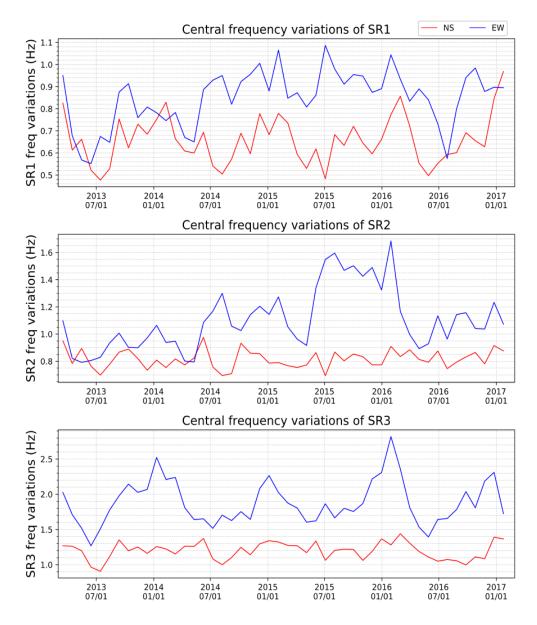


Figure 13. Daily variations of the central frequencies, averaged over 30 days, for the
three first modes SR1, SR2 and SR3, in the first, the second and the third row,
respectively. The NS sensor is plotted in red, and the EW sensor is in blue.

- 435
- 436

437 **5 CONCLUSIONS**

438 In this work we present a detailed analysis of the regular variations of the Schumann 439 resonances during the period March 2013 – February 2017, using Sierra Nevada station 440 (37°02'N, 3°19'W) ground-based magnetometers. Each component of the magnetic field 441 measured has been processed by fitting Lorentzian functions to the amplitude spectrum, in a 442 bandwidth of (6.35-23.75) Hz, for each 10 minutes interval of data. The regular variations of the 443 SRs have been studied using the following parameters: peak amplitudes, central frequencies, the 444 widths of the resonances and the power spectrum integral (PSI) for the three first modes. The 445 processed data for the entire measurement period of the station made public along with this 446 work, and they are presented in a Numpy npz format, which allows easy reading and subsequent 447 processing.

- 448 The main findings can be summarized as follows:
- 1. The general characteristics of the three main storm centers on Earth, Africa, CM and America, in terms of their diurnal evolution have been confirmed. There is a predominance of stormy activity in summer and minimal in winter. The first exhibits the larger intensity and the second the longest daily duration. An additional activation time, around 06:00 UT, is observed for African storm center.
- 454 2. SR2 and SR3 diurnal peak amplitudes of the NS sensor are very sensitive to the African 455 storm center. Diurnal peak amplitudes of SR1-3 in the EW sensor are similar in shape, 456 while for NS sensor the shape changes for each mode. Regarding the diurnal variation of 457 the frequency, a very different pattern is observed between the EW and NS sensors, but 458 no strong seasonal variations are observed. Sierra Nevada measurements do not exhibit a 459 transition from winter-type to summer-type variations in the diurnal variations of the 460 central frequencies. Since that parameter is related to the source-observer distance (e.g. 461 Toledo-Redondo et al., 2016), different stations are expected to exhibit different seasonal 462 patterns. The widths of the resonances are highly fluctuating and it is very difficult to 463 draw conclusions from the measurements. It is observed that the widths are greater for the EW sensor than for the NS. 464
- 3. The peak amplitudes of diurnal averages measured by Sierra Nevada station are roughly
 half of the peak amplitudes reported by the stations in China. This difference can be
 attributed to the relative distance of each station to the storm centers. In addition, Sierra
 Nevada station does not detect a peak in activity around 08:00 UT, that activity is shifted
 to 10:30 UT. This may be explained by the different years considered in our study, but
 this requires further investigation.
- 471
 4. The African storm center exhibits maximums of activity during boreal summer,
 472 according to our SR records. This is not well supported by global lightning data from
 473 satellites (e.g., Blakeslee (2014)). A unified database involving several stations around
 474 the globe would be desirable to further test these results.
- 5. Diurnal variations of PSI evolve with electromagnetic seasons rather than astronomical seasons.

- 477
 6. Predictions by Williams et al. (2021) about the effect of El Niño on SR are confirmed in our first mode peak amplitude annual diurnal variations measurements. There are also variations between EW and NS sensors: the former shoes a repeating pattern every month, while the latter has different patterns during summer and winter months.
- 481
 482
 482
 483
 7. We find signatures in our daily variations study of the Super El Niño phenomenon during 2015 and 2016, as indicated by Williams et al. (2021). We also find evidence of the solar cycle influence to SR, as in Koloskov et al. (2020).
- 484 8. Daily variations of different parameters are stronger for EW sensor than for NS sensor.

485 Acknowledgments, Samples, and Data

- 486 This work has been supported by the investigation research project FIS2017-90102-R, of the
- 487 Ministry of Economy and Competitiveness (MINECO) cofinanced by the Fund European
- 488 Regional Development (FEDER), and the Ministry of Education, Science and Sport of Spain
- through the FPU grants for PhD studentship (reference: FPU15/04291. We are grateful to Parque
- 490 Nacional Sierra Nevada for providing support to the project. The data set of this paper will be
- available from http://hdl.handle.net/XXXX (At the moment we do not have a public repository
 for the data. Reviewers can access them (using Filezilla for example) through the server:
- 493 sftp://balanis.ugr.es ; user: reviewers ; password: schumann2021 and port: 22.
- 494

495 **References**

- 496
- Balser, M., & Wagner, C. A. (1960). Observations of Earth-ionosphere cavity resonances.
 Nature, 188, 638-641. https://doi.org/10.1038/188638a0
- Belyaev, G. G., Schekotov, A. Y., Shvets, A. V., & Nickolaenko, A. P. (1999). Schumann
 resonances observed using Poynting vector spectra. *Journal of Atmospheric and Solar- Terrestrial Physics*, 61(10), 751-763. https://doi.org/10.1016/S1364-6826(99)00027-9
- Besser, B. P. (2007). Synopsis of the historical development of Schumann resonances. *Radio Science*, 42(2), RS2S02. https://doi.org/10.1029/2006RS003495
- Betz, H. D., Schumann, U., & Laroche, P. (Eds.). (2009). Lightning: Principles, Instruments and
 Applications: Review of Modern Lightning Research. Springer Netherlands.
 https://doi.org/10.1007/978-1-4020-9079-0
- Blakeslee, R. J., Mach, D. M., Bateman, M. G., & Bailey, J. C. (2014). Seasonal variations in the
 lightning diurnal cycle and implications for the global electric circuit. *Atmospheric Research*, *135-136*(Supplement C), 228-243.
 https://doi.org/10.1016/j.atmosres.2012.09.023
- 511 Christian, H. J., et al., Global frequency and distribution of lightning as observed from space by
 512 the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005,
 513 doi:10.1029/2002JD002347, 2003.
- Fornieles-Callejón, J., Salinas, A., Toledo-Redondo, S., Portí, J., Méndez, A., Navarro, E. A.,
 Morente-Molinera, J. A., Soto-Aranaz, C., & Ortega-Cayuela, J. S. (2015). Extremely

516 517	low frequency band station for natural electromagnetic noise measurement. <i>Radio Science</i> , 50, 191-201. https://doi.org/10.1002/2014RS005567
518	Füllekrug, M., & Fraser-Smith, A. C. (1997). Global lightning and climate variability inferred
519	from ELF magnetic field variations. <i>Geophysical Research Letters</i> , 24(19), 2411-2414.
520	https://doi.org/10.1029/97GL02358
521 522 523 524	 Koloskov, A. V., Nickolaenko, A. P., Yampolsky, Y. M., Hall, C., & Budanov, O. V. (2020). Variations of global thunderstorm activity derived from the long-term Schumann resonance monitoring in the Antarctic and in the Arctic. <i>Journal of Atmospheric and</i> <i>Solar-Terrestrial Physics</i>, 201, 105231. https://doi.org/10.1016/j.jastp.2020.105231
525	 Kulak, A., Kubisz, J., Michalec, A., Zięba, S., & Nieckarz, Z. (2003). Solar variations in
526	extremely low frequency propagation parameters: 2. Observations of Schumann
527	resonances and computation of the ELF attenuation parameter. <i>Journal of Geophysical</i>
528	<i>Research: Space Physics</i> , 108(A7). https://doi.org/10.1029/2002JA009305
529	Melnikov, A., Price, C., Sátori, G., & Füllekrug, M. (2004). Influence of solar terminator
530	passages on Schumann resonance parameters. <i>Journal of Atmospheric and Solar-</i>
531	<i>Terrestrial Physics</i> , 66(13), 1187-1194. https://doi.org/10.1016/j.jastp.2004.05.014
532	Nickolaenko, A. P., & Hayakawa, M. (2002). <i>Resonances in the Earth-Ionosphere Cavity</i> .
533	Kluwer Acad., Dordrecht, Netherlands.
534	Nickolaenko, A. P., & Hayakawa, M. (2014). Schumann Resonance for Tyros. Springer, Japan.
535 536 537	Nickolaenko, A. P., Hayakawa, M., & Hobara, Y. (1999). Long-term periodical variations in global lightning activity deduced from the Schumann resonance monitoring. <i>J. Geophys. Res.</i> , <i>104(D22)</i> , 27585-27591.
538	Nickolaenko, A. P., & Rabinowicz, L. M. (1995). Study of the annual changes of global
539	lightning distribution and frequency variations of the first Schumann resonance mode.
540	<i>Journal of Atmospheric and Terrestrial Physics</i> , <i>57</i> (11), 1345-1348.
541	https://doi.org/10.1016/0021-9169(94)00114-4
542 543 544 545	 Nickolaenko, A. P., Sátori, G., Zieger, B., Rabinowicz, L. M., & Kudintseva, I. G. (1998). Parameters of global thunderstorm activity deduced from the long-term Schumann resonance records. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i>, 60(3), 387-399. https://doi.org/10.1016/S1364-6826(97)00121-1
546 547 548	Nickolaenko, A. P., V, K. A., Hayakawa, M., M, Y. Y., V, B. O., & E, K. V. (2015). 11-year solar cycle in Shumann resonance data as observed in Antartica. <i>Sun and Geosphere</i> , <i>10</i> (1), 39-49.
549	Nickolayenko, A. P., Shvets, A., & Hayakawa, M. (2016). <i>Extremely Low Frequency (ELF)</i>
550	<i>Radio Wave Propagation: A review. 2</i> , 91.
551	Ondrášková, A., Kostecký, P., Ševčík, S., & Rosenberg, L. (2007). Long-term observations of
552	Schumann resonances at Modra Observatory. <i>Radio Science</i> , <i>42</i> (2), RS2S09.
553	https://doi.org/10.1029/2006RS003478
554 555	Ondrášková, A., Ševčík, S., & Kostecký, P. (2011). Decrease of Schumann resonance frequencies and changes in the effective lightning areas toward the solar cycle minimum

556 557	of 2008–2009. Journal of Atmospheric and Solar-Terrestrial Physics, 73(4), 534-543. https://doi.org/10.1016/j.jastp.2010.11.013
558 559 560	Ouyang, XY., Xiao, Z., Hao, YQ., & Zhang, DH. (2015). Variability of Schumann resonance parameters observed at low latitude stations in China. <i>Advances in Space Research</i> , <i>56</i> (7), 1389-1399. https://doi.org/10.1016/j.asr.2015.07.006
561 562	Price, C. (2016). ELF Electromagnetic Waves from Lightning: The Schumann Resonances. <i>Atmosphere</i> , 7(9), 116. https://doi.org/10.3390/atmos7090116
563 564 565	Price, C., & Melnikov, A. (2004). Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 66(13–14), 1179-1185. https://doi.org/10.1016/j.jastp.2004.05.004
566	Rodríguez-Camacho, J., Fornieles, J., Carrión, M. C., Portí, J. A., Toledo-Redondo, S., &
567 568 569	Salinas, A. (2018). On the Need of a Unified Methodology for Processing Schumann Resonance Measurements. <i>Journal of Geophysical Research: Atmospheres</i> , <i>123</i> (23), 13,277-13,290. https://doi.org/10.1029/2018JD029462
570 571 572	Sátori, G. (1996). Monitoring schumann resonances-II. Daily and seasonal frequency variations. <i>Journal of Atmospheric and Terrestrial Physics</i> , <i>58</i> (13), 1483-1488. https://doi.org/10.1016/0021-9169(95)00146-8
573 574 575	Sátori, G., Williams, E., & Lemperger, I. (2009). Variability of global lightning activity on the ENSO time scale. 13th International Conference on Atmospheric ElectricityICAE 2007, 91(2–4), 500-507. https://doi.org/10.1016/j.atmosres.2008.06.014
576 577 578	Sátori, G., Williams, E., & Mushtak, V. (2005). Response of the Earth–ionosphere cavity resonator to the 11-year solar cycle in X-radiation. <i>Journal of Atmospheric and Solar-</i> <i>Terrestrial Physics</i> , 67(6), 553-562.
579 580 581	Sátori, G., & Zieger, B. (1996). Spectral characteristics of Schumann resonances observed in central Europe. <i>Journal of Geophysical Research: Atmospheres</i> , <i>101</i> (D23), 29663-29669. https://doi.org/10.1029/96JD00549
582 583	Sátori, Gabriella, & Zieger, B. (1999). El Niño related meridional oscillation of global lightning activity. <i>Geophys. Res. Lett.</i> , 26(10), 1365-1368.
584 585 586	Schumann, W. O. (1952). Über die stralungslosen Eigenschwingungen einer leitenden Kugel die von einer Luftschicht und einer Ionospärenhle umgeben ist. <i>Z. Naturforsch.</i> , <i>7a</i> , 149-154. https://doi.org/10.1515/zna-1952-0202
587 588 589	Sekiguchi, M., Hayakawa, M., Nickolaenko, A. P., & Hobara, Y. (2006). Evidence on a link between the intensity of Schumann resonance and global surface temperature. <i>Ann. Geophys.</i> , 24(7), 1809-1817. https://doi.org/10.5194/angeo-24-1809-2006
590 591 592 593	Simões, F., Pfaff, R., Berthelier, JJ., & Klenzing, J. (2012). A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms. Space Science Reviews, 168(1-4), 551-593. https://doi.org/10.1007/s11214- 011-9854-0
594 595	Surkov, V., & Hayakawa, M. (2014). Ultra and Extremely Low Frequency Electromagnetic Fields. Springer.

596 597 598 599	Toledo-Redondo, S., A. Salinas, J. Portí, J. A. Morente, J. Fornieles, A. Méndez, J. Galindo- Zaldívar, A. Pedrera, A. Ruiz-Constán, and F. Anahnah (2010), Study of Schumann resonances based on magnetotelluric records from the western Mediterranean and Antarctica, J. Geophys. Res., 115, D22114, doi:10.1029/2010JD014316.
600 601 602	Toledo-Redondo, S., M. Parrot, and A. Salinas (2012), Variation of the first cut-off frequency of the Earth-ionosphere waveguide observed by DEMETER, J. Geophys. Res., 117, A04321, doi:10.1029/2011JA017400.
603 604 605	Toledo-Redondo, S., A. Salinas, J. Fornieles, J. Portí, and H. I. M. Lichtenegger (2016), Full 3-D TLM simulations of the Earth-ionosphere cavity: Effect of conductivity on the Schumann resonances, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA022083.
606 607 608 609 610	Williams, E., Bozóki, T., Sátori, G., Price, C., Steinbach, P., Guha, A., Liu, Y., Beggan, C. D., Neska, M., Boldi, R., & Atkinson, M. (2021). Evolution of Global Lightning in the Transition From Cold to Warm Phase Preceding Two Super El Niño Events. <i>Journal of</i> <i>Geophysical Research: Atmospheres</i> , 126(3), e2020JD033526. https://doi.org/10.1029/2020JD033526
611 612	Williams, Earle R. (1992). The Schumann Resonance: A global tropical thermometer. <i>Science</i> , 256(5060), 1184-1187. https://doi.org/10.1126/science.256.5060.1184
613 614	Williams, E.R. (2005). Lightning and climate: A review. Atmospheric Research, 76(1-4), 272-287. https://doi.org/10.1016/j.atmosres.2004.11.014
615 616 617	Zhou, H., Yu, H., Cao, B., & Qiao, X. (2013). Diurnal and seasonal variations in the Schumann resonance parameters observed at Chinese observatories. <i>Journal of Atmospheric and</i> <i>Solar-Terrestrial Physics</i> , 98, 86-96. https://doi.org/10.1016/j.jastp.2013.03.021
(10	