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Abstract

The shape of earthquake source spectra, traditionally fit by physics-based models, contains important parameters to constrain

rupture dimension, duration, and geometry. Here we apply machine learning (ML) to derive single-variable and double-variable

data-driven models of source spectra from 3675 Mw>5.5 global earthquakes, assuming that the Fourier transform of source time

functions well represent earthquake source spectra below 1 Hz. The single-variable ML model, in the same degree of freedom

as the Brune model, improves the goodness of fit by 8.5%. Specifically, the ML model fits the data without systematic bias,

whereas the Brune model tends to underestimate at intermediate frequencies and overestimate at high frequencies. The latter

discrepancy cannot be modelled by increasing the fall-off exponent in the Brune-type or the Boatwright-type models. The

double-variable ML model is compared to existing double-corner-frequency models and is found to capture the second-order

features such as the subtle curvature differences around the corner. Our results demonstrate that unsupervised machine learning

can extract hidden global characteristics of high-dimensional data and provide observational evidence to amend existing physical

models.
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2

14 Summary

15 The shape of earthquake source spectra, traditionally fit by physics-based models, contains 

16 important parameters to constrain rupture dimension, duration, and geometry. Here we apply 

17 machine learning (ML) to derive single-variable and double-variable data-driven models of 

18 source spectra from 3675 Mw >5.5 global earthquakes, assuming that the Fourier transform of 

19 source time functions well represent earthquake source spectra below 1 Hz. The single-variable 

20 ML model, in the same degree of freedom as the Brune model, improves the goodness of fit 

21 by 8.5%. Specifically, the ML model fits the data without systematic bias, whereas the Brune 

22 model tends to underestimate at intermediate frequencies and overestimate at high frequencies. 

23 The latter discrepancy cannot be modelled by increasing the fall-off exponent in the Brune-

24 type or the Boatwright-type models. The double-variable ML model is compared to existing 

25 double-corner-frequency models and is found to capture the second-order features such as the 

26 subtle curvature differences around the corner. Our results demonstrate that unsupervised 

27 machine learning can extract hidden global characteristics of high-dimensional data and 

28 provide observational evidence to amend existing physical models.

29

30 Key words: Seismology; Machine learning; Earthquake source observations.
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3

31 1 Introduction

32 The shape of earthquake source spectra is an important constraint on rupture processes. 

33 Corner frequency, fall-off rate, and curvature at corner are crucial parameters to infer stress 

34 drop, rupture dimension, geometry, duration and rupture velocity (Savage 1972; Chounet et al. 

35 2018; Shearer et al. 2019). Haskell (1964) assumed that a uniform displacement discontinuity 

36 propogates at constant rupture velocity on a rectangular fault, which results in the far-field 

37 displacement pulse as the convolution of two boxcar pulses. In frequency domain, the Haskell 

38 model spectrum is flat at a level proportional to seismic moment at low frequencies, decays as 

39  at intermediate frequencies, and  at high frequencies. Following the Haskell model, 𝜔 ―1 𝜔 ―2

40 Aki (1967) proposed the  theoretical model and derived a scaling law based on the 𝜔 ―2

41 assumption of self-similarity, meaning that large and small earthquakes are geometrically 

42 similar and the long-period amplitude is the inverse-cube power of the corner frequency. 

43 Brune (1970) suggested an influential form of source spectra:

44     (1)                                             𝐴(𝑓) = M0/[1 + (𝑓/𝑓𝑐)2]

45 Where  is the corner frequency,  is the seismic moment. A more general functional form 𝑓𝑐  M0

46 includes the path attenuation effects (Shearer 2019):

47     (2)𝐴(𝑓) = M0exp ( ―𝜋𝑓𝑡 ∗ )/[1 + (𝑓/𝑓𝑐)𝛾𝑛]1/𝛾

48 Where n represents the high-frequency fall-off rate and is associated with high-frequency 

49 energy radiation, and 𝛾 controls the curvature of the spectrum near the corner frequency. In 

50 this form, 𝛾=1 and n=2 for the  model; n=3 for the  model; n=2 and 𝛾=2 for the 𝜔 ―2 𝜔 ―3

51 Boatwright model (Boatwright 1978).

52 The Brune model (  model) is widely used to infer source parameters and generally 𝜔 ―2

53 agree with global average source spectra across different magnitudes (Abercrombie 2015; Ye 

54 et al. 2016a, b; Shearer et al. 2019). However, Kaneko & Shearer (2014) considered a two 

55 degrees of freedom model:

56     (3)𝐴(𝑓) = M0/[1 + (𝑓/𝑓𝑐)𝑛]

57 They obtained n = 2.2 to 2.9 for P-wave spectra and n =1.5 to 2.6 for S-wave spectra in the     
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4

58 frequency range of  in the cohesive-zone models of circular rupture. 0.05𝑓𝑐 ≤ 𝑓 ≤ 10𝑓𝑐

59 Uchide & Imanishi (2016) observed that the source spectra of most Mw 3.2-4.0 shallow 

60 earthquakes in Japan deviate from the Brune model and implies a fall-off exponent slightly 

61 higher than 2.

62 Models with double corner frequencies have also been proposed to fit complex source 

63 spectra. Denolle & Shearer (2016) suggested a double-  model to explain the source spectra 𝑓𝑐

64 of large subduction earthquakes (referred to as DS16 model hereafter) using the functional 

65 form:

66     (4)𝐴(𝑓) = M0/[ 1 + (𝑓/f𝑐1)2 1 + (𝑓/f𝑐2)2] 

67  Ji & Archuleta (2021) introduced two double-  models (one is self-similar, another is 𝑓𝑐

68 not), which can reproduce the mean peak ground acceleration (PGA) and mean peak ground 

69 velocity (PGV) for magnitudes 3.3–7.3. They reported that the magnitude dependencies of 

70 PGA and PGV are well explained by the nonself-similar double-  source model (referred to 𝑓𝑐

71 as JA21 model hereafter).

72 While the aforementioned physical models provide a generally good fit for source spectra, 

73 deviations may exist for specific earthquakes owing to various assumptions and calculations 

74 of source spectra made on the rupture process. Comparatively, machine learning allows 

75 extracting the hidden features of large datasets which could be otherwise invisible through 

76 physical models (Bergen et al. 2019). In this study, we employ a generative machine learning 

77 algorithm, called variational autoencoder (VAE), to learn data-driven models of source spectra 

78 for large earthquakes. We aim to answer a question: whether or not the source spectra of large 

79 earthquakes are the Brune-type on global average? Alternatively, are any systematic source 

80 characteristics not captured by the Brune-type model? 

81 This paper is organized as follows. First, we transform source time functions to source 

82 spectra. The spectra are normalized and fit with the Brune model to obtain the corner 

83 frequencies. Second, synthetic tests are used to prove that VAE can derive meaningful average 

84 spectra from a large dataset. Third, VAE is applied to learn the real source spectra of global 

85 earthquakes. We compare the single- and double-variable VAE models to the Brune and other 
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86 more complex models and discuss the consistency and discrepancy among them. Finally, we 

87 explore the possible physical implications of source spectra derived from the data and the 

88 potential limitations.

89

90 2 Data

91 Source spectra of global earthquakes used in this study are amplitude spectra of source 

92 time functions (STFs). We use the SCARDEC (Seismic source ChActeristics Retrieved from 

93 DEConvolvolving teleseismic body waves) (Vallée & Douet 2016) dataset, which consists of 

94 3675 large earthquakes with Mw >5.5 from January 1, 1992 to December 31, 2019. Vallée et 

95 al. (2011) deconvolved teleseismic waves with the Green’s functions and take local surface 

96 reflections for both source and receiver crusts as well as mantle attenuation (geometrical 

97 spreading and attenuation factors) into account. In addition, the SCARDEC method does not 

98 assume the same STF at each station and imposes no constraints on the spatial-temporal 

99 complexity of the rupture process. Overall, SCARDEC is advantageous in its full automation 

100 and thus provides a larger dataset for machine learning in this study. SCAREDEC provides 

101 two types of STFs, the optimal one among all stations and the average one of all stations. In 

102 this study we use the average STFs because they are relatively insensitive to possible outliers 

103 and generally more robust than the optimal ones. Moreover, it is less impacted by directivity 

104 effects that may exist on specific stations (Vallée & Douet 2016).

105 The STFs are first filled with zeros at the end of the STFs to keep the same time length 

106 (and hence the same frequency range and interval after Fourier transform). Each spectrum is 

107 normalized by seismic moment to only keep the shape. It is resampled evenly on the 

108 logarithmic scale to 128 points, which is the input size of the machine learning model. In this 

109 study, we reserve the frequency range up to 1 Hz to avoid the poorly constrained high-

110 frequency contents in STFs, which follows the presumption that the global models of 

111 attenuation are better constrained by seismic frequencies lower than 1 Hz (Danré et al. 2019; 

112 Denolle 2019; Yin et al. 2021). However, whether or not the frequency content below 1 Hz is 
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113 absolutely reliable remains arguable, which may have negative impact on our analyses and will 

114 be discussed in the last section.

115

116 3 Method

117 Generative modeling is a category of machine learning approaches to model the data 

118 implicitly (i.e. without clear physical meaning). It learns a probabilistic model that describes 

119 how a dataset is generated from input. With generative modeling, we could generate new 

120 plausible examples like a physical model by sampling probabilistic model. Generative 

121 adversarial networks (GANs) are a typical generative model and have been applied to 

122 earthquake early warning and seismic data augmentation (Li et al. 2018; Wang et al. 2021). 

123 However, GANs often suffers from unstable training (Salimans et al., 2016), as they do not 

124 have explicit constraints on the probability distribution. Comparatively, VAE, which is also a 

125 generative model, uses explicit constraints on the probability distribution and is able to 

126 reconstruct high-dimensional data from a compact latent representation (Kingma & Welling 

127 2013). Its functionality acts similarly to physical modeling (case-dependent parameters 

128 embedded in a shared functional form), and could be used to learn a model for earthquake 

129 source spectra directly from data.

130 A typical VAE model is composed of two parts, i.e. an encoder and a decoder. The encoder 

131 compresses the input to a compact latent representation, whereas the decoder reconstructs the 

132 input from the latent representation. The bottleneck structure forces the model to learn the 

133 primary features of the data. The VAE’s loss function in this analysis is defined as:

134 𝑙𝑜𝑠𝑠 = ||
𝑆𝑚𝑜𝑑𝑒𝑙 ― 𝑆𝑟𝑎𝑤

𝑓𝑟𝑒𝑞 ||
2

+ 𝐾𝐿[ℕ(𝜇𝑧,𝜎𝑧) ― ℕ(0,1 )]

135 where the first term is the root mean square between the reconstructed and original source 

136 spectra, and the second is the Kullback-Leibler divergence which measures the difference 

137 between latent variables and normal distribution. After training, the VAE acts in a manner 

138 similar to the physical Brune model: for a given source spectrum, the encoder obtains the latent 

139 parameter (like the  of the Brune model) and the decoder reconstructs the source spectra 𝑓𝑐
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140 (like the fit curve of the Brune model). The difference is that VAE model is data-driven (from 

141 data directly) and the model parameter is implicit, whereas the Brune model is physics-based 

142 (from theoretical assumptions of source process) and the model parameter has explicit physical 

143 meaning.

144 We construct the VAE architecture following Li (2022) (Fig. 1). The encoder and the 

145 decoder have two fully connected layers, and each layer has 256 neurons. We first use only 

146 one latent variable in VAE to keep the same degree of freedom as the Brune model (one-

147 parameter ; amplitude is normalized). Hence, the latent variable of VAE acts like  of the 𝑓𝑐 𝑓𝑐

148 Brune model, and the trained parameters of the neural network acts like the functional form of 

149 the Brune model (Fig. 1). Following a similar procedure, we train another VAE model with 

150 two latent variables and compare it with recently proposed double-  models (DS16 and JA21). 𝑓𝑐

151 We randomly split 80% of the data as training set and 20% as testing set in both synthetic tests 

152 and the SCARDEC dataset.

153

154 4 Results

155 4.1 Validation of Machine learning with synthetic source spectra

156 We follow the procedure in Shearer et al. (2006) to fit the SCARDEC spectra with the 

157 Brune model by least square of the log spectrum. We estimate the  for all earthquakes and 𝑓𝑐

158 use them to generate synthetic data for machine learning tests.

159 First, to demonstrate the modeling capability of VAE, we apply VAE to learn the Brune 

160 model from noise-free synthetic data. We generate 3675 synthetic source spectra using eq. (1) 

161 derived from SCARDEC. Fig. 2a shows that an example from test data for which VAE has 

162 perfect fit. The misfits ( ) for most of these spectra are almost negligible (Fig. 2b). ||
𝑆𝑚𝑜𝑑𝑒𝑙 ― 𝑆𝑟𝑎𝑤

𝑓𝑟𝑒𝑞 ||
2

163 This demonstrates that VAE correctly learns the Brune model from noise-free spectra.

164 Second, to demonstrate that VAE can learn an average model from noisy data, we add 

165 random Gaussian perturbation to the fall-off exponent (i.e., , ) of the 𝑛 = 2 ± 𝛿 𝛿 ∈ ℕ(0, 0.2)

166 synthetic source spectra in the previous test. Then the average model of all the synthetic data 

167 still follows the Brune model, but individual spectra randomly deviate. The training result 
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168 shows that the VAE model also agrees with the Brune model (Figs. 2c and d). This 

169 demonstrates that VAE can derive an average model from a large dataset, even if the data have 

170 random deviation individually.

171

172 4.2 Single-variable modeling of real source spectra

173 On the basis of the previous tests, we train a single-variable VAE model (referred to as 

174 VAE1 model hereafter) with the source spectra from SCARDEC. The results show that,  

175 VAE1 generally provides better fit than the Brune model and exhibits some different 

176 characteristics (Fig. 2e). Fig. 2f shows the histograms of misfits of two models as well as the 

177 differences between them. Overall, the mean misfit of VAE1 is about 8.5% smaller than that 

178 of the Brune model. This small difference suggests that two models are largely consistent. 

179 Moreover, we observe that the latent variable of VAE1 is strongly correlated with  (Fig. 𝑓𝑐

180 3a). The latent variable also has a similar relationship with Mw (Fig. 3b) because of the inherent 

181 scaling relationship between and Mw. Since machine learning searches in a much wider 𝑓𝑐 

182 parameter space than Brune model, the high correlation with  demonstrates that  is 𝑓𝑐 𝑓𝑐

183 indeed an effective parameter controlling the spectral shapes. However, with the same degree 

184 of freedom, the lower misfit of the data-driven model suggests that the Brune model misses 

185 some systematic characteristics of the observed data.

186 Fig. 4a shows the overall variation of the VAE1 model spectra, the Brune-type source 

187 spectra and average real source spectra, with respect to the VAE1 latent parameter. Specifically, 

188 as the latent variable value increases,  decreases and magnitude increases. It is noteworthy 𝑓𝑐

189 that the reliability of the VAE curves depends on the number of available real data. Therefore, 

190 VAE1 provides the most reliable results approximately for Mw 6-7 because of the data 

191 abundance in that range. To reveal the differences between VAE1 and the Brune model, we 

192 subtract the average real data from their fitting curves (Fig. 4b). The residuals suggest that the 

193 VAE1 spectra are more consistent with the observed data across different magnitudes. This 

194 suggests that VAE1 has learned an unbiased average model from the data and can serve as a 

195 baseline for other physical source models. In comparison, the residuals show that the Brune 
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196 model systematically underestimates in intermediate frequencies and overestimates in high 

197 frequencies for the SCARDEC dataset (Fig. 4b).

198

199 4.3 Double-variable modeling of real source spectra

200 For comparison with double-  models (DS16, JA21) recently proposed to supplement 𝑓𝑐

201 the Brune model (single- ) , we train a double-variable VAE model (referred to as VAE2 𝑓𝑐

202 model hereafter) which also has two degrees of freedom. The VAE2 have two latent variables 

203 Z1 and Z2, compared to a single variable Z in the VAE1 model. Fig. 5a shows an example of 

204 SCARDEC source spectra fitted by VAE2 and double-  models. The median residual of the f𝑐

205 VAE2 model is near zero, whereas DS16 and JA21 have some deviations (Fig. 5b), similar to 

206 the Brune model. We observe that 95-percentile of the VAE2, DS16, JA21 misfits are 0.0065, 

207 0.0088, 0.0278 respectively (Fig. 5c and Table 1). In comparison, VAE1 has 95-percentile 

208 misfit at 0.0115 (Table 1). We estimate the statistical relative amount of information loss of 

209 these models with Akaike information criterion (AIC), which deals with the trade-off between 

210 the goodness of fit and the complexity of the model:

211 AIC = 2k + N𝑙𝑛(RSS
N )

212 Where N is the number of frequency samples, k is the number of estimated parameters, RSS is 

213 the residual sum of squares. Note that this definition assumes normally distributed errors. For 

214 single-variable models, the parameters are the latent variable or  and residual variance so f𝑐

215 that k = 2. Double-variable models have k = 3. Compared to other models, VAE2 provides 

216 improved goodness of fit (Table 1) and captures more detailed features of the source spectra, 

217 especially for the curvature at turning corner (Fig. 6).

218 To investigate the effect of the additional latent variable, we visualize the variations of 

219 source spectra in the latent space (Fig. 7a). We observe that the source spectra change more 

220 significantly with Z2 than with Z1, indicating a primary effect of Z2 and a secondary effect of 

221 Z1. Moreover, the correlation between Z1 and  acts more subtle (Fig. 7b), whereas Z2 𝑓𝑐

222 appears (Fig. 7c) similar to that in VAE1(Fig. 3a), . Therefore, these likely suggests that the 

223 role of Z2 in VAE2 is comparable to that in single-variable VAE model, whereas Z1 could catch 
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224 more secondary details to promote the goodness of fit. Generally, Z2 seems to control the corner 

225 frequency like the only variable in the VAE1, whereas Z1 seems to control the abruptness of 

226 transition from the low-frequency plateau to the high-frequency fall-off.

227

228 5 Discussions

229 5.1 Physical implications of the VAE models

230 To clarify the causes of the systematic characteristics not captured by the Brune and other 

231 physical models, we explore different model parameters and attenuation effect to see if the 

232 difference can be reduced to near zero across the frequency range as the VAEs do. First, we 

233 experiment different values of high-frequency fall-off rate in eq. (3). Although the fit improves 

234 slightly when the high-frequency fall-off rate around 2.3, the mean differential curve cannot 

235 be reduced to be flat by simply tuning the fall-off rate (Fig. 8a). Second, we tune the parameters 

236 𝛾 and high-frequency fall-off rate in Boatwright model, but find it leads to even higher misfit 

237 than the Brune model (Fig. 8b). Third, SCARDEC uses an attenuation model to correct the 

238 attenuation effect on the spectra. Although there could be attenuation effect not fully corrected, 

239 the apparent slopes in high- and low-frequency ranges observed in this study appear too large 

240 to be explained by the remaining attenuation effect. Since DS16 and JA21 cannot adequately 

241 explain the observed slow fall-off in the intermediate frequencies and the fast fall-off in the 

242 high frequencies, we propose a modified double-  model to simulate the characteristics of 𝑓𝑐

243 the real data revealed from VAE models (Fig. 8d). This model is similar to DS16 and JA21 but 

244 has the  fall-off rate in the intermediate frequencies and has a  slope in the high-𝑓 ―1 𝑓 ―2.6

245 frequency region. We find that this combination can generally replicate the major shape. 

246 Nonetheless, we can only constrain the first exponent to be <2 and the second exponent to 

247 be >2; the actual combination of them can vary.

248 In the Haskell model, the presence of two corner frequencies results from that the slip 

249 risetime is much less than rupture duration time (  << ). This short risetime phenomenon τ𝑟 τ𝑑

250 has been shown by dynamic rupture modeling results (Beroza & Mikumo 1996; Melgar & 

251 Hayes 2017; Wang & Day 2017) and can be caused by several mechanisms. For example, Das 

Page 10 of 50Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

252 & Aki (1977) suggested that spatially heterogeneous fault strength (e.g., barriers) may limit 

253 slip duration at particular locations on a fault. Heaton (1990) postulated that short risetime can 

254 be caused by dynamic fault friction, which decreases with increasing slip velocity. Dynamic 

255 changes of normal stress induced by bi-material effects (Andrews & Ben-Zion 1997; Ampuero 

256 & Ben-Zion 2008) and low-velocity fault zones (Huang & Ampuero 2011) could also generate 

257 short-risetime slip pulses. These explanations are indeed indistinguishable from our 

258 observations. However, it needs to be noted that the slow fall-off rate (<2) in intermediate 

259 frequencies is introduced because of the finite-length long-narrow faults (Haskell 1964; Savage 

260 1972); the higher fall-off rate (>2) in high frequencies implies that the rupture processes of 

261 large earthquakes may not be strictly self-similar but prefer elongated fault geometries (Shearer 

262 2019). Our hypothesized model is purely data-driven and precise interpretation of its physical 

263 meaning remains a subject of future research.

264

265 5.2 Limitations of the STF data and their impact

266 Our conclusions largely rely on the presumption that the Fourier transform of the 

267 SCARDEC STFs below 1Hz are good representations of source spectra. However, several 

268 factors may undermine this presumption and thus have negative impact on our conclusions. 

269 Although Vallée & Douet (2016) deconvolved the teleseismic waves by Green's functions 

270 which are better constrained at frequencies below 1 Hz, this does not directly support that the 

271 frequencies below 1 Hz are perfectly reliable. Besides, the averaging of STFs and time-domain 

272 deconvolution tend to further reduce the high frequency content (Vallée & Douet 2016), which 

273 may lead to overestimation in the high-frequency fall-off rate. Therefore, one should be aware 

274 that the actual appropriate cutoff frequency remains difficult to determine, although the 1-Hz 

275 cutoff is used in this study.

276 Moreover, Danré et al. (2019) showed that the STFs in SCARDEC can be fit by a sum of 

277 Gaussian pulses, implying the source spectra calculated from this dataset are inherently 

278 different from the Brune model. Besides, the calculation of STFs suffers a number of intricate 

279 issues such as the assumed Green’s function and the influence of attenuation. The SCARDEC 
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280 method (Vallée et al. 2011) makes a point source approximation and deconvolves seismic 

281 waveforms with assumed Green’s function derived from the method of Bouchon (1976) to 

282 separate the source term directly. Vallée and Douet (2016) noted that it is difficult to well 

283 separate real source effects from spurious moment episodes related to unmodeled seismic 

284 phases. In the cases like offshore strike-slip events, long and complex STFs can be questionable. 

285 However, Yin et al. (2021) observed that colocated shallow events have distinct degrees of 

286 complexity, and therefore inaccuracy in the Green’s function should not strongly 

287 systematically bias the results.

288

289 5.3 Potentials of the VAE method

290 The VAE approach optimizes global fit and derives the general features directly from real 

291 data. It can infer complex, nonlinear and high-dimensional data relationships, and obtain a 

292 data-driven model without any prior assumption and human supervision. Although the latent 

293 parameters and the functional form to model source spectra are implicit and difficult to interpret, 

294 the data-driven model serves as a quasi-optimal baseline for which physical models need to 

295 approach. Any systematic shift of physical models from the data-driven model in the same 

296 degree of freedom likely indicates some inherent flaws within the physical models (another 

297 possibility is that the dataset itself is already biased). In this perspective, our approach has the 

298 potential to reveal hidden characteristics of large and high-dimensional seismological data and 

299 provide opportunities to amend existing theoretical frameworks.

300
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308 The SCARDEC database is available at http://scardec.projects.sismo.ipgp.fr/ (last accessed on 

309 September 3, 2021).
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411 Tables: 

412

413 Table 1. Performance of single- and double-variable models

Single-variable Double-variable

VAE1 Brune VAE2 DS16 JA21

Median misfit 0.0013 0.0015 0.0008 0.0014 0.0056

95% misfit 0.0115 0.0117 0.0065 0.0088 0.0278

Average AIC -1064.2 -1029.6 -1100.2 -1033.8 -843.5

414

415
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416 Figures:

417 Figure 1. The architecture of variational autoencoder (VAE). Both of the decoder and encoder 

418 consist of two fully connected layers with 256 neurons each. The lengths of input (real source 

419 spectra) and output (reconstructed source spectra) are 128 data points. Note that we limit the 

420 latent dimension to 1 (for the single-variable model) and 2 (for the double-variable model) so 

421 that each spectrum can be modelled in a low degree of freedom.
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422   Figure 2. Goodness of fit of the single-variable VAE and Brune models for earthquake 

423 source spectra. (a) A noise-free synthetic source spectrum example fit by the VAE model 

424 (solid red) and the Brune model (solid blue), which overlap in the plot. The grey dashed line 

425 denotes the residual (right y-axis). (b) Misfit histogram of the VAE model for the noise-free 

426 synthetic spectra. (c) A random-perturbed Brune-type synthetic source spectrum fit by the 

427 VAE model (solid red) and the Brune model (solid blue). The blue and red dashed lines 

428 denote the residuals of the VAE model and the Brune model (right y-axis). (d) Misfit 

429 histograms of the VAE and Brune models and differences between them for the random-

430 perturbed Brune-type synthetic source spectra. (e) A SCARDEC source spectrum example fit 

431 by the VAE model (solid red) and the Brune model (solid blue) (f) Misfit histograms of the 

432 VAE and Brune models for the SCARDEC source spectra.
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433 Figure 3. Variations of the single VAE latent variable with the Brune model parameter  𝑓𝑐

434 and the earthquake magnitude. (a) Strong correlation between the VAE latent variable and 

435 the Brune model parameter . The red dotted line is the median latent value for each . (b) 𝑓𝑐 𝑓𝑐

436 Correlation between the VAE latent variable and earthquake magnitude.
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437   

438 Figure 4. Systematic variation of source spectra in the latent space of the single-variable VAE. 

439 (a) The VAE spectra, Brune spectra and SCARDEC magnitude-binned average source spectra, 

440 with respect to the VAE latent parameter. (b) Residuals of the VAE and Brune models by 

441 substracting the SCARDEC data. (c) Histogram of latent variable values. The VAE model is 

442 well constrained within M 6-7 due to the abundant observations.
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443
444  Figure 5. Goodness of fit of the double-variable VAE and double-  physical models (JA21, f𝑐

445 DS16). (a) A SCARDEC source spectrum example fit by the VAE model (solid red), DS16 

446 model (solid blue) and JA21 model (solid green). The red, blue and green dashed lines denote 

447 the residuals of the VAE model, DS16 model and JA21 model (right y-axis). (b) Median 

448 residuals of the double-variable VAE model and double-  physical models (JA21, DS16) . (c) f𝑐

449 Misfit histograms of the VAE, DS16 and JA21 models for the SCARDEC source spectra. (d) 

450 Histogram of misfit residuals between the double-variable and single-variable VAE models.
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451  Figure 6. Examples of SCARDEC source spectra (black) and their reconstructions from 

452 single-variable (red) and double-variable (blue) VAE models.

453
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454

455 Figure 7. (a) Manifold of source spectra reconstructed from evenly sampled latent variables of 

456 the double-variable VAE model. (b) Correlation between the latent variable Z1 and the Brune 

457 model parameter . (c) Correlation between the latent variable Z2 and the Brune model 𝑓𝑐

458 parameter .𝑓𝑐
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459
460 Figure 8. The effect of model and attenuation parameters on fitting SCARDEC source 

461 spectra. (a) Median residuals between different Brune-type models (𝛾=1, n=2.0-2.5) and the 

462 observed source spectra. (b) Median residuals between Boatwright-type models (𝛾=2, n=1.7-

463 2.2) and the observed source spectra. (c) Average source spectra for Brune model, VAE1, 

464 VAE2, and observations for Mw 6-7. The VAE1 and VAE2 curves are obtained by taking the 

465 median of all fitting curves for the SCARDEC events within Mw 6-7. Dashed black line 

466 represents our proposed double-  model.𝑓𝑐
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Summary 15 

The shape of earthquake source spectra, traditionally fit by physics-based models, 16 

contains important parameters to constrain rupture dimension, duration, and geometry. Here 17 

we apply machine learning (ML) to derive single-variable and double-variable data-driven 18 

models of source spectra from 3675 Mw >5.5 global earthquakes, assuming that the Fourier 19 

transform of source time functions well represent earthquake source spectra below 1 Hz. The 20 

single-variable ML model, in the same degree of freedom as the Brune model, improves the 21 

goodness of fit by 8.5%. Specifically, the ML model fits the data without systematic bias, 22 

whereas the Brune model tends to underestimate at intermediate frequencies and overestimate 23 

at high frequencies. The latter discrepancy cannot be modelled by increasing the fall-off 24 

exponent in the Brune-type or the Boatwright-type models. The double-variable ML model is 25 

compared to existing double-corner-frequency models and is found to capture the second-26 

order features such as the subtle curvature differences around the corner. Our results 27 

demonstrate that unsupervised machine learning can extract hidden global characteristics of 28 

high-dimensional data and provide observational evidence to amend existing physical models. 29 

 30 
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 3

1 Introduction 37 

The shape of earthquake source spectra is an important constraint on rupture processes. 38 

Corner frequency, fall-off rate, and curvature at corner are crucial parameters to infer stress 39 

drop, rupture dimension, geometry, duration and rupture velocity (Savage 1972; Chounet et 40 

al. 2018; Shearer et al. 2019). Haskell (1964) assumed that a uniform displacement 41 

discontinuity propogates at constant rupture velocity on a rectangular fault, which results in 42 

the far-field displacement pulse as the convolution of two boxcar pulses. In frequency 43 

domain, the Haskell model spectrum is flat at a level proportional to seismic moment at low 44 

frequencies, decays as 𝜔ିଵ  at intermediate frequencies, and 𝜔ିଶ  at high frequencies. 45 

Following the Haskell model, Aki (1967) proposed the 𝜔ିଶ theoretical model and derived a 46 

scaling law based on the assumption of self-similarity, meaning that large and small 47 

earthquakes are geometrically similar and the long-period amplitude is the inverse-cube 48 

power of the corner frequency.  49 

Brune (1970) suggested an influential form of source spectra: 50 

𝐴(𝑓) = M଴/[1 + (𝑓/𝑓௖)ଶ]    (1)                                              51 

Where 𝑓௖ is the corner frequency, M଴ is the seismic moment. A more general functional form 52 

includes the path attenuation effects (Shearer 2019): 53 

𝐴(𝑓) = M଴exp (−𝜋𝑓𝑡∗)/[1 + (𝑓/𝑓௖)ఊ௡]ଵ/ఊ    (2) 54 

Where n represents the high-frequency fall-off rate and is associated with high-frequency 55 

energy radiation, and 𝛾 controls the curvature of the spectrum near the corner frequency. In 56 

this form, 𝛾=1 and n=2 for the 𝜔ିଶ model; n=3 for the 𝜔ିଷ model; n=2 and 𝛾=2 for the 57 

Boatwright model (Boatwright 1978). 58 

The Brune model (𝜔ିଶ model) is widely used to infer source parameters and generally 59 

agree with global average source spectra across different magnitudes (Abercrombie 2015; Ye 60 

et al. 2016a, b; Shearer et al. 2019). However, Kaneko & Shearer (2014) considered a two 61 

degrees of freedom model: 62 

𝐴(𝑓) = M଴/[1 + (𝑓/𝑓௖)௡]    (3) 63 

They obtained n = 2.2 to 2.9 for P-wave spectra and n =1.5 to 2.6 for S-wave spectra in the      64 
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frequency range of 0.05𝑓௖ ≤ 𝑓 ≤ 10𝑓௖  in the cohesive-zone models of circular rupture. 69 

Uchide & Imanishi (2016) observed that the source spectra of most Mw 3.2-4.0 shallow 70 

earthquakes in Japan deviate from the Brune model and implies a fall-off exponent slightly 71 

higher than 2. 72 

Models with double corner frequencies have also been proposed to fit complex source 73 

spectra. Denolle & Shearer (2016) suggested a double-𝑓௖ model to explain the source spectra 74 

of large subduction earthquakes (referred to as DS16 model hereafter) using the functional 75 

form: 76 

𝐴(𝑓) = M଴/[ඥ1 + (𝑓/𝑓௖ଵ)ଶඥ1 + (𝑓/𝑓௖ଶ)ଶ]    (4) 77 

 Ji & Archuleta (2021) introduced two double-𝑓௖ models (one is self-similar, another is 78 

not), which can reproduce the mean peak ground acceleration (PGA) and mean peak ground 79 

velocity (PGV) for magnitudes 3.3–7.3. They reported that the magnitude dependencies of 80 

PGA and PGV are well explained by the nonself-similar double-𝑓௖ source model (referred to 81 

as JA21 model hereafter). 82 

While the aforementioned physical models provide a generally good fit for source 83 

spectra, deviations may exist for specific earthquakes owing to various assumptions and 84 

calculations of source spectra made on the rupture process. Comparatively, machine learning 85 

allows extracting the hidden features of large datasets which could be otherwise invisible 86 

through physical models (Bergen et al. 2019). In this study, we employ a generative machine 87 

learning algorithm, called variational autoencoder (VAE), to learn data-driven models of 88 

source spectra for large earthquakes. We aim to answer a question: whether or not the source 89 

spectra of large earthquakes are the Brune-type on global average? Alternatively, are any 90 

systematic source characteristics not captured by the Brune-type model?  91 

This paper is organized as follows. First, we transform source time functions to source 92 

spectra. The spectra are normalized and fit with the Brune model to obtain the corner 93 

frequencies. Second, synthetic tests are used to prove that VAE can derive meaningful 94 

average spectra from a large dataset. Third, VAE is applied to learn the real source spectra of 95 

global earthquakes. We compare the single- and double-variable VAE models to the Brune 96 
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and other more complex models and discuss the consistency and discrepancy among them. 101 

Finally, we explore the possible physical implications of source spectra derived from the data 102 

and the potential limitations. 103 

 104 

2 Data 105 

 Source spectra of global earthquakes used in this study are amplitude spectra of source 106 

time functions (STFs). We use the SCARDEC (Seismic source ChActeristics Retrieved from 107 

DEConvolvolving teleseismic body waves) (Vallée & Douet 2016) dataset, which consists of 108 

3675 large earthquakes with Mw >5.5 from January 1, 1992 to December 31, 2019. Vallée et 109 

al. (2011) deconvolved teleseismic waves with the Green’s functions and take local surface 110 

reflections for both source and receiver crusts as well as mantle attenuation (geometrical 111 

spreading and attenuation factors) into account. In addition, the SCARDEC method does not 112 

assume the same STF at each station and imposes no constraints on the spatial-temporal 113 

complexity of the rupture process. Overall, SCARDEC is advantageous in its full automation 114 

and thus provides a larger dataset for machine learning in this study. SCAREDEC provides 115 

two types of STFs, the optimal one among all stations and the average one of all stations. In 116 

this study we use the average STFs because they are relatively insensitive to possible outliers 117 

and generally more robust than the optimal ones. Moreover, it is less impacted by directivity 118 

effects that may exist on specific stations (Vallée & Douet 2016). 119 

The STFs are first filled with zeros at the end of the STFs to keep the same time length 120 

(and hence the same frequency range and interval after Fourier transform). Each spectrum is 121 

normalized by seismic moment to only keep the shape. It is resampled evenly on the 122 

logarithmic scale to 128 points, which is the input size of the machine learning model. In this 123 

study, we reserve the frequency range up to 1 Hz to avoid the poorly constrained high-124 

frequency contents in STFs, which follows the presumption that the global models of 125 

attenuation are better constrained by seismic frequencies lower than 1 Hz (Danré et al. 2019; 126 

Denolle 2019; Yin et al. 2021). However, whether or not the frequency content below 1 Hz is 127 
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absolutely reliable remains arguable, which may have negative impact on our analyses and 138 

will be discussed in the last section. 139 

 140 

3 Method 141 

Generative modeling is a category of machine learning approaches to model the data 142 

implicitly (i.e. without clear physical meaning). It learns a probabilistic model that describes 143 

how a dataset is generated from input. With generative modeling, we could generate new 144 

plausible examples like a physical model by sampling probabilistic model. Generative 145 

adversarial networks (GANs) are a typical generative model and have been applied to 146 

earthquake early warning and seismic data augmentation (Li et al. 2018; Wang et al. 2021). 147 

However, GANs often suffers from unstable training (Salimans et al., 2016), as they do not 148 

have explicit constraints on the probability distribution. Comparatively, VAE, which is also a 149 

generative model, uses explicit constraints on the probability distribution and is able to 150 

reconstruct high-dimensional data from a compact latent representation (Kingma & Welling 151 

2013). Its functionality acts similarly to physical modeling (case-dependent parameters 152 

embedded in a shared functional form), and could be used to learn a model for earthquake 153 

source spectra directly from data. 154 

A typical VAE model is composed of two parts, i.e. an encoder and a decoder. The 155 

encoder compresses the input to a compact latent representation, whereas the decoder 156 

reconstructs the input from the latent representation. The bottleneck structure forces the 157 

model to learn the primary features of the data. The VAE’s loss function in this analysis is 158 

defined as: 159 

𝑙𝑜𝑠𝑠 = ||
𝑆௠௢ௗ௘௟ − 𝑆௥௔௪

𝑓𝑟𝑒𝑞
||ଶ + 𝐾𝐿[ℕ(𝜇௭, 𝜎௭) − ℕ(0,1 )] 160 

where the first term is the root mean square between the reconstructed and original source 161 

spectra, and the second is the Kullback-Leibler divergence which measures the difference 162 

between latent variables and normal distribution. After training, the VAE acts in a manner 163 

similar to the physical Brune model: for a given source spectrum, the encoder obtains the 164 

latent parameter (like the 𝑓௖  of the Brune model) and the decoder reconstructs the source 165 
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spectra (like the fit curve of the Brune model). The difference is that VAE model is data-166 

driven (from data directly) and the model parameter is implicit, whereas the Brune model is 167 

physics-based (from theoretical assumptions of source process) and the model parameter has 168 

explicit physical meaning. 169 

We construct the VAE architecture following Li (2022) (Fig. 1). The encoder and the 170 

decoder have two fully connected layers, and each layer has 256 neurons. We first use only 171 

one latent variable in VAE to keep the same degree of freedom as the Brune model (one-172 

parameter 𝑓௖; amplitude is normalized). Hence, the latent variable of VAE acts like 𝑓௖ of the 173 

Brune model, and the trained parameters of the neural network acts like the functional form 174 

of the Brune model (Fig. 1). Following a similar procedure, we train another VAE model 175 

with two latent variables and compare it with recently proposed double-𝑓௖ models (DS16 and 176 

JA21). We randomly split 80% of the data as training set and 20% as testing set in both 177 

synthetic tests and the SCARDEC dataset. 178 

 179 

4 Results 180 

4.1 Validation of Machine learning with synthetic source spectra 181 

We follow the procedure in Shearer et al. (2006) to fit the SCARDEC spectra with the 182 

Brune model by least square of the log spectrum. We estimate the 𝑓௖ for all earthquakes and 183 

use them to generate synthetic data for machine learning tests. 184 

First, to demonstrate the modeling capability of VAE, we apply VAE to learn the Brune 185 

model from noise-free synthetic data. We generate 3675 synthetic source spectra using eq. (1) 186 

derived from SCARDEC. Fig. 2a shows that an example from test data for which VAE has 187 

perfect fit. The misfits (||
ௌ೘೚೏೐೗ିௌೝೌೢ

௙௥௘௤
||ଶ) for most of these spectra are almost negligible (Fig. 188 

2b). This demonstrates that VAE correctly learns the Brune model from noise-free spectra. 189 

Second, to demonstrate that VAE can learn an average model from noisy data, we add 190 

random Gaussian perturbation to the fall-off exponent (i.e., 𝑛 = 2 ± 𝛿, 𝛿 ∈ ℕ(0, 0.2)) of the 191 

synthetic source spectra in the previous test. Then the average model of all the synthetic data 192 

still follows the Brune model, but individual spectra randomly deviate. The training result 193 

Deleted: as follows

Deleted: obtain

Deleted: estimates of 

Deleted: which are then used

Page 32 of 50Geophysical Journal International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

 8

shows that the VAE model also agrees with the Brune model (Figs. 2c and d). This 198 

demonstrates that VAE can derive an average model from a large dataset, even if the data 199 

have random deviation individually. 200 

 201 

4.2 Single-variable modeling of real source spectra 202 

On the basis of the previous tests, we train a single-variable VAE model (referred to as 203 

VAE1 model hereafter) with the source spectra from SCARDEC. The results show that,  204 

VAE1 generally provides better fit than the Brune model and exhibits some different 205 

characteristics (Fig. 2e). Fig. 2f shows the histograms of misfits of two models as well as the 206 

differences between them. Overall, the mean misfit of VAE1 is about 8.5% smaller than that 207 

of the Brune model. This small difference suggests that two models are largely consistent. 208 

Moreover, we observe that the latent variable of VAE1 is strongly correlated with 𝑓௖ (Fig. 3a). 209 

The latent variable also has a similar relationship with Mw (Fig. 3b) because of the inherent 210 

scaling relationship between 𝑓௖ and Mw. Since machine learning searches in a much wider 211 

parameter space than Brune model, the high correlation with 𝑓௖ demonstrates that 𝑓௖ is indeed 212 

an effective parameter controlling the spectral shapes. However, with the same degree of 213 

freedom, the lower misfit of the data-driven model suggests that the Brune model misses 214 

some systematic characteristics of the observed data. 215 

Fig. 4a shows the overall variation of the VAE1 model spectra, the Brune-type source 216 

spectra and average real source spectra, with respect to the VAE1 latent parameter. 217 

Specifically, as the latent variable value increases, 𝑓௖ decreases and magnitude increases. It is 218 

noteworthy that the reliability of the VAE curves depends on the number of available real 219 

data. Therefore, VAE1 provides the most reliable results approximately for Mw 6-7 because 220 

of the data abundance in that range. To reveal the differences between VAE1 and the Brune 221 

model, we subtract the average real data from their fitting curves (Fig. 4b). The residuals 222 

suggest that the VAE1 spectra are more consistent with the observed data across different 223 

magnitudes. This suggests that VAE1 has learned an unbiased average model from the data 224 

and can serve as a baseline for other physical source models. In comparison, the residuals 225 
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show that the Brune model systematically underestimates in intermediate frequencies and 226 

overestimates in high frequencies for the SCARDEC dataset (Fig. 4b). 227 

 228 

4.3 Double-variable modeling of real source spectra 229 

 For comparison with double-𝑓௖ models (DS16, JA21) recently proposed to supplement 230 

the Brune model (single-𝑓௖) , we train a double-variable VAE model (referred to as VAE2 231 

model hereafter) which also has two degrees of freedom. The VAE2 have two latent variables 232 

Z1 and Z2, compared to a single variable Z in the VAE1 model. Fig. 5a shows an example of 233 

SCARDEC source spectra fitted by VAE2 and double-𝑓௖ models. The median residual of the 234 

VAE2 model is near zero, whereas DS16 and JA21 have some deviations (Fig. 5b), similar to 235 

the Brune model. We observe that 95-percentile of the VAE2, DS16, JA21 misfits are 0.0065, 236 

0.0088, 0.0278 respectively (Fig. 5c and Table 1). In comparison, VAE1 has 95-percentile 237 

misfit at 0.0115 (Table 1). We estimate the statistical relative amount of information loss of 238 

these models with Akaike information criterion (AIC), which deals with the trade-off 239 

between the goodness of fit and the complexity of the model: 240 

AIC = 2k + N𝑙𝑛 ൬
RSS

N
൰ 241 

Where N is the number of frequency samples, k is the number of estimated parameters, RSS 242 

is the residual sum of squares. Note that this definition assumes normally distributed errors. 243 

For single-variable models, the parameters are the latent variable or 𝑓௖ and residual variance 244 

so that k = 2. Double-variable models have k = 3. Compared to other models, VAE2 provides 245 

improved goodness of fit (Table 1) and captures more detailed features of the source spectra, 246 

especially for the curvature at turning corner (Fig. 6). 247 

 To investigate the effect of the additional latent variable, we visualize the variations of 248 

source spectra in the latent space (Fig. 7a). We observe that the source spectra change more 249 

significantly with Z2 than with Z1, indicating a primary effect of Z2 and a secondary effect of 250 

Z1. Moreover, the correlation between Z1 and 𝑓௖  acts more subtle (Fig. 7b), whereas Z2 251 

appears (Fig. 7c) similar to that in VAE1(Fig. 3a), . Therefore, these likely suggests that the 252 

role of Z2 in VAE2 is comparable to that in single-variable VAE model, whereas Z1 could 253 
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catch more secondary details to promote the goodness of fit. Generally, Z2 seems to control 254 

the corner frequency like the only variable in the VAE1, whereas Z1 seems to control the 255 

abruptness of transition from the low-frequency plateau to the high-frequency fall-off. 256 

 257 

5 Discussions 258 

5.1 Physical implications of the VAE models 259 

To clarify the causes of the systematic characteristics not captured by the Brune and 260 

other physical models, we explore different model parameters and attenuation effect to see if 261 

the difference can be reduced to near zero across the frequency range as the VAEs do. First, 262 

we experiment different values of high-frequency fall-off rate in eq. (3). Although the fit 263 

improves slightly when the high-frequency fall-off rate around 2.3, the mean differential 264 

curve cannot be reduced to be flat by simply tuning the fall-off rate (Fig. 8a). Second, we 265 

tune the parameters 𝛾 and high-frequency fall-off rate in Boatwright model, but find it leads 266 

to even higher misfit than the Brune model (Fig. 8b). Third, SCARDEC uses an attenuation 267 

model to correct the attenuation effect on the spectra. Although there could be attenuation 268 

effect not fully corrected, the apparent slopes in high- and low-frequency ranges observed in 269 

this study appear too large to be explained by the remaining attenuation effect. Since DS16 270 

and JA21 cannot adequately explain the observed slow fall-off in the intermediate 271 

frequencies and the fast fall-off in the high frequencies, we propose a modified double-𝑓௖ 272 

model to simulate the characteristics of the real data revealed from VAE models (Fig. 8d). 273 

This model is similar to DS16 and JA21 but has the 𝑓ିଵ fall-off rate in the intermediate 274 

frequencies and has a 𝑓ିଶ.଺ slope in the high-frequency region. We find that this combination 275 

can generally replicate the major shape. Nonetheless, we can only constrain the first exponent 276 

to be <2 and the second exponent to be >2; the actual combination of them can vary. 277 

In the Haskell model, the presence of two corner frequencies results from that the slip 278 

risetime is much less than rupture duration time (τ௥ << τௗ). This short risetime phenomenon 279 

has been shown by dynamic rupture modeling results (Beroza & Mikumo 1996; Melgar & 280 

Hayes 2017; Wang & Day 2017) and can be caused by several mechanisms. For example, 281 
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Das & Aki (1977) suggested that spatially heterogeneous fault strength (e.g., barriers) may 308 

limit slip duration at particular locations on a fault. Heaton (1990) postulated that short 309 

risetime can be caused by dynamic fault friction, which decreases with increasing slip 310 

velocity. Dynamic changes of normal stress induced by bi-material effects (Andrews & Ben-311 

Zion 1997; Ampuero & Ben-Zion 2008) and low-velocity fault zones (Huang & Ampuero 312 

2011) could also generate short-risetime slip pulses. These explanations are indeed 313 

indistinguishable from our observations. However, it needs to be noted that the slow fall-off 314 

rate (<2) in intermediate frequencies is introduced because of the finite-length long-narrow 315 

faults (Haskell 1964; Savage 1972); the higher fall-off rate (>2) in high frequencies implies 316 

that the rupture processes of large earthquakes may not be strictly self-similar but prefer 317 

elongated fault geometries (Shearer 2019). Our hypothesized model is purely data-driven and 318 

precise interpretation of its physical meaning remains a subject of future research. 319 

 320 

5.2 Limitations of the STF data and their impact 321 

Our conclusions largely rely on the presumption that the Fourier transform of the 322 

SCARDEC STFs below 1Hz are good representations of source spectra. However, several 323 

factors may undermine this presumption and thus have negative impact on our conclusions. 324 

Although Vallée & Douet (2016) deconvolved the teleseismic waves by Green's functions 325 

which are better constrained at frequencies below 1 Hz, this does not directly support that the 326 

frequencies below 1 Hz are perfectly reliable. Besides, the averaging of STFs and time-327 

domain deconvolution tend to further reduce the high frequency content (Vallée & Douet 328 

2016), which may lead to overestimation in the high-frequency fall-off rate. Therefore, one 329 

should be aware that the actual appropriate cutoff frequency remains difficult to determine, 330 

although the 1-Hz cutoff is used in this study. 331 

Moreover, Danré et al. (2019) showed that the STFs in SCARDEC can be fit by a sum of 332 

Gaussian pulses, implying the source spectra calculated from this dataset are inherently 333 

different from the Brune model. Besides, the calculation of STFs suffers a number of intricate 334 

issues such as the assumed Green’s function and the influence of attenuation. The SCARDEC 335 
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method (Vallée et al. 2011) makes a point source approximation and deconvolves seismic 348 

waveforms with assumed Green’s function derived from the method of Bouchon (1976) to 349 

separate the source term directly. Vallée and Douet (2016) noted that it is difficult to well 350 

separate real source effects from spurious moment episodes related to unmodeled seismic 351 

phases. In the cases like offshore strike-slip events, long and complex STFs can be 352 

questionable. However, Yin et al. (2021) observed that colocated shallow events have distinct 353 

degrees of complexity, and therefore inaccuracy in the Green’s function should not strongly 354 

systematically bias the results. 355 

 356 

5.3 Potentials of the VAE method 357 

The VAE approach optimizes global fit and derives the general features directly from 358 

real data. It can infer complex, nonlinear and high-dimensional data relationships, and obtain 359 

a data-driven model without any prior assumption and human supervision. Although the 360 

latent parameters and the functional form to model source spectra are implicit and difficult to 361 

interpret, the data-driven model serves as a quasi-optimal baseline for which physical models 362 

need to approach. Any systematic shift of physical models from the data-driven model in the 363 

same degree of freedom likely indicates some inherent flaws within the physical models 364 

(another possibility is that the dataset itself is already biased). In this perspective, our 365 

approach has the potential to reveal hidden characteristics of large and high-dimensional 366 

seismological data and provide opportunities to amend existing theoretical frameworks. 367 
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The SCARDEC database is available at http://scardec.projects.sismo.ipgp.fr/ (last accessed 376 

on September 3, 2021). 377 
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Tables:  485 

 486 

Table 1. Performance of single- and double-variable models 487 

 Single-variable Double-variable 

VAE1 Brune VAE2 DS16 JA21 

Median misfit 0.0013 0.0015 0.0008 0.0014 0.0056 

95% misfit 0.0115 0.0117 0.0065 0.0088 0.0278 

Average AIC -1064.2 -1029.6 -1100.2 -1033.8 -843.5 

 488 
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Figures: 490 

Figure 1. The architecture of variational autoencoder (VAE). Both of the decoder and 491 

encoder consist of two fully connected layers with 256 neurons each. The lengths of input 492 

(real source spectra) and output (reconstructed source spectra) are 128 data points. Note that 493 

we limit the latent dimension to 1 (for the single-variable model) and 2 (for the double-494 

variable model) so that each spectrum can be modelled in a low degree of freedom. 495 
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  Figure 2. Goodness of fit of the single-variable VAE and Brune models for earthquake 496 

source spectra. (a) A noise-free synthetic source spectrum example fit by the VAE model 497 

(solid red) and the Brune model (solid blue), which overlap in the plot. The grey dashed line 498 

denotes the residual (right y-axis). (b) Misfit histogram of the VAE model for the noise-free 499 

synthetic spectra. (c) A random-perturbed Brune-type synthetic source spectrum fit by the 500 

VAE model (solid red) and the Brune model (solid blue). The blue and red dashed lines 501 

denote the residuals of the VAE model and the Brune model (right y-axis). (d) Misfit 502 

histograms of the VAE and Brune models and differences between them for the random-503 

perturbed Brune-type synthetic source spectra. (e) A SCARDEC source spectrum example fit 504 

by the VAE model (solid red) and the Brune model (solid blue) (f) Misfit histograms of the 505 

VAE and Brune models for the SCARDEC source spectra. 506 
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Figure 3. Variations of the single VAE latent variable with the Brune model parameter 𝑓௖ 508 

and the earthquake magnitude. (a) Strong correlation between the VAE latent variable and 509 

the Brune model parameter 𝑓௖. The red dotted line is the median latent value for each 𝑓௖. (b) 510 

Correlation between the VAE latent variable and earthquake magnitude. 511 
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   512 

Figure 4. Systematic variation of source spectra in the latent space of the single-variable 513 

VAE. (a) The VAE spectra, Brune spectra and SCARDEC magnitude-binned average source 514 

spectra, with respect to the VAE latent parameter. (b) Residuals of the VAE and Brune 515 

models by substracting the SCARDEC data. (c) Histogram of latent variable values. The 516 

VAE model is well constrained within M 6-7 due to the abundant observations. 517 
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 518 

 Figure 5. Goodness of fit of the double-variable VAE and double-𝑓௖ physical models (JA21, 519 

DS16). (a) A SCARDEC source spectrum example fit by the VAE model (solid red), DS16 520 

model (solid blue) and JA21 model (solid green). The red, blue and green dashed lines denote 521 

the residuals of the VAE model, DS16 model and JA21 model (right y-axis). (b) Median 522 

residuals of the double-variable VAE model and double-𝑓௖ physical models (JA21, DS16) . (c) 523 

Misfit histograms of the VAE, DS16 and JA21 models for the SCARDEC source spectra. (d) 524 

Histogram of misfit residuals between the double-variable and single-variable VAE models. 525 
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 Figure 6. Examples of SCARDEC source spectra (black) and their reconstructions from 526 

single-variable (red) and double-variable (blue) VAE models. 527 
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 529 

Figure 7. (a) Manifold of source spectra reconstructed from evenly sampled latent variables 530 

of the double-variable VAE model. (b) Correlation between the latent variable Z1 and the 531 

Brune model parameter 𝑓௖ . (c) Correlation between the latent variable Z2 and the Brune 532 

model parameter 𝑓௖. 533 
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 534 

Figure 8. The effect of model and attenuation parameters on fitting SCARDEC source 535 

spectra. (a) Median residuals between different Brune-type models (𝛾=1, n=2.0-2.5) and the 536 

observed source spectra. (b) Median residuals between Boatwright-type models (𝛾=2, n=1.7-537 

2.2) and the observed source spectra. (c) Average source spectra for Brune model, VAE1, 538 

VAE2, and observations for Mw 6-7. The VAE1 and VAE2 curves are obtained by taking the 539 

median of all fitting curves for the SCARDEC events within Mw 6-7. Dashed black line 540 

represents our proposed double-𝑓௖ model. 541 
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