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Abstract

We propose a simple way to define a field-line-following, general curvilinear coordinate system for a general magnetic field. This

definition of field-line-following coordinate system reduces to a usual definition of dipole coordinate system when the magnetic

field is approximated by an axisymmetric dipole. In this way, it can facilitate the numerical implementation by enabling

validation of various metric terms computed numerically against those defined analytically in the case of dipole field. Steps

involved in grid generation are also sketched. Highly accurate results are obtained using the high-order ordinary differential

equation (ODE) solver to solve the general magnetic field line equations. The accuracy and consistency of the numerical

implementation are validated against analytical results in the case of a dipole field. Numerical results show that this field-line-

following coordinate system for the general magnetic field, like the coordinates for the dipole field, is also an Euler potential or

Clebsch type coordinate system.
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Abstract13

We propose a simple way to define a field-line-following, general curvilinear coor-14

dinate system for a general magnetic field. This definition of field-line-following coor-15

dinate system reduces to a usual definition of dipole coordinate system when the mag-16

netic field is approximated by an axisymmetric dipole. In this way, it can facilitate the17

numerical implementation by enabling validation of various metric terms computed nu-18

merically against those defined analytically in the case of dipole field. Steps involved in19

grid generation are also sketched. Highly accurate results are obtained using the high-20

order ordinary differential equation (ODE) solver to solve the general magnetic field line21

equations. The accuracy and consistency of the numerical implementation are validated22

against analytical results in the case of a dipole field. Numerical results show that this23

field-line-following coordinate system for the general magnetic field, like the coordinates24

for the dipole field, is also an Euler potential or Clebsch type coordinate system.25

1 Introduction26

A coordinate system provides a way of organizing data. What kind of coordinate27

systems to use depends on the kind of problems to be solved. Because the fundamen-28

tal role played by the geomagnetic main fields in plasma motion in ionosphere and plas-29

masphere , it is often advantageous to organize ionosphere-plasmasphere data or define30

model variables along the magnetic field lines.31

Several magnetic coordinate systems have been proposed for ionospheric studies32

in the past, see Laundal & Richmond (2017) for a comprehensive review. The apex-based33

coordinates, such as the apex coordinates (VanZandt et al. (1972)), the modified apex34

coordinates and quasi-dipole coordinates (Richmond (1995)), were discussed in Emmert35

et al. (2010), along with the computational aspects of apex-type coordinates. Use of the36

Euler potentials as coordinate variables is also appealing because of the special proper-37

ties of the Euler potentials (e.g., Stern (1967, 1970)).38

The Earth’s main magnetic field can be best described by the International Ge-39

omagnetic Reference Field (IGRF) (Thébault et al. (2015)). Approximated magnetic field40

such as the eccentric dipole, a tilted dipole with an offset center, is sometimes used in41

the ionospheric modeling (e.g., Bailey et al. (1993); Huba et al. (2000)).42

It would be a helpful aid for ionosphere-plasmasphere model development to use43

the general curvilinear coordinate system that is consistent with the conventional math-44

ematical notations. In this paper, we propose and derive a magnetic field-line-following45

coordinate system that is consistent with the idea and notation of the rigorous math-46

ematics of general curvilinear coordinates. This definition also reduces to a usual def-47

inition of the dipole coordinate system in the case of a dipole field.48

This paper is organized as follows. In the next section, we present the definition49

of the general field-line-following coordinate system. Computation of the basis vectors50

are described in section 3. Evaluation of numerical implementation and computational51

results are given in section 4. And the final section is a summary. Some mathematical52

details related to algorithm development are presented in the appendices, where grid gen-53

eration procedures are also briefly described.54

2 Definition of coordinate systems for the magnetic field55

2.1 A coordinate system for the dipole magnetic field56

The simplest configuration of a magnetic field is a dipole. To aid our discussion,57

we start with a definition of a dipole coordinate system. Using the notation of Kageyama58
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et al. (2006), the dipole coordinates (µ, χ, ϕ) for an axial-centered dipole field in terms59

of the spherical polar coordinates (r, θ, ϕ) are defined as60

µ = −cos θ

r2
, χ =

sin2 θ

r
, ϕ = ϕ, (1)61

where r is the radial distance from Earth’s center, normalized by the geomagnetic con-62

ventional Earth’s mean reference spherical radius a = 6371.2 km, θ the geocentric co-63

latitude, and ϕ the east longitude. The coordinate µ is a magnetic scalar potential func-64

tion for the dipole field, and the magnetic flux density is given by B = −m∇µ, with65

m as the dipole moment. The dipole coordinates (µ, χ, ϕ) are orthogonal.66

It can be shown that67

∇χ×∇ϕ = ∇µ.68

Hence B = −m∇µ = −m∇χ × ∇ϕ. Thus, the coordinates χ, ϕ are the Euler poten-69

tials (e.g., Stern, 1970). They are also called the Clebsch-type coordinates (D’haeseleer70

et al., 1991, Chapter 5).71

2.2 A general curvilinear magnetic field-line-following coordinate sys-72

tem73

We would like to define a general magnetic field-line-following coordinate system74

in such a way that, when the magnetic field becomes a dipole, the definition seamlessly75

and naturally becomes the definition of coordinates for a dipole field, the (µ, χ, ϕ) co-76

ordinates. Thus, we propose to define a magnetic coordinate system (µm, χm, ϕm) as fol-77

lows:78

µm = Φ̂, χm =
sin2 θm

r
, ϕm = ϕA, (2)79

where Φ̂ is a magnetic scalar potential (more details later), θm is the magnetic colati-80

tude defined by81

sin2 θm
r

=
1

rA
,82

with rA the radial distance to the apex (a constant for each field line), and ϕA is the (ge-83

ographic) longitude at the apex. Both rA and ϕA are uniquely defined for each field line,84

as long as each field line has a unique, well-defined apex. Thus, they can be used to la-85

bel each field line; hence (µm, χm, ϕm) as defined in Eq. (2) can be used as the coordi-86

nate variables.87

The shifted and normalized magnetic scalar potential Φ̂ is defined as follows:88

Φ̂ ≡ Φ− ΦA

gm
,89

where Φ is the magnetic scalar potential, ΦA is the magnetic potential at the apex, and90

gm is the dipole moment used here as the normalization factor. Thus the coordinate µm ≡91

Φ̂ is defined in such way that the origin of the coordinate is at the apex. The magnetic92

flux density is then given by B ≡ −∇Φ = −gm∇Φ̂. For the International Geomag-93

netic Reference Field (IGRF), Φ and gm are defined in Eqs. (A1) and (A3), respectively.94

3 Basis vectors and metric terms95

Two sets of basis vectors can be defined for a general curvilinear coordinate sys-96

tem. The contravariant-basis vectors are defined as the gradient of the coordinate vari-97

ables, while the covariant-basis vectors are tangent to the coordinate curves. The two98

sets of basis vectors are reciprocal sets of vectors: one can derive one set of the basis vec-99

tors once the other set is known or vice versa (D’haeseleer et al., 1991, Chapter 2).100
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3.1 Basis vectors and metric terms for a dipole field101

For a dipole field, the metric terms can be derived analytically. The contravariant-102

basis vectors are the gradient of the coordinate variables (µ, χ, ϕ), which can be writ-103

ten in terms of the spherical coordinates as104

eµ ≡ ∇µ =
2 cos θ

r3
r̂+

sin θ

r3
θ̂, (3a)105

eχ ≡ ∇χ = − sin2 θ

r2
r̂+

2 sin θ cos θ

r2
θ̂, (3b)106

eϕ ≡ ∇ϕ =
1

r sin θ
ϕ̂, (3c)107

108

where (r̂, θ̂, ϕ̂) are unit vectors of the spherical polar coordinates (r, θ, ϕ). The covariant-109

basis vectors, as the reciprocal of the contravariant-basis vectors, can be computed from110

the contravariant-basis vectors as follows:111

eµ =
eχ × eϕ

eµ · (eχ × eϕ)
=

2r3 cos θ

Θ2
r̂+

r3 sin θ

Θ2
θ̂, (4a)112

eχ =
eϕ × eµ

eχ · (eϕ × eµ)
= − r2

Θ2
r̂+

2r2

Θ2 tan θ
θ̂, (4b)113

eϕ =
eµ × eχ

eϕ · (eµ × eχ)
= r sin θϕ̂, (4c)114

115

where Θ is defined as116

Θ =
√
1 + 3 cos2 θ.117

The scale factors can be computed as118

hµ = |eµ| = 1/|∇µ| = r3/Θ, (5a)119

hχ = |eχ| = 1/|∇χ| = r2/(Θ sin θ), (5b)120

hϕ = |eϕ| = 1/|∇ϕ| = r sin θ. (5c)121
122

And, in terms of the scale factors, the differential arc length ds is given by123

ds2 = ds2µ + ds2χ + ds2ϕ = (hµdµ)
2 + (hχdχ)

2 + (hϕdϕ)
2. (6)124

For a dipole magnetic field, an analytical expression for the arc length can be obtained,125

see Eq. (B2). We will compare the arc length computed using Eqs. (B2), (6), and (7)126

of the general coordinates in the case of a dipole field; see section 4.1, especially Table 2.127

3.2 Basis vectors and metric terms for a general magnetic field128

For the general magnetic field, the basis vectors and metric terms can only be com-129

puted numerically. We first compute contravariant-basis vectors as the gradient of the130

coordinate variables (e.g., D’haeseleer et al., 1991):131

ei ≡ ∇ui.132

Then, the covariant-basis vectors can be computed from the contravariant-basis vectors133

as follows:134

ei =
ej × ek

ei · (ej × ek)
,135

where i, j and k are chosen such that (i, j, k) forms a cyclic permutation of (1, 2, 3). We136

will use the correspondence notation (1, 2, 3) ⇔ (µm, χm, ϕm).137

Two important metric coefficients gij and gij are defined as138

gij = ei · ej , gij = ei · ej .139
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The off-diagonal metric coefficients are all zero for an orthogonal but not necessarily or-140

thonormal coordinate system. The scale factors are defined as hi = |ei|. Thus141

gii = h2
i or hi =

√
gii,142

and so hi’s are also called metric coefficients; no summation rule is implied here. Although143

the hi’s are usually used for orthogonal coordinate systems, the above definition is valid144

for any coordinate system (D’haeseleer et al., 1991). The arc length can then be com-145

puted the same as in the dipole case:146

ds2 = ds2µm
+ ds2χm

+ ds2ϕm
= (h1dµm)2 + (h2dχm)2 + (h3dϕm)2, (7)147

where h1 = hµm
, h2 = hχm

, h3 = hϕm
, using the correspondence notation (1, 2, 3) ⇔148

(µm, χm, ϕm).149

4 Grid generation and computational results150

Grid generation is an important step in ionosphere-plasmasphere model develop-151

ment. It is usually non-trivial, especially for the general magnetic field-line-following co-152

ordinates. The procedures of grid generation are briefly described in Appendix C. In this153

section we evaluate the accuracy of numerical implementation of the algorithms for var-154

ious coordinate variables and metric terms.155

4.1 Evaluation in the case of a dipole field156

Because of the way we define the general coordinate system, we find that the val-157

idation of the implementation and the assessment of numerical algorithms can be con-158

veniently performed in the case of a dipole field. This is done as follows:159

(1) For dipole coordinates, grid generation is done as described in C1. The basis vec-160

tors and metric terms are computed using analytical expressions given in section 3.1.161

(2) For general coordinates, grid generation is done as described in C2. Note in choos-162

ing/specializing the dipole field from the IGRF model, instead of using all the terms163

as in Eq. (A1), only one term, the g01 term, is used as in Eq. (A2). The basis vec-164

tors and metric terms are then computed as described in section 3.2.165

We choose the field line crossing the earth’s surface at colatitude θ = 45° at lon-166

gitude ϕ = 0°. We compute the relative errors of numerically computed values of spher-167

ical coordinate variables (radial distance r and latitude φ = π/2 − θ), magnetic flux168

density B, and scale factors h1, h2 and h3, based on the procedure (2) above, relative169

to their corresponding values based on procedure (1) in the case of axial symmetric dipole170

field. The relative error Ex of a variable x is defined as171

Ex = (x− x0)/x0,172

where x0 is expected value of the variable x. Figure 1 shows the results. They are plot-173

ted as the function of the arc length/distance along the field line.174

First, notice that these errors are all very small; see also Table 1, which lists the175

minimum and maximum of these relative errors.176

Another noticeable feature is that these errors are symmetric about the apex point.177

This symmetry in the case of dipole field is a good indicator of the consistency and ac-178

curacy of the numerical implementation of the algorithms.179

We also calculate the relative errors of various ways of computing the arc length180

for the field line. We call the arc length calculated using the scale factors from Eq. (6)181

and Eq. (7) the discretized arc length, denoted by sdc and sgc, respectively; while the arc182
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Figure 1. The relative errors of numerically computed spherical coordinate variables (r, φ),

magnetic flux density (B), and scale factors (h1, h2, h3) with respect to those computed using

analytical expressions in the case of a dipole field line.

length calculated using the analytical expression Eq. (B2) the continuous arc length, de-183

noted by ℓ. Table 2 shows the computed arc lengths [km] of a dipole field line, and their184

relative errors: w.r.t. sdc (Egc/dc) or w.r.t. ℓ (Egc/ℓ and Edc/ℓ). Again these errors are very185

small, indicating the high accuracy of the numerical scheme and robustness of the nu-186

merical implementation.187

4.2 Into the general magnetic field188

For the general magnetic field, specifically the IGRF used in this study, we first check189

the orthogonality of the coordinates. For this we compute the angles between the con-190

travariant basis vectors. The angle between the basis vectors ei and ej , denoted by αij ,191

can be computed from their dot product192

ei · ej = |ei||ej | cos(αij).193

Figure 2 shows the departures from 90° of the angles between the three contravariant194

basis vectors195

βij ≡ αij − 90°,196

with their minima and maxima listed in Table 3, showing that both β12 and β13 are very197

small. Thus, the two basis vectors e2 and e3, though not orthogonal to each other them-198

selves (β23 not small), they are both perpendicular to e1, i.e., the magnetic field. Here199

we use the correspondence notation (1, 2, 3) ⇔ (µm, χm, ϕm) again.200
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Table 1. The minima and maxima of the relative errors E of spherical coordinate variables

(r, φ), magnetic flux density (B), and metric coefficients (h1, h2, h3) for a dipole field line.

E Min Max

r −8.9068× 10−8 3.6699× 10−9

φ −1.8329× 10−7 4.9260× 10−12

B −2.0742× 10−8 2.3209× 10−7

h1 −1.6877× 10−7 4.5553× 10−8

h2 −5.5964× 10−4 1.2505× 10−4

h3 −7.3187× 10−8 1.7017× 10−8

Table 2. The computed discretized and continuous arc lengths of a dipole field line (sgc, sdc, ℓ)

in [km] and their relative errors (Egc/dc, Egc/ℓ, Edc/ℓ).

sgc sdc ℓ Egc/dc Egc/ℓ Edc/ℓ
21 480.2394 21 480.2403 21 480.5278 −4.0869× 10−8 −1.3424× 10−5 −1.3383× 10−5

Figure 2. The departures from 90° of the angles between the basis vectors: a) β12, b) β13, and

c) β23.

Since both e2 and e3 are perpendicular to e1, their cross product e2 × e3 would201

be parallel to e1, hence also the magnetic field B. Thus, we can write the magnetic field202

in the following way:203

B ≡ −gm∇µm = −c∇χm ×∇ϕm,204

Figure 3 plots the ratio r = c/gm, and the distribution of grid points along the field205

lines. It shows that the ratio follows the field lines, i.e., it is constant along each field line.206

Thus, the constant c depends on the field line, but is fixed for each field line. Therefore,207

χm and ϕm in the general coordinates, as the corresponding χ and ϕ in the dipole co-208

ordinates, are also Euler potentials. Note that, for a dipole field, the ratio r = c/gm209

would be a constant 1 everywhere.210

The Euler potential, as a potential function, is not uniquely defined. Several dif-211

ferent ways to define and construct the Euler potentials have been proposed and used,212

e.g., Stern (1967, 1976, 1994); Ho et al. (1997); Peymirat & Fontaine (1999); Wolf et al.213

(2006); Rankin et al. (2006). Sometimes the computational procedures can get quite com-214

plicated. So depending on the applications, the simple approach here may be sometimes215

preferable.216
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Table 3. The minima and maxima of the departures from 90° of the angles between the basis

vectors.

βij Min Max

β12 −4.4080× 10−2 4.1725× 10−2

β13 −9.3284× 10−4 2.5954× 10−3

β23 −5.8443 11.0157

Figure 3. The ratio r = c/gm: rmin = 0.9521, rmax = 1.0824. The dots are grid points.

5 Summary217

A general curvilinear coordinate system is proposed for ionosphere-plasmasphere218

modeling. This magnetic field-line-following curvilinear coordinate system becomes a usual219

definition of dipole coordinate system when the magnetic field becomes the dipole.220

High-order ordinary differential equation (ODE) solver is used to solve the mag-221

netic field line equations for the general magnetic field of the IGRF model. The numer-222

ical accuracy and consistency of the implementation is validated against the analytical223

results in the case of a dipole magnetic field. The symmetry of the dipole field can also224

be used to check the consistency and accuracy of implementation: any loss of symme-225

try may indicate loss of accuracy or lack of consistency in the implementation of numer-226

ical algorithms.227

The general coordinate system is also the Euler potential or Clebsch-type coordi-228

nate system. There are infinite choices of Euler potentials for coordinate variables, and229

it can become complicated sometimes. So depending on the applications, the simple ap-230

proach used here may be preferred in some cases.231
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The general curvilinear magnetic field-line-following coordinate system proposed232

here is developed and implemented while developing a new ionosphere-plasmasphere model.233

It is also an attempt to put the field-line-following coordinate system on a more rigor-234

ous or conventional mathematical framework. Applications of the general coordinates235

will be presented in a separate paper on ionosphere-plasmasphere modeling.236

Appendix A The IGRF magnetic field237

The Earth’s main magnetic field can be best described by the International Ge-238

omagnetic Reference Field (IGRF) (Thébault et al. (2015)). The magnetic potential Φ239

of IGRF is approximated by the truncated series, written in the geographic spherical co-240

ordinates (r, θ, ϕ), as follows:241

Φ(r, θ, ϕ, t) = a

N∑
n=1

n∑
m=0

(a
r

)n+1

[gmn (t) cos(mϕ) + hm
n (t) sin(mϕ)]Pm

n (cos θ), (A1)242

where r is the radial distance from the center of the Earth, a = 6371.2 km is the ge-243

omagnetic conventional Earth’s mean reference spherical radius, θ is the geocentric co-244

latitude, and ϕ the east longitude. The functions Pm
n (cos θ) are the Schmidt quasi-normalized245

associated Legendre functions of degree n and order m. The order of approximation is246

truncated to N = 10 for epochs up to 1995.0 and N = 13 from epoch 2000. In nu-247

merical computation of this study, the Schmidt quasi-normalized associated Legendre248

functions are evaluated using the SHTOOLS (Wieczorek & Meschede (2018)).249

The lowest-order approximation, by setting n = 1 and m = 0 in the truncated250

series of Eq. (A1), defines an axial-centered dipole field:251

Φ(r, θ) = a
(a
r

)2

g01 cos θ ≡ gm

(a
r

)2

cos θ, (A2)252

where we have defined253

gm ≡ ag01 (A3)254

and may simply be called the dipole moment.255

The three components of the magnetic field B = −∇Φ in the spherical coordi-256

nates are computed by257

Br =

N∑
n=1

(n+ 1)
(a
r

)n+2 n∑
m=0

[gmn cos(mϕ) + hm
n sin(mϕ)]Pm

n (cos θ), (A4a)258

Bθ = sin θ

N∑
n=1

(a
r

)n+2 n∑
m=0

[gmn cos(mϕ) + hm
n sin(mϕ)]

∂Pm
n (x)

∂x
, (A4b)259

Bϕ =
1

sin θ

N∑
n=1

(a
r

)n+2 n∑
m=0

m[gmn sin(mϕ)− hm
n cos(mϕ)]Pm

n (cos θ), (A4c)260

261

where we have used262

∂Pm
n (cos θ)

∂θ
= − sin θ

∂Pm
n (x)

∂x
263

by chain rule with x = cos θ.264

Appendix B Numerical solution of the differential equations for the265

magnetic field line266

B1 The differential equations for the dipole magnetic field line267

The differential equations for a dipole field line can be written in the spherical co-268

ordinates as269

dr

rdθ
=

Br

Bθ
=

2 cos θ

sin θ
. (B1)270

–9–
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An analytical expression for the arc length of a dipole field line can be obtained, see e.g. (Walt,271

1994, pp. 30-31). Integrating the field line equation (B1) gives272

r = rA sin2 θ,273

where rA is the value of r at apex θ = π/2. The arc distance element dℓ along a field274

line275

dℓ =
√

(dr)2 + (rdθ)2,276

can be integrated analytically as follows. Differentiating r = rA sin2 θ gives277

dr = 2rA sin θ cos θdθ.278

Thus,279

dℓ =
√
4r2A sin2 θ cos2 θ + r2A sin4 θdθ280

= rA
√
1 + 3 cos2 θ sin θdθ.281

282

Let x = cos θ, integrating from x = cos θ to the equator x = cos(π/2) = 0, we get an283

analytical expression for the arc length of a dipole field line as follows:284

ℓ =
rA
2

[
x
√

1 + 3x2 +
1√
3
ln(

√
1 + 3x2 +

√
3x)

]
. (B2)285

Note that we use ℓ here to distinguish it from the arc length s calculated from the dis-286

cretized form Eq. (6).287

B2 The differential equations for the general magnetic field line288

For a general magnetic field such as IGRF, the differential equations for a field line289

can be written as290

δs

B
=

δr

Br
=

rδθ

Bθ
=

r sin θδϕ

Bϕ
, (B3)291

which can be solved for field line (tracing) as follows292

rn+1 = rn + τ̂

(
Br

B

)n

(δs)n, (B4a)293

θn+1 = θn + τ̂
1

rn

(
Bθ

B

)n

(δs)n, (B4b)294

ϕn+1 = ϕn + τ̂
1

rn sin θn

(
Bϕ

B

)n

(δs)n, (B4c)295

296

where superscripts n and n + 1 are position indices; τ̂ = ŝ · b̂ = ±1 , with + (or −)297

sign depending on whether ŝ moving/tracing in the same (or opposite) direction of b̂ (the298

unit vector of the magnetic field B).299

B3 Numerical solution of the general magnetic field line equations300

In many applications, such as grid generation described in C2, accurate and effi-301

cient high-order ordinary differential equation (ODE) solvers are needed to solve the mag-302

netic field line tracing equations (B4) numerically. In this study, we use the higher-order303

embedded method, the Runge-Kutta-Fehlberg (RKF45) method. RKF45 is a method304

of order O(h4) with an error estimator of order O(h5), which automatically determines305

the step-size to achieve the pre-defined accuracy. The RKF45 solver implemented in pack-306

age rksuite 90 (Brankin & Gladwell, 1997) is used in this study. Highly accurate results307

are obtained, as shown in section 4.1 on comparing the numerically computed and the308

analytically derived results in the case of the dipole field.309
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Appendix C Grid generation for ionosphere-plasmasphere modeling310

C1 Grid generation for dipole coordinates311

For the dipole coordinates (DC), the grid uniform in (µ, χ, ϕ) with constant (dµ, dχ, dϕ)312

can be generated as follows:313

1) Choose two magnetic colatitudes θ1 and θ2, where the outmost and innermost field314

lines intersect with the earth’s surface, and a longitudes ϕ.315

2) From the constancy of χ = sin2 θ/r along each field line, find the corresponding316

radial distances at the magnetic equator, i.e., at apex where θ = π/2. These are317

given by rA1 = 1/ sin2 θ1 and rA2 = 1/ sin2 θ2. Grid increment dχ is determined318

by dividing χ1 = 1/rA1 and χ2 = 1/rA2 into a predefined number of field lines319

in the meridional plane (ϕ = const.).320

3) Grid distribution along the field lines: grid increment dµ is determined by divid-321

ing the potential at the earth’s surface µ0 = − cos(θ0) and the potential at the322

apex µA = 0 of the outmost field line into a predefined number of points. Grid323

along the inner field lines is generated using the same grid increment dµ, start-324

ing from the apex. The foot points for each field line are chosen to be the lowest325

points above the spherical Earth’s surface that satisfy e.g., r ⩾ a+ 90 [km].326

4) Compute magnetic flux density, basis vectors, metric terms, scale factors, and the327

arc length etc.328

Analytical expressions of the inverse transformation from the dipole coordinates329

(µ, χ, ϕ) to the spherical coordinates (r, θ, ϕ) are given by Kageyama et al. (2006). These330

are used in the grid generation for the dipole coordinates.331

Note that for the dipole coordinates, θg = θm, where the subscripts g and m in-332

dicate geographic/geodetic and magnetic colatitudes, respectively. So we don not dif-333

ferentiate between the two in the dipole coordinates.334

C2 Grid generation for general coordinates335

As in defining the general coordinates, which becomes a usual definition of dipole336

coordinates the field becomes a dipole, grid generation for the general coordinates can337

be done in a similar way as that for the dipole coordinates.338

For the general coordinates (GC), the grid uniform in (µm, χm, ϕm) with constant339

(dµm, dχm, dϕm) can be generated as follows::340

1) Choose two magnetic colatitudes θm1 and θm2, where the outmost and innermost341

field lines intersect with the earth’s surface, and a longitude ϕm = ϕgA at apex.342

2) From the constancy of χm = sin2 θm/r along each field line, find the correspond-343

ing radial distances at the magnetic equator, i.e., at apex where θm = π/2. These344

are given by rA1 = 1/ sin2 θm1 and rA2 = 1/ sin2 θm2. Grid increment dχm is345

determined by dividing χm1 = 1/rA1 and χm2 = 1/rA2 into a predefined num-346

ber of field lines n the meridional plane (ϕm = const.).347

3) Grid distribution along the field lines:348

a) Find the geographic/geodetic colatitude at apex: given the geographic coordi-349

nates at apex (rgA, ϕgA) and a first-guess of θ′gA, find θgA (θg at apex) using350

the Newton-Raphson method; and compute the magnetic potential ΦmA at apex.351

The apex is defined by Br = 0, thus a turning point.352

b) Tracing down from apex to locate where the field line cross the Earth’s surface353

on both hemispheres: (rg0, θg0, ϕg0), and compute the magnetic potential Φm0.354

c) Grid increment along the field lines is determined by dividing the potential at355

the earth’s surface Φm0 and the potential at the apex ΦmA of the outmost field356

line into a predefined number of points. Grid along the inner field lines is gen-357

erated using the same grid increment, starting from the apex. The foot points358
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for each field line are chosen to be the lowest points above the spherical Earth’s359

surface that satisfy e.g., r ⩾ a+ 90 [km].360

4) Compute magnetic flux density, basis vectors, metric terms, scale factors, and the361

arc length etc.362
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