
P
os
te
d
on

23
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
81
27
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Detecting the presence of Tropical Cyclones using Deep Learning

Techniques

Daniel Galea1, Bryan Lawrence2, and Julian Kunkel3

1Department of Computer Science, University of Reading
2National Centre of Atmospheric Science; Department of Meteorology, Department of
Computer Science, University of Reading
3University of Göttingen/GWDG

November 23, 2022

Abstract

Tropical cyclones are severe weather events which have massive human and economic effect, so it is important to be able

to understand how their location, frequency and structure might change in future climate. Here, a lightweight Deep Learning

model is presented which is intended for detecting the presence or absence of tropical cyclones in running numerical simulations.

This model has been developed to investigate the avoidance of saving vast amounts of data for analysis by filtering data during

simulations so as to save only relevant data. Subsequent analysis workflow can target that data, avoiding the need to save

all simulation outputs for cyclone analysis. The model was trained on ERA-Interim reanalysis data from 1979 to 2017 and

the training concentrated on delivering the highest possible recall rate (successful detection of cyclones) while rejecting enough

data to make a difference in outputs. When tested using data from the two subsequent years, the recall rate was 92% and

the precision was 36%. For the desired filtration application, if the desired target included relevant meteorological events, the

effective precision was 85%. The recall rate compares favourably with other methods of cyclone identification having the best

Area Under Curve for the Precision/Recall (AUC-PR) and using the smallest number of parameters for both training and

inference.

1

This work has not yet been peer-reviewed. Copyright and all rights therein are maintained by the author(s). It is
understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s
copyright.

Detecting the presence of Tropical Cyclones using Deep Learning Techniques

Daniel Galea∗

Department of Computer Science, University of Reading, UK

Bryan N. Lawrence
National Centre of Atmospheric Science

Department of Meteorology, Department of Computer Science
University of Reading, UK

Julian Kunkel
University of Göttingen/GWDG

ABSTRACT

Tropical cyclones are severe weather events which have massive human and economic effect, so it is important to be able to understand
how their location, frequency and structure might change in future climate. Here, a lightweight Deep Learning model is presented which
is intended for detecting the presence or absence of tropical cyclones in running numerical simulations. This model has been developed
to investigate the avoidance of saving vast amounts of data for analysis by filtering data during simulations so as to save only relevant
data. Subsequent analysis workflow can target that data, avoiding the need to save all simulation outputs for cyclone analysis. The model
was trained on ERA-Interim reanalysis data from 1979 to 2017 and the training concentrated on delivering the highest possible recall
rate (successful detection of cyclones) while rejecting enough data to make a difference in outputs. When tested using data from the two
subsequent years, the recall rate was 92% and the precision was 36%. For the desired filtration application, if the desired target included
relevant meteorological events, the effective precision was 85%. The recall rate compares favourably with other methods of cyclone
identification having the best Area Under Curve for the Precision/Recall (AUC-PR) and using the smallest number of parameters for both
training and inference.

1. Introduction

Tropical Cyclones (TCs) are extremeweather events that
can leave devastating effects on human populations; for
example, Hurricane Irma impacted the Caribbean Islands
and the Southeast USA in September 2017 causing 47
direct deaths, 82 indirect deaths, hundreds of injuries and
an estimated monetary damage of around 50 billion USD
(Cangialosi et al. 2018). TCs can be detected and tracked
both in satellite data and in simulations carried out using
numerical weather prediction (NWP) or climate models.

Climate models can be used to understand how the prop-
erties of TCs and other meteorological phenomena might
evolve in a changing climate, but such Global Circulation
Models (GCMs) produce a large amount of data. Amethod
to filter this data in order to target analysis would be useful;
and such amethod is presented here, based on a deep learn-
ing model that detects the presence of tropical cyclones in
simulation output. While tested offline (i.e. after data has
been output), the method is intended for eventual deploy-
ment online (i.e. while a simulationmodel is running) so as
to preclude the need to output data which does not include

∗Corresponding author: Daniel Galea, galea.daniel18@gmail.com

TCs (at least for the situation where TCs are the product of
interest). The method presented here is lightweight, with
relatively short training and inference times, and requires
no explicit a-priori thresholds in meteorological variables.
It is also shown to perform at least as well as other more
standard, and more complex, deep learning models.

Following motivation and a description of previous
work, the deep learning model itself is presented, along
with a description of the data used for training and valida-
tion. The performance of the model is then discussed, both
in terms of metrics of success (precision and recall) and
in comparison with other deep learning models. A range
of techniques were used to attempt to explain the results
obtained.

a. Motivation

Data volumes from climate simulations are huge. The
current phase of the climatemodel intercomparison project
(Eyring et al. 2016, CMIP6) comprises hundreds of differ-
ent model simulations, is not yet complete, and could yet
produce 18 PB of data (Balaji et al. 2018). Much more
data was produced and analysed in the production of the

1

2

archived datasets. Such data are costly to store and main-
tain and the volume makes analysis difficult.

A method of automatically detecting interesting phe-
nomena in such data could have two major benefits:

1. A fast way of finding data suitable for subsequent
manual analysis increasing scientific productivity,
and

2. being able to trigger storing of data during simulation
if the relevant phenomena are detected reducing the
need to store all data periodically — leading to more
efficient science (efficient in time saved, storage costs,
and storage energy consumption).

The possibility of efficiencies arise because although
many simulations are carried out to target multiple use-
cases, some are carried out to investigate specific phe-
nomena (e.g. when checking the impact of resolution on
simulated TCs as in Roberts et al. 2015). In these cases,
data relating to other phenomena might not be needed.
However, currently in order to be able to retrieve the data
for specific phenomena, the simulation will store sufficient
data for post-processing analysis at fixed intervals. The
first post-processing step then involves the retrieval of only
relevant data, the other data is not used.

To select the correct data for analysis, it is important
to have confidence in the method used for identifying the
feature of interest. There is sometimes a conflict between
the abstract notion of the feature of interest (in this case
a TC) and the practical implementation of a definition of
for a TC — the latter is intimately related to the tool for
discovering it. For example, if the practical definition of
a TC is the same as the metric for detecting it, of course
we have confidence in it - but this definition may miss (or
include) things which we would abstractly consider to be
TCs (or detect phenomena which we would not consider to
be TCs, but fall inside a poorly drawn definition). We show
some examples of this later. Many previous techniques for
TC identification in numerical data generally conflate the
detection method with the definition—with deep learning
it is clear that will not be the case, so understanding the
distinction is important.

Although our initial interest is in detecting TCs, the
method is expected to be extensible to other important
phenomena such as fronts, atmospheric rivers etc.

2. Previous Work

Several methods used to detect TCs have been devel-
oped. Most operate by using thresholds set for a few mete-
orological variables to determine the presence of a tropical
cyclone. The use of thresholds leads to two problems: set-
ting such thresholds involves scientific subjectivity, and the
combination of method and threshold may not be transfer-
able across different models or data. More recently deep

learning has been used, and while deep learning may suf-
fer from aspects of the transferability problem, it should be
possible to avoid subjectivity.

a. TC detection using conventional techniques

Conventional techniques usually work by identifying TC
centres by applying various thresholds to the available data.
TC tracks are then created by arranging the identified TC
centres according to some mathematically-based method.
The following show a few examples of such methods, with
a tubular summary in Table 1.

Kleppek et al. (2008) use multiple thresholds to identify
TC centers. The first is that a local minimum of sea-level
pressure (SLP) needs to observed within a neighbourhood
of eight grid points. This is assigned as a storm centre. For
it to be a TC centre, amaximum relative vorticity at 850hPa
above 5×10−5 s-1 and positioned at the storm centre needs
to be present. The presence of vertical wind shear between
850hPa and 200hPa of at least 10 ms-1 is also required, as
well as an event lifetime of 36 or more hours. Finally, if the
storm centre is over land, the relative vorticity condition
has to be fulfilled or the wind speed maximum at 850hPa
needs to be inside 250km from the TC centre.

Similarly, Vitart et al. (1997) used the closest minimum
of mean sea level pressure (MSLP) to a local maximum of
relative vorticity at 850hPa over 3.5× 10−5 s-1 as a storm
centre. For it to be a TC centre, the closest local maximum
of the average temperature between 550hPa and 200hPa
must be within 2o of the storm centre and the temperature
decreases by at least 0.5oC for at least 8o latitude in all
directions. Also, the closest maximum thickness between
1000hPa and 200hPa must be within 2o of the storm centre
and the thickness must decrease at least 50 metres for at
least 8o latitude in all directions.

Camargo and Zebiak (2002) introduce a detection
method that uses vorticity at 850hPa, surface wind speed
and a vertically integrated temperature anomaly as vari-
ables on which to impose basin-dependant thresholds. A
final example is Roberts et al. (2015) who use the method
explained by Hodges (1995, 1996, 1999) and Bengtsson
et al. (2007), where a TC is identified by a maximum of
850hPa relative vorticity, in data which has been spectrally
filtered using a T42 filter (i.e. keeps features greater than
250km in scale) and a warm-core check on a T63 grid
(to keep features larger than 180km) using the 850hPa,
500hPa, 300hPa and 200hPa levels.

b. TC detection using Deep Learning

Racah et al. (2017) created amethodwhere a deep learn-
ingmodel takes in a snapshot of theworld (in this case from
a CAM5 climate model) with 16 different meteorological
channels and creates bounding boxes around the detected
TCs. The architecture used was that of an auto-encoder
with three smaller networks using the bottleneck layer to

3

Author/s Variable Threshold

Kleppek et al.
(2008)

Sea Level Pressure (SLP) Local minimum in a neighbourhood
of eight grid points

Relative Vorticity at 850hPa > 5×10−5 s-1s and positioned at SLP minimum
Vertical Wind Shear
between 850hPa and 200hPa > 10 ms-1

Event time > 36 hours

SLP Minimum Position

If over land, relative vorticity at 850hPa
> 5×10−5 s-1s and positioned at SLP minimum;
Otherwise, wind speed maximum at 850hPa
needs to be inside 250km from the TC centre

Vitart et al.
(1997)

Relative Vorticity at 850hPa Local maximum > 3.5×10−5 s-1

Mean Sea Level Pressure (MSLP) Minimum closest to relative vorticity local maximum
– taken as storm centre

Average Temperature
between 550hPa and 200hPa

Closest maximum within 2o of the storm centre and
the temperature decreases by at least 0.5oC
for at least 8o latitude in all directions

Maximum Thickness
between 1000hPa and 200hPa

Closest maximum within 2o of the storm centre and
the thickness must decrease at least 50 metres
for at least 8o latitude in all directions

Camargo and Zeblak
(2002)

Relative Vorticity at 850hPa > twice the vorticity standard deviation in each basin

Surface Wind Speed

> the sum of wind speed standard deviation
in each basin and the global average oceanic wind
speed in a 7x7 box centered around the relative
vorticity maximum

Sea Level Pressure (SLP) A local minimum is present in a 7x7 box
centered around the relative vorticity maximum

Temperature Anomaly

Anomaly averaged over a 7x7 box centered around the
relative vorticity minimum and over the 300, 500, 700 hPa
pressure levels > the basin standard deviation
Anomaly averaged over a 7x7 box centered around the
relative vorticity minimum is positive in all three of
300, 500, and 700 hPa pressure levels
Anomaly averaged over a 7x7 box centered around
the relative vorticity minimum
is greater at 300hPa than at 850hPa

Wind Speed
Wind speed averaged over a 7x7 box
centered around the relative vorticity minimum
is greater at 850hPa than at 300hPa

Distance Travelled
Storm centre – defined as the relative vorticity
minimum – must not have travelled a distance greater than
5.6o if 6-hourly output or 8.5o if daily output

Event Time At least 1.5 days if 6-hourly output or 2 days if daily output

Roberts et al.
(2015)

Relative Vorticity

> 6×10−5 s-1 at 850 hPa
Reduction of at least 6×10−5 s-1 in vorticity
between 850 and 250 hPa at a T63 resolution
Positive vorticity centre at all available
levels between 850 and 250 hPa

Wind Speed
Wind speed averaged over a 7x7 box
centered around the relative vorticity minimum is greater
at 850hPa than at 300hPa

Event Time At least 1.5 days
Table 1. Overview of thresholds applied to meteorological variables for detecting and tracking Tropical Cyclones with the conventional techniques

given.

4

draw a box around a suspected TC. Given the size of the in-
puts and number of kernels used in the convolution layers,
the model presented was expected to be time consuming
to train. It was; an adaptation of this deep learning model
was trained using 9622 nodes of 68 cores each with a peak
throughput of 15.04PF/s and reached a sustained through-
put of 13.27 PF/s, although the total time to train was not
reported (Kurth et al. 2017). The accuracy for this model
was specified as the percentage of overlap between the pre-
dicted box and the box given as the ground truth — an
Intersection of Union (IOU) — which was created using
the Toolkit for Extreme Climate Analysis (TECA) Prabhat
et al. (2012, 2015). Themodel had 24.74% of the predicted
boxes having at least an overlap of 10% with the ground
truth, while 15.53% of the predicted boxes had at least an
overlap of 50% with the ground truth.

Mudigonda et al. (2017) created a deep learning model
which used integrated water vapour (IWV) snapshots and
image segmentation techniques to classify whether each
pixel in an image was a part of a TC or not. It used
an adaptation of the Tiramisu model, which applies the
DenseNet architecture to semantic segmentation. The la-
bels were created using TECA Prabhat et al. (2012, 2015)
and Otsu’s method Otsu (1979). It was trained and tested
on images which had at least 10% of the pixels which were
not background pixels. An accuracy of 92% was obtained
but it was noted that had the model predicted all the pixels
as being all background pixels, the accuracy would have
been of 98%.

Finally, Liu et al. (2016) used an image made up of 8 dif-
ferent meteorological channels cropped in such a way that
if a TC was present, it was centred in the image, and then
predicted whether the image was one of a TC or not. The
model obtained a 99% accuracy with a relatively simple
model, but the pre-processing cropping step involved sig-
nificant noise reduction, which would have helped obtain
good performance.

These three approaches are summarized in Table 2.

3. Deep Learning Model

This section presents the data used to train the deep
learning model, the model architecture, and summarises
the method used to develop it. Full details of the training
appear in the appendices.

a. Data

The deep learning model, referred as TCDetect for the
rest of this study, was trained, tested and validated on
data extracted from the ERA-Interim reanalysis Dee et al.
(2011), with the validation data used for manual hyperpa-
rameter tuning as described in Appendix B and the testing
set used for producing the final testing statistics and for
interpreting the results produced by the trained model.

North
Indian

Western
Pacfic

Eastern
Pacific

Western
Atlantic

South
Indian

South Western
Pacific

South Eastern
Pacific

South
Atlantic

180

180

120

120

60

60

0

0

60

60

120

120

180

180

45 45

30 30

15 15

0 0

15 15

30 30

45 45

Fig. 1. The 8 equal parts of the ERA-Interim data which were used to
create the training dataset (the area shaded in white was not used).

The training and validation sets used data from 1st of
January 1979 until the 31st of July 2017. Five six-hourly
fields were used: mean-sea level pressure (MSLP), 10-
metre wind speed, vorticity at 850hPa, vorticity at 700hPa
and vorticity at 600hPa, each at a spatial resolution of ≈
0.7ox0.7o. Spherical filtering was performed on each field
to reduce some of the smaller scale features, as described
in Appendix B.

Each field was further split into eight regions (Figure
1). The regions are loosely based on those used by IB-
TrACS. The resulting dataset had 450,944 cases, each with
dimensions of 86 rows, 114 columns and 5 channels.

Labels for these cases were derived from the Interna-
tional Best Track Archive for Climate Stewardship (IB-
TrACS) Knapp et al. (2010, 2018) dataset, which contains
temporal information, a category, and latitude and longi-
tude of the storm centre for all major storms across the
globe. The labels used were simply the presence or ab-
sence of a TC. At the end of the labelling process, 22,826
(5.06%) positive cases were identified as well as 428,118
(94.94%) negative cases.

Training and validation datasetswere extracted by taking
data from 1979, 1986, 1991, 1996, 2001, 2006, 2011 and
2016 for the validation set and the rest of the the period
was used to make up the training set. Splitting the data in
this way was done so that the possible effects of a changing
climate were taken into consideration; any hyperparameter
tuning performed would not be skewed by underlying non-
stationarity. The resulting training set had a total of 357408
cases, with 339,546 (95.00%) not having a TC and 17,862
(5.00%) with a TC. The validation set had a total of 93,504
cases, with 88,651 (94.81%) not having a TC and 4,853
(5.19%) with a TC.

Data from the 1st of August 2017 until the 31st of August
2019 was used as a testing dataset. This had a total of
24,352 cases, with 23,010 (94.49%) not having a TC and
1,342 (5.51%) having a TC present.

Table 3 shows how the splits are made and that the split
between positive and negative cases is mostly kept.

All data was preprocessed to reduce resolution by a
sixteenth by taking the mean value of all data points in a
4x4 box, resulting in 22 rows, 29 columns and 5 channels
in each case. In order to to standardize each value around

5

Authors Data Used Ground Truth Architectures Results

Racah et al.
(2016)

CAM5 Climate Model
1979-2005 3-hourly
25km resolution

Image size of 768 x 1158 pixels
16 channels

Training Set:
Timesteps during 1979

Testing Set:
Timesteps during 1984

TECA

Encoder:
Conv: 8(layers) x 384(height) x 576(width) @ 64(kernels)

Conv: 8 x 192 x 288 @ 128
Conv: 8 x 96 x 144 @ 256
Conv: 8 x 48 x 72 @ 384
Conv: 8 x 24 x 36 @ 512
Conv: 8 x 12 x 18 @ 640

Decoder:
Conv: 8 x 12 x 18 @ 640
Conv: 8 x 24 x 36 @ 512
Conv: 8 x 48 x 72 @ 384
Conv: 8 x 96 x 144 @ 256
Conv: 8 x 192 x 288 @ 128
Conv: 8 x 384 x 576 @ 64

Box Locator:
Conv: 4 x 12 x 18 @ 4

Class Probabilities:
Conv: 4 x 12 x 18 @ 4

Objectiveness Probabilities:
Conv: 4 x 12 x 18 @ 2

IOU = 0.1: 24.74%
IOU = 0.5: 15.53%

Liu et al.
(2016)

CAM5.1 Climate Model
1979-2005 3-hourly
0.23o x 0.31o res.

ERA-Interim Climate Model
1979-2011 3-hourly
0.25o x 0.25o res.

20th Century Reanalyses
1908-1948 daily

1o x 1o res.

NCEP-NCAR Reanalyses
1949-2009 daily

1o x 1o res.

Images cropped to 32 x 32 pixels

TECA
Manual expert labelling

Conv: 5 x 5 @ 8
Pool: 2 x 2

Conv: 5 x 5 @ 16
Pool: 2 x 2
Dense: 50
Dense: 2

99%

Mudigonda et al.
(2017)

CAM5 Climate Model
1996-2015

Images cropped to 96 x 144 pixels

TECA
Otsu’s method

Adaptation of Tiramisu Model 92%

Table 2. Previous Deep Learning models that detect and track Tropical Cyclones

Partition Years Included Positive Cases Negative Cases

Training
1980 - 1981, 1982 - 1985, 1987 - 1990
1992 - 1995, 1997 - 2000, 2002 - 2005

2007 - 2010, 2012 - 2015, 2017
17862 (5.00%) 339546 (95.00%)

Validation 1979, 1986, 1991, 1996
2001, 2006, 2011, 2016

4853 (5.19%) 88651 (94.81%)

Testing 2017 - 2019 1342 (5.51%) 23010 (94.49%)

Table 3. How the available ERA-Interim data was used to provide
datasets for training, validation, and testing.

0 with a standard deviation of 1 each of the fields used as
input variable for a channel was normalised using

field =
field− `field

ffield
(1)

where `field is the mean of the values in the field and ffield
is the standard deviation of the values in the field.

Figure 2 shows an example of the preprocessed data
for the 28-08-2005-18Z case; the time when Hurricane
Katrina obtained its maximum strength.

6

6

5

4

3

2

1

0

1

2

3

3

2

1

0

1

2

3

4

5

6

4

2

0

2

4

6

8

10

12

4

2

0

2

4

6

8

10

12

3.0

1.5

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

Fig. 2. An example of the preprocessed data used to train TCDetect.
A single case consists of the fields of Mean Sea Level Pressure (MSLP)
(top left), 10-metre wind speed (top right), vorticity at 850hPa (middle
left), vorticity at 700hPa (middle right) and vorticity at 600hPa (bottom).
This example is from 28-08-2005-18Z, i.e. when Hurricane Katrina
obtained its maximum strength.

Inputs

Convolution
and MaxPool Convolution

and MaxPool Convolution
and MaxPool Convolution

and MaxPool Convolution
and MaxPool

Flatten and
FullyConnected FullyConnected

FullyConnected
FullyConnected

5
8

16
32

64

128

22

20
18

16
14

12

29
27

25
23

21

19

128
64

32
1

1
1

1

1 Output

Fig. 3. Visual representation of the architecture of TCDetect. The
inputs, having 22 rows, 29 columns and 5 fields, are passed through a
2x2 convolution window whose weights are learnt producing 8 feature
maps, but losing one row and column. The resulting feature maps are
passed through a MaxPool window which takes the maximum value in
its 2x2 window. This further reduces the feature map size by a row and
a column, to 20 rows and 27 columns. This is repeated for 3 more times,
with each step producing more feature maps. These are then combined
and reshaped into one long array. This array is used as the input to a
fully-connected layer of 128 nodes, where all the values in the array are
passed onto a mathematical calculation which gives out a single value.
128 values are obtained and used as inputs to the next layer. This is
repeated three times to produce the final inference.

b. Architecture

The architecture of TCDetect uses a convolutional base
attached to a fully-connected classifier which outputs a
value between 0 and 1, with any values larger than 0.5
signifying that the model detects a TC and any values
smaller or equal to 0.5 meaning that the model does not
detect a TC. A more detailed explanation of the model
architecture can be found in Appendix A, while a graphical
view is shown in 3.

To arrive at the model architecture, manual hyperpa-
rameter tuning was used to determine which changes to
the architecture performed well (see Appendix B).

Various metrics could have been used. Accuracy, de-
fined as) %+) #

) %+�%+) #+�% × 100, where TP is the number
of true positives, FP is the number of false positives, TN
is the number of true negatives and FP is the number of
false positives, was considered, but was not suitable due to
the large class imbalance present in our training set. The
model would train to produce an inference of "no TC" for
all cases, thus setting TN to a high number, producing a
high accuracy, but a model with no skill. Given that ob-
taining the highest possible number of TCs is important for
the use of the developed model, recall, defined as) %

) %+�# ,
could have been used, as a high value would indicate that
the number of false negatives, i.e. not detected TC cases, is
small. However, this would not have kept in mind the need
to also keep the skill of detecting non-TC cases as such. For
this, precision, defined as) %

) %+�% , could be used as a high
value would indicate that the number of false positives, i.e.
non-TC cases inferred as TC cases, is small. To get the
right balance between the two functions of the model, the
Area-under-Curve for the Precision-Recall curve (AUC-
PR) was used. This gives a single value which takes into
account the two important functions of the model. This
value can still be slightly obscure as the same value could
be produced for high precision and low recall rates, high
recall and low precision rate or average recall and preci-
sion rates. However, as the model was being developed
to identify data for further post-processing, false negatives
would be a bigger problem than false positives, and so im-
provements in recall were favoured over those in precision
if AUC-PR varied only marginally or the balance between
recall and precision needed to be addressed as a change
was assessed.

The bulk of the training was done using a JASMIN
(Lawrence et al. 2012) NVIDIA Volta 100 GPU node
with 32GB of RAM and 32 CPU cores. The software
packages used were Python 3.6.8 and Tensorflow v2.20
Abadi et al. (2015). Manual hyperparameter optimisa-
tion was undertaken as described in Appendix B, with
10-fold cross-validation utilised. This meant considerable
time and computational resources were dedicated to this
process. However, training for the final model needed to
traverse the training set 21 times to converge to a solution
with a total training of 12 minutes.

4. Results

The resulting deep learning model, TCDetect, was eval-
uated against the test set described above. The inferences
obtained were also investigated to understand how the
model generates its results, with the aim of demystifying
the deep learning model. We present these results in this
section.

7

Predicted
Yes No

Labelled Yes 1231 111
No 2166 20844

Table 4. Confusion matrix resulting from inference on the testing
dataset.

Fig. 4. Precision-Recall curve for final trained model evaluated on the
testing dataset.

a. Model Statistics

After training the model correctly classified 1231
(91.73%) of the 1342 cases having a TC and 20844
(90.59%) of the 23010 cases not having a TC. It mis-
classified 111 (8.27%) cases in which a TC was present
and 2166 (9.41%) cases in which a TC was not present.
(Table 4.) These results correspond to an accuracy of
90.65%, a recall rate of 91.73% and a precision rate of
36.24%. This is a sufficiently high recall rate and pre-
cision rate for the model to be used as a data filtration
technique, however, if a different balance between recall
and precision was desired, the value which is the boundary
between a positive and a negative prediction (currently 0.5)
could be changed (e.g. Figure 4 shows the AUC-PR curve
for the model with the values at each point signifying the
boundary at which the corresponding recall and precision
rates are obtained).

b. Comparison with Standard Models

There are many existing deep learning standard models,
so it is reasonable to ask “Would any of those do better
than the model developed here?”.

To test this, convolutional bases from a rich vari-
ety of standard models were compared: DenseNet121
(Huang et al. 2016), DenseNet169 (Huang et al. 2016),

DenseNet201 (Huang et al. 2016), InceptionResNetV2
(Szegedy et al. 2017), InceptionV3 (Szegedy et al.
2016), MobileNet (Howard et al. 2017), MobileNetV2
(Sandler et al. 2018), ResNet101 (He et al. 2016a),
ResNet101V2 (He et al. 2016b), ResNet152 (He et al.
2016a), ResNet152V2 (He et al. 2016b), ResNet50 (He
et al. 2016a), ResNet50V2 (He et al. 2016b), VGG16 (Si-
monyan and Zisserman 2014), VGG19 (Simonyan and Zis-
serman 2014) and Xception Chollet (2017). The convo-
lutional bases, i.e. the part of the models that learn the
patterns needed, are added to the fully-connected classifier
developed in this paper. The weights for the convolu-
tional bases obtained when training from the ImageNet
dataset (Deng et al. 2009) were used and the weights in
the classifier were trained using the testing dataset with the
hyperparameters of the presented model.

Given that these convolutional bases required inputs of at
least 75 pixels by 75 pixels with 3 channels, some changes
to the inputs were required. Firstly, as an input with only
3 channels is required for the most of the architectures, the
fields retained were those of vorticity at 850hPa, vorticity
at 600hPa and MSLP. These fields were deemed the most
influential for the model being presented in this study by
tests detailed in Section 5a. Secondly, the input size was
extended five fold from 22x29 pixels to 110x145 pixels by
interpolating any intermediate values.

Of the standard architectures tested (see figure 5 for all
results), none managed to obtain a better AUC-PR value
than TCDetect on the test set. TCDetect was the most cer-
tain of its inferences, as shown by achieving the lowest loss
value, i.e. the average difference between the inference
and label, on the test set. Table 5 compares the complexity
of some of these more standard models and their perfor-
mance metrics to the model being presented here. All of
the standard models had far higher complexity in terms of
the number of parameters than the one described here -
which also outperforms the others in terms of AUC-PR,
precision rate and loss. While recall for the model being
presented here is not outperforming all of the other models
it is competitive with the best.

5. Model Explainability

It is not always obvious how a deep learning algorithm
arrives at an outcome given a set of inputs. In this section,
the explainability of the results of this deep learning model
are addressed with the aim of understanding when and
where it is more or less likely to perform well. Four factors
are addressed: feature importance, to determine which
inputs influence the inferences most; locality, how well the
model represents cyclones regionally; cyclone strength, the
impact of strength on detectabilty; and size, how is the size
of the training dataset influencing confidence?

8

Convolutional Base Total Parameters AUC-PR Recall Precision Loss
TCDetect 3,789,977 0.7173 92% 36% 0.2650

DenseNet121 8,620,865 0.5409 83% 25% 0.4865
DenseNet169 15,209,281 0.5307 93% 13% 0.6612
DenseNet201 21,821,601 0.4940 88% 20% 0.6248

InceptionResNet v2 55,526,881 0.4874 83% 20% 0.5095
Inception v3 23,386,145 0.5184 90% 18% 0.5651
MobileNet 4,812,225 0.5139 88% 17% 0.6264

MobileNet v2 5,545,281 0.4461 86% 18% 0.5182
ResNet101 47,911,553 0.5397 89% 17% 0.5560

ResNet101 v2 47,879,937 0.4955 88% 21% 0.5381
ResNet152 63,624,321 0.5430 84% 23% 0.5364

ResNet152 v2 63,585,025 0.4765 83% 27% 0.4928
ResNet50 28,841,089 0.4949 95% 11% 1.0428

ResNet50 v2 28,818,177 0.5447 89% 19% 0.4766
VGG16 15,511,617 0.5369 97% 11% 0.9542
VGG19 20,821,313 0.5187 95% 11% 0.9527

Table 5. Comparison of total parameters used and performance metrics for model being presented in this paper and similar models using more
standard convolutional bases.

TC
De

te
ct

De
ns

eN
et

12
1

Re
sN

et
50

V2

Re
sN

et
15

2

Re
sN

et
10

1

VG
G1

6

De
ns

eN
et

16
9

In
ce

pt
io

nV
3

Xc
ep

tio
n

VG
G1

9

M
ob

ile
Ne

t

Re
sN

et
10

1V
2

Re
sN

et
50

De
ns

eN
et

20
1

In
ce

pt
io

nR
es

Ne
tV

2

Re
sN

et
15

2V
2

M
ob

ile
Ne

tV
2

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

AU
C-

PR

0.2

0.4

0.6

0.8

1.0

Lo
ss

Fig. 5. Test AUC-PR (bars) and test loss (average difference be-
tween the inference and label, points) for standard convolutional bases,
pre-trained on the ImageNet database, attached to the fully-connected
classifier developed for TCDetect. The classifier was re-trained for each
convolutional base on the test dataset.

a. Feature Importance

One important aspect when building the model was to
quantify the relative importance of each input field to the
model results. Two methods are employed for this: the
Breimann method (Breiman 2001) and the Lakshmanan
method (Lakshmanan et al. 2015).

The Breimann method involves randomly permuting the
data from one field across all the test cases and then re-
testing the model with this modified dataset. A decrease in
the model’s performance is expected, with the most impor-

tant field obtaining the largest decrease in performance.
The Lakshmanan method involves several steps: Firstly,
permuting the data as in the previous method for one field.
Once the field with the most importance is found, i.e., the
field which produces the largest decline in performance,
it is kept permuted, while the others fields are permuted
individually. The next most important field is now found
repeating the algorithm on the remaining fields. This pro-
cess keeps on going until all the fields are permuted.

Both methods were performed 30 times each and in each
case an average was taken to make sure of consistent and
robust results (Figure 6).

These results suggest this deep learning prioritises high-
vorticity at 850 hPa (and the associated deep convection)
with the other inputs roughly equally weighted.

b. The importance of locality

During development of TCDetect, a number of opti-
misations were carried out (Appendix B) and due to time
and computational constraints, the manual hyperparameter
tuning process was performed on data from the Western
Atlantic and Western Pacific (WAWP) regions. When do-
ing this, two assumptions were made: that any change
made to the architecture which caused an improvement in
the model performance would result in a similar improve-
ment when the architecture was trained and tested on data
from all regions; and that a model trained on data from the
WAWP regions would generalise well when tested on data
from all regions of the world.

9

0.0 0.2 0.4 0.6

10m Wind Speed

Vorticity at 700hPa

Vorticity at 600hPa

MSLP

Vorticity at 850hPa

0.00 0.02 0.04 0.06 0.08 0.10

Vorticity at 700hPa

MSLP

10m Wind Speed

Vorticity at 600hPa

Vorticity at 850hPa

Fig. 6. Feature Importance using the Breiman (top) and Lak-
shamanan (bottom) methods for model using the test dataset. G-axis
is AUC-PR after permutations, with non-permuted model obtaining an
AUC-PR of 0.7173.

The first and third columns of Table 6 show that the
first assumption holds, although it can be seen that the
magnitude of the improvements between the two models
can vary. Also, as shown in Table 7, the architecture has
similar performance when trained and tested only on data
from the WAWP regions and when trained and tested on
data from all regions.

However, the second assumption was found to not hold.
The first and second columns of Table 6 show that a model
trained on data from the WAWP regions decreased in per-
formance considerably when validated on data from all
regions. This is mirrored when using the final models, as
shown in Table 7.

A plausible reason for this is that the data from the
WAWP regions is not representative of all regions. A
comparison of themean training inputs between theWAWP
regions and the whole world (Figure 7) shows significant
differences; hence the model trained only on WAWP data
might be trying to find a different pattern than that trained
on data from all regions.

To further understand how the model trained on WAWP
data differs from that trained on data from all regions,
the results have been split by basin to examine differences
(Table 8)

As expected, the model trained onWAWP data performs
best on the Western Atlantic and Western Pacific regions,
with a recall of 90.80% and 90.75% respectively. It also
performs well in the Eastern Pacific region with a recall of

Mean MSLP

Mean 10m Wind Speed

Mean 850 hPa Vorticity

Mean 700 hPa Vorticity

Mean 600 hPa Vorticity

Fig. 7. Mean Case data originating only from the Western Atlantic
and Western Pacific regions (left column) and for all regions (right
column). Rows show each of the five input fields.

80.15%. However, all other regions do not surpass a recall
rate of 60%.

When the model trained on data from all regions is
used, all recall rates improve, some significantly. The most
improved region is the South Western Pacific where recall
rate increases by more than half from 58% to 93%. All but
one region obtained a recall rate of at least 80%, with many
surpassing a recall rate of 90%. The only region that did
not do well was the South Atlantic which obtained a recall
rate of 42%. There are only a few TCs (26) in the test set

10

Step
Trained on WAWP
Validated on WAWP

Trained on WAWP
Validated on Whole World

Trained on Whole World
Validated on Whole World

Choice of Data 0.5830 0.0660 0.4928
Early Stopping 0.7111 0.0815 0.5915
Normalisation 0.7469 0.1772 0.6790
Resolution 0.7908 0.3690 0.6794

Dataset Balancing 0.7721 0.2905 0.6856
Loss and Optimiser 0.7849 0.3946 0.6733

Learning Rate
Momentum

0.7980 0.6149 0.6646

Data Augmentation 0.8038 0.4457 0.6901
Data Augmentation

Rate
0.8035 0.6377 0.6759

Dropout Position
Dropout Rate

0.8091 0.6076 0.6832

L2 Norm Position
L2 Norm Rate

0.8128 0.5331 0.6955

Batch Size 0.8176 0.6315 0.6756
Table 6. AUC-PR when performing step-wise manual hyperparameter tuning using data from different regions in the validation dataset.

Model Training Region Evaluation Region AUC-PR

WAWP WAWP WAWP 0.7884

WAWP WAWP Global 0.6491

Global Global Global 0.7173
Table 7. Changes in AUC-PR with different training and testing regions.

for this region so no conclusions as to why that might be
are drawn.

c. Performance by Strength of Tropical Cyclone

A cursory investigation of incorrect classifications in-
dicated that stronger tropical cyclones are picked up bet-
ter, and so the recall as a function of tropical cyclone
category was investigated. Not surprisingly, recall rate
improves with cyclone strength as indicated by the Saffir-
Simpson scale (Table 9). All of the cases with a Category
5 (strongest) cyclone present were identified.

The question then arises, could the false positives
(TCDetect says cyclone present, IBTrACS says no) be re-
lated to detecting an incipient (or decaying) cyclone which
is yet to reach (or passed) TC strength? For the intended
use case (as a filtering method) such false positives would
not be a negative outcome.

TCDetect labelled 3397 cases in the testing dataset as
having a TC present, while IBTrACS declared 1342 cases

with a TCpresent. Of the remaining (technically false posi-
tives), IBTrACS information suggests only 506 represented
a completely meteorologically inappropriate outcome (no
met system present). The complete breakdown of these
cases is shown in Table 9. It is clear that TCDetect is
picking up the required pattern but is mislabelling weaker
features as TCs. For an atmospheric dynamics use case,
most of the false positives are actually of practical use, and
so in this case, a low precision model is not a bad outcome.
In fact, arguably, for this use the “practically useful pre-
cision” could be calculated as 2891/(2891+ 506) = 85%.
The question as towhether better results for themodel itself
might have been obtained by training using the presence
or absence of meteorological events as labels rather than
tropical cyclones is deferred to further work.

In any discussion of the relationship between event
strength and detectability, it is important to consider both
the definitions leading to the label “Tropical Cyclone”, and
the data used for detection. The standard definition of a
TC, that of having sustained winds of 119 km/h, represents

11

South Indian South Western Pacific South Eastern Pacific South Atlantic North Indian North Western Pacific North Eastern Pacific North Atlantic

Number of positive cases 72 400 267 250 115 113 26 0

Recall obtained by model

trained on WAWP data
56.94% 90.75% 80.15% 90.80% 53.74% 58.41% 30.77% N/A

Number of Positively Labelled

cases correctly classified

by model trained on WAWP data

41 363 214 227 115 66 8 N/A

Recall obtained by

model trained on whole world data
88.89% 93.00% 99.25% 96.80% 80.37% 92.92% 42.31% N/A

Number of Positively Labelled

cases correctly classified

by model trained on whole world data

64 372 265 242 172 105 11 N/A

Table 8. Evolution of accuracy during model development by basin (see text for explanation of rows).

Outcome Meteorological Status Number Recall %
False Positive Nothing reported 506 3
False Positive Unknown system 2 6
False Positive Post-tropical system 18 28
False Positive Disturbances 165 33
False Positive Subtropical systems 32 39
False Positive Tropical Depressions 348 36
False Positive Tropical Storms 1095 69
True Positive Category 1 TC 426 88
True Positive Category 2 TC 281 92
True Positive Category 3 TC 243 94
True Positive Category 4 TC 212 95
True Positive Category 5 TC 69 100

Table 9. Breakdown of testing dataset cases labelled by TCDetect as
including a TC (using IBTrACS as ground truth).

a real world measurement. It is known that TC intensities
are underrepresented in reanalyses compared to observa-
tions (Hodges et al. 2017), and so there will necessarily
be an under-representation of cyclone strength in the input
data. This might have been exacerbated by pre-processing
the input data to a sixteenth of ERA-Interim’s original
resolution, introducing a further reduction in the resolv-
able gradients. However, the amount of this preprocessing
was chosen during the manual hyperparameter search as
that resolution gave the best metrics of success, suggest-
ing that the pattern matching was more important than
the values. This of course is consistent with the a prior as-
sumption that an advantage of deep learning over threshold
techniques is that the boundary values are less important.
Nonetheless, there must have been significant distortion of
lower-strength storms, and that may have contributed to
the fall-off in recall with falling event strength.

d. Size of Dataset

One could ask whether a larger training dataset would
improve results? This was investigated by re-training using
the same architecture and varying amounts of data from the
available training datasets. Data amounts used for training
varied in steps of 10% from 10% to 100% of the training

0.22

0.24

0.26

0.28

0.30

0.32

Te
st

 L
os

s

20 40 60 80 100
Percentage of Data Used / %

0.685

0.690

0.695

0.700

0.705

0.710

0.715

Te
st

 A
UC

-P
R

/ %

AUC-PR
Loss

Fig. 8. Test AUC-PR and Loss for TCDetect with different percentages
of the training set used.

set. The results using global training data (Figure 8) are
noisy, but an increasing trend can be seen in the AUC-PR
plot. However, the rate of increase is very small. This
together with a seemingly constant test loss value show
that while more data may improve the performance of the
model, this will only be incremental.

6. Summary

A Deep Learning method to identify the presence or
absence of Tropical Cyclones, referred to TCDetect, in
simulation data is presented. Trained on ERA-Interim
data, TCDetect obtained an AUC-PR of 0.7173 with an
recall rate of 92% and a precision rate of 36% on a test set,
which was made up of 24352 cases.

TCDetect was also shown to not being able to generalize
well when training on cases from the Western Pacific and
WesternAtlantic basins and testing on cases from thewhole
domain.

As well as presenting the specific optimisations made
to obtain the model (including dropout, early stopping,
dataset balancing and different inputs), a selection of stan-
dard deep learning models are described and shown not to

12

be able to outperform TCDetect, while being more com-
plex.

The possibility of obtaining a bettermodel hadmore data
been available was investigated, with some indications that
more data could have helped.

While the training data was obtained fromERA-Interim,
the ground truth used was IBTrACS, which introduces an
element of uncertainty in interpreting the results - is an
incorrect label (presence/absence) a consequence of the
presence or absence of an accurate representatino of the TC
in the ERA-Interim data? It is known that reanalysis data
cannot resolve the full strength of storms, and so will likely
undercount TCs, and hence depress the possible accuracy
rates. We discuss the impact of such uncertainties in a
companion paper (Galea and Lawrence 2021).

The impact of such issues on detectability is consistent
with the result that TCDetect is better at detecting stronger
TCS then weaker TCs (weaker TCs will be more poorly
represented in reanalysis data).

Future work includes attempting to improve the deep
learning model itself to better handle TCs of a low cat-
egory potentially via ideas imported from other standard
techniques, aswell as implementing an inference step using
a version of the model in a full General Circulation Model
to evaluate the pros and cons of avoiding data output.

Acknowledgments. This work was supported by Mr
Jeff Adie from NVIDIA, Oracle and funded by Natural
Environment Research Council (NERC) as part of the
UK Government Department for Business, Energy and
Industrial Strategy (BEIS) National Productivity Invest-
ment Fund (NPIF), grant number NE/R008868/1 under
the SCENARIO Doctoral Training Partnership hosted by
the University of Reading.

APPENDIX

Appendix A: Model Architecture

Table A1 gives the details of the architecture that makes
up TCDetect: An input of dimensions 22 rows by 29
columns by 5 fields goes through five convolutional blocks,
each made up of a convolutional layer of 8, 16, 32, 64 and
128 kernels respectively, with weights initialized using the
Glorot Uniform method (Glorot and Bengio 2010) with
ReLU activation functions, each with strides of 1 and a
kernel size of 2x2; a dropout layer with a dropout rate of
10%; and a maximum pooling layer with strides equal to
1. The resulting kernels are flattened and passed through
three fully-connected blocks, eachmade up of a dense layer
of 128, 64 and 32 hidden nodes respectively, with L2 nor-
malisation with a normalisation factor of 0.005, weights
initialized by the Glorot Uniform method and a dropout
layer with a dropout rate of 10%. TCDetect finishes off
with another fully-connected layer of one node, this time

using the sigmoid activation function with weights initial-
ized by the Glorot Uniform method, as well as L2 normal-
isation with a normalisation factor of 0.005 which outputs
a prediction. The optimizer used was the Stochastic Gra-
dient Descent (SGD) optimizer with a learning rate of 0.01
and momentum of 0.8 with the loss function being that of
binary cross-entropy.

APPENDIX

Appendix B: Hyperparameter Tuning

TCDetect was developed on data from the Western At-
lantic andWestern Pacific regions. The developments used
the training set as described in Section a to perform 10-
fold cross-validation. Each fold was then evaluated using
the validation set. The evaluation produced a set of met-
rics which offered an insight into the effectiveness of any
given configuration of deep learning model choices. The
mean AUC-PR was used to determine whether the applied
change performed desirably. Development and optimisa-
tion using these values proceeded as described below, with
the final models being described and evaluated using the
testing dataset in Sections b and a respectively. Table A1
shows a summary of the steps taken during hyperparameter
tuning.

The initial architecture that was used as the starting
point for developing TCDetect consisted of an input of
dimensions 84 rows by 110 columns by 2 channels which
passed through five convolutional blocks, each made up
of a convolutional layer of 8, 16, 32, 64 and 128 kernels
respectively, with weights initialized using the Glorot Uni-
form method with ReLU activation functions, each with
strides of 1 and a kernel size of 2x2; and a MaxPooling2D
layer with strides equal to 1. The resulting kernels are
flattened and passed through three fully-connected blocks,
each made up of a dense layer of 128, 64 and 32 hidden
nodes respectively, with weights initialized by the Glo-
rot Uniform method. The model finishes off with another
fully-connected layer of one node, this time using the sig-
moid activation function with weights initialized by the
Glorot Uniform method which was used to output a pre-
diction. The optimizer used was the Stochastic Gradient
Descent (SGD) optimizer with the default learning rate
of 0.01 with the loss function being binary cross-entropy.
Finally, a batch size of 32 cases was initially used.

a. Choice of Data

The first optimisation made was to choose the number
and type of meteorological fields to supply to the model
for it to make its predictions. Four possible configurations
were tested:

• MSLP and 10-metre wind speed

13

Layer (type) Layer (specification) Output Shape Number of parameters
Input 22, 29, 5

Conv2D Glorot Uniform Weight Initialisation; ReLU Activation Function
8 Kernels; Size = 2x2; Strides - (1, 1)

21, 28, 8 168

Dropout Dropout Rate - 0.1 21, 28, 8
MaxPooling2D Strides - (1, 1) 20, 27, 8

Conv2D Glorot Uniform Weight Initialisation; ReLU Activation Function
16 Kernels; Size = 2x2; Strides - (1, 1)

19, 26, 16 528

Dropout Dropout Rate - 0.1 19, 26, 16
MaxPooling2D Strides - (1, 1) 18, 25, 16

Conv2D Glorot Uniform Weight Initialisation; ReLU Activation Function
32 Kernels; Size = 2x2; Strides - (1, 1)

17, 24, 32 2080

Dropout Dropout Rate - 0.1 17, 24, 32
MaxPooling2D Strides - (1, 1) 16, 23, 32

Conv2D Glorot Uniform Weight Initialisation; ReLU Activation Function
64 Kernels; Size = 2x2; Strides - (1, 1)

15, 22, 64 8256

Dropout Dropout Rate - 0.1 15, 22, 64
MaxPooling2D Strides - (1, 1) 14, 21, 64

Conv2D Glorot Uniform Weight Initialisation; ReLU Activation Function
128 Kernels; Size = 2x2; Strides - (1, 1)

13, 20, 128 32896

Dropout Dropout Rate - 0.1 13, 20, 128
MaxPooling2D Strides - (1, 1) 12, 19, 28

Flatten 29184

Dense Glorot Uniform Weight Initialisation; ReLU Activation Function
128 nodes; L2 Norm; Factor = 0.005

128 3735680

Dropout Dropout Rate - 0.1 128

Dense Glorot Uniform Weight Initialisation; ReLU Activation Function
64 nodes; L2 Norm; Factor = 0.005

64 8256

Dropout Dropout Rate - 0.1 64

Dense Glorot Uniform Weight Initialisation; ReLU Activation Function
32 nodes; L2 Norm; Factor = 0.005

32 2080

Dropout Dropout Rate - 0.1 32

Dense Glorot Uniform Weight Initialisation; Sigmoid Activation Function
1 node; L2 Norm; Factor = 0.005

1 33

Table A1. The architecture of TCDetect

• MSLP, 10-metre wind speed and vorticity at 850hPa,
700hPa and 600hPa

• MSLP and 10-metre wind speed with spherical har-
monic filtering between wave numbers 5 and 106

• MSLP, 10-metre wind speed with spherical harmonic
filtering between wave numbers 5 and 106 and vor-
ticity at 850hPa, 700hPa and 600hPa with spherical
harmonic filtering between wave numbers 1 and 63

The last option provided the best mean AUC-PR, that of
0.5309.

b. Early Stopping

Next, it was noted that the model was overfitting as
Figure A1 shows that except for the first two epochs, the
training loss gets smaller while the validation loss gets
larger with am increasing number of epochs. Figure A2
shows similar behaviour with AUC-PR.

To overcome this issue, model training was stopped ear-
lier by stopping training when the training and validation

AUC-PR start to diverge. A number of epochs of patience,
i.e. the number of epochs to wait until stopping to make
sure that training was not stopped too early, were trialled to
get the best possible performance. Patience values trailled
were of 2, 5, 10 and 20 epochs. That of 10 epochs obtained
the best mean AUC-PR of 0.67 88.

c. Normalisation

A few methods for normalisation were trialled, namely
of normalising values to lie in the range of 0 to 1 or -1 to
1, standardising value to have a mean of 0 and a standard
deviation of 1 and a combination of normalisation and stan-
dardisation. The method of standardisation produced the
best model performance with a mean AUC-PR of 0.7404.

d. Resolution

Resolution of the data used was next checked. The
resolution used up to the current stage was that of the orig-
inal ERA-Interim dataset, but resolutions of 1.4ox1.4o,

14

Step Choice
K-fold CV Score

Mean AUC-PR

Choice of Data
Filtered Data

5 Fields
0.5309

Early Stopping Patience = 10 0.6788

Normalisation Standarisation 0.7404

Resolution Sixteenth 0.7842

Dataset Balancing
Undersampling with

Replacement
0.7839

Loss and Optimiser
Binary Cross-Entropy

Momentum
0.7890

Learning Rate

Momentum

LR = 0.01

Momentum = 0.8
0.7891

Data Augmentation
Roll in G direction

Rotation by random angle

Flip Left-Right

0.7988

Data Augmentation

Rate
0.6 0.8018

Dropout Position

Dropout Rate

Conv Base & Classifier

Rate = 0.1
0.8104

L2 Norm Position

L2 Norm Rate

Classifier

Rate = 0.005
0.8128

Batch Size 8 0.8135
Table A1. K-Fold Cross Validation Results

2.1ox2.1o, 2.8ox2.8o and 3.5ox3.5o were tested. The res-
olution of 2.8ox2.8o, which was obtained by taking every
fourth pixel of the image in both the G and H directions,
produced the best mean AUC-PR of 0.7842.

e. Dataset Balancing

One problem that was known when starting hyper-
parameter optimisation was that the dataset was heavily
dominated by negatively labelled cases. In fact, the training
dataset having data from theWAWP regions had 89.46% of
the cases negatively labelled, while that having data from
all regions had 95% of cases negatively labelled. This
split of data would inhibit the model learning the right pat-
tern to maximise its performance. Therefore, six ways of
balancing the dataset were investigated.

• NaiveOversampling -Making copies of the positively
labelled cases until the dataset is balanced.

• Undersampling without Replacement - Undersample
the negatively labelled cases prior to training. There-
fore, some data is not used.

• Undersampling with Replacement - Undersample the
negatively labelled cases during training, so they
change from epoch to epoch. Possible overfitting on
positively labelled cases.

• Weighting the Cases - Weighting the cases so that the
negatively labelled cases have less influence on the
learning process.

• Adding Bias - Add a bias to the output layer to prevent
the model from learning the bias.

15

Fig. A1. Loss for model trained and tested on data from the Western
Atlantic and Western Pacific regions before applying Early Stopping.

Fig. A2. AUC-PR model trained and tested on data from the Western
Atlantic and Western Pacific regions before applying Early Stopping.

• Weighting the Cases and Adding Bias - A combina-
tion of the previous two options.

The option that produced the best performance of a mean
AUC-PR of 0.7839 was that of undersampling with re-
placement. It can be noted that the model’s performance
decreased marginally from the previous step, but this was
still selected as recall becamemuch favoured by the model,
which is important for the use case in mind.

f. Loss and Optimiser

Themodel so far used the binary cross-entropy loss func-
tionwith the StochasticGradientDescent (SGD) optimizer.
All possible combinations of themean absolute error, mean
standard error and binary cross-entropy loss functions and
SGD,RMSprop, SGDwithMomentumusing amomentum
parameter of 0.9, Adam, Adagrad, Adamax andNadam op-
timizers were examined.

The combination which obtained the best mean AUC-
PR of 0.7890 was binary cross-entropy loss with the SGD
optimiser with Momentum using a momentum parameter
of 0.9.

g. Learning Rate and Momentum

A grid search for the best learning rate and momentum
parameters was performed. The values for the learning rate
included were those of 0.0001, 0.0005, 0.001, 0.005, 0.01
and 0.05 while those used for the momentum parameter
were in the range of 0.1 to 1 with a step of 0.1. The
combination which produced the best performing model
was that having a learning rate of 0.01 and a momentum
of 0.8

h. Data Augmentation Methods

Several techniques including random rolls, rotations,
adding random noise, flipping the input data along either
the x or y directions and random cropping were evalu-
ated. The augmentation rate was set at 50%. The options
which obtained a comparative or better mean AUC-PR
were rolling the picture along the x-direction, flipping the
picture left to right and rotating the image by a random
amount. These were all included in the model and the
combined methods produced a mean AUC-PR of 0.7988.

i. Data Augmentation Rate

The best data augmentation rate was also varied from
0.1 to 1 in steps of 0.1 to find the best possible rate. The
best performing model with a mean AUC-PR of 0.8018
was that with an augmentation rate of 60%.

j. Dropout Position and Rate

Dropout was investigated next. It was trialled in three
places, namely the convolutional base only, the fully-
connected classifier only and throughout the model with
dropout rates varying from 10% to 100% in steps of 10%.

16

The model with the best AUC-PR, that of 0.8104, was
that employing dropout with a rate of 10% throughout the
model.

k. L2 Normalisation Position and Factor

L2 normalisation was also investigated. As with the
previous optimisation, it was trailled in the same three
places. The normalisation factors checked were 0.00001,
0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5.
Themodel that produced the best performance with amean
AUC-PR of 0.8128.

l. Batch Size

This final optimisation tested was of varying the batch
size. Batch sizes of 8, 16, 64, 128, 256, 512, 1024 and
2048 were tested with the first option producing the best
performing model with a mean AUC-PR of 0.8135.

m. Others

Other optimisations tested which did not produce a
model with an improved performance included batch nor-
malisation, varying the number of hidden layers and nodes
and using different weight initialisation methods and acti-
vation functions.

References
Abadi, M., and Coauthors, 2015: TensorFlow: Large-scale machine

learning on heterogeneous systems. URL http://tensorflow.org/, soft-
ware available from tensorflow.org.

Balaji, V., and Coauthors, 2018: Requirements for a global data infras-
tructure in support of cmip6.Geosci. Model Dev., 11 (9), 3659–3680,
doi:10.5194/gmd-11-3659-2018.

Bengtsson, L., K. I. Hodges, and M. Esch, 2007: Tropical cyclones in
a t159 resolution global climate model: comparison with observa-
tions and re-analyses. Tellus A: Dynamic Meteorology and Oceanog-
raphy, 59 (4), 396–416, doi:10.1111/j.1600-0870.2007.00236.x,
URL https://doi.org/10.1111/j.1600-0870.2007.00236.x, https://doi.
org/10.1111/j.1600-0870.2007.00236.x.

Breiman, L., 2001: Random forests. Mach. Learn., 45 (1), 5–32, doi:
10.1023/A:1010933404324, URL https://link.springer.com/article/
10.1023/A:1010933404324.

Camargo, S. J., and S. E. Zebiak, 2002: Improving the detection
and tracking of tropical cyclones in atmospheric general circula-
tion models. Weather Forecast., 17 (6), 1152–1162, doi:10.1175/
1520-0434(2002)017<1152:ITDATO>2.0.CO;2.

Cangialosi, J. P., A. S. Latto, and R. Berg, 2018: Hur-
ricane Irma (AL112017). Tech. rep., National Oceanic
and Atmospheric Administration (NOAA), 111 pp.
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/
ReferencesPapers.aspx?ReferenceID=2635550, as accessed on
23/03/2021.

Chollet, F., 2017: Xception: Deep learning with depthwise separable
convolutions. Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recog-
nition, CVPR 2017, Institute of Electrical and Electronics Engineers

Inc., Vol. 2017-January, 1800–1807, doi:10.1109/CVPR.2017.195,
URL https://arxiv.org/abs/1610.02357v3, 1610.02357.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: con-
figuration and performance of the data assimilation system. Q. J.
R. Meteorol. Soc., 137 (656), 553–597, doi:10.1002/qj.828, URL
http://doi.wiley.com/10.1002/qj.828.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, 2009:
Imagenet: A large-scale hierarchical image database. 2009 IEEE
conference on computer vision and pattern recognition, Ieee, 248–
255.

Eyring, V., S. Bony, G. A.Meehl, C. A. Senior, B. Stevens, R. J. Stouffer,
and K. E. Taylor, 2016: Overview of the coupled model intercom-
parison project phase 6 (cmip6) experimental design and organiza-
tion. Geoscientific Model Development, 9 (5), 1937–1958, doi:10.
5194/gmd-9-1937-2016, URL https://gmd.copernicus.org/articles/
9/1937/2016/.

Galea, D., and B. N. Lawrence, 2021: Investigating differences be-
tween tropical cyclone detection systems. Journal of Atmospheric
and Oceanic Technology.

Glorot, X., and Y. Bengio, 2010: Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the Inter-
national Conference on Artificial Intelligence and Statistics (AIS-
TATS’10). Society for Artificial Intelligence and Statistics.

He, K., X. Zhang, S. Ren, and J. Sun, 2016a: Deep residual learning
for image recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., IEEE Computer Society, Vol. 2016-December,
770–778, doi:10.1109/CVPR.2016.90, URL http://image-net.org/
challenges/LSVRC/2015/, 1512.03385.

He, K., X. Zhang, S. Ren, and J. Sun, 2016b: Identity mappings in deep
residual networks. Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), Springer Verlag, Vol.
9908 LNCS, 630–645, doi:10.1007/978-3-319-46493-0_38, URL
http://arxiv.org/abs/1603.05027, 1603.05027.

Hodges, K., A. Cobb, and P. L. Vidale, 2017: How Well Are Tropical
Cyclones Represented in Reanalysis Datasets? Journal of Climate,
30 (14), 5243–5264, doi:10.1175/JCLI-D-16-0557.1.

Hodges, K. I., 1995: Feature tracking on the unit sphere.
Monthly Weather Review, 123 (12), 3458–3465, doi:
10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2, URL
https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>
2.0.CO;2, https://doi.org/10.1175/1520-0493(1995)123<3458:
FTOTUS>2.0.CO;2.

Hodges, K. I., 1996: Spherical nonparametric estima-
tors applied to the ugamp model integration for amip.
Monthly Weather Review, 124 (12), 2914–2932, doi:
10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2, URL
https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>
2.0.CO;2, https://doi.org/10.1175/1520-0493(1996)124<2914:
SNEATT>2.0.CO;2.

Hodges, K. I., 1999: Adaptive constraints for feature tracking.
Monthly Weather Review, 127 (6), 1362–1373, doi:10.1175/
1520-0493(1999)127<1362:ACFFT>2.0.CO;2, URL https://doi.
org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2, https://
doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

Howard, A.G.,M. Zhu, B.Chen, D.Kalenichenko,W.Wang, T.Weyand,
M. Andreetto, and H. Adam, 2017: MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications. URL
http://arxiv.org/abs/1704.04861, 1704.04861.

17

Huang, G., Z. Liu, L. van der Maaten, and K. Q. Weinberger, 2016:
Densely Connected Convolutional Networks. Proc. - 30th IEEE
Conf. Comput. Vis. Pattern Recognition, CVPR 2017, 2017-January,
2261–2269, URL http://arxiv.org/abs/1608.06993, 1608.06993.

Kleppek, S., V. Muccione, C. C. Raible, D. N. Bresch, P. Koellner-
Heck, and T. F. Stocker, 2008: Tropical cyclones in ERA-40: A
detection and tracking method. Geophys. Res. Lett., 35 (10), doi:
10.1029/2008GL033880.

Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, and C. J. Schreck,
2018: International Best Track Archive for Climate Stewardship (IB-
TrACS) Project, Version 4. NOAANational Centers for Environmen-
tal Information, URL https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.
noaa.ncdc:C01552.

Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J.
Neumann, 2010: The international best track archive for climate
stewardship (IBTrACS). Bull. Am. Meteorol. Soc., 91 (3), 363–376,
doi:10.1175/2009BAMS2755.1.

Kurth, T., and Coauthors, 2017: Deep learning at 15pf: Supervised
and semi-supervised classification for scientific data. Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis, Association for Computing Machin-
ery, New York, NY, USA, SC ’17, doi:10.1145/3126908.3126916,
URL https://doi.org/10.1145/3126908.3126916.

Lakshmanan, V., C. Karstens, J. Krause, K. Elmore, A. Ryzhkov,
and S. Berkseth, 2015: Which polarimetric variables are impor-
tant for weather/no-weather discrimination? J. Atmos. Ocean.
Technol., 32 (6), 1209–1223, doi:10.1175/JTECH-D-13-00205.
1, URL http://journals.ametsoc.org/jtech/article-pdf/32/6/1209/
3376431/jtech-d-13-00205{_}1.pdf.

Lawrence, B., V. L. Bennett, J. Churchill, M. Juckes, P. Kershaw,
P. Oliver, M. Pritchard, and A. Stephens, 2012: The jasmin super-
data-cluster. ArXiv, abs/1204.3553.

Liu, Y., and Coauthors, 2016: Application of deep convolutional neural
networks for detecting extreme weather in climate datasets. ArXiv,
abs/1605.01156.

Mudigonda, M., and Coauthors, 2017: Segmenting and Tracking Ex-
treme Climate Events using Neural Networks. 31st Conf. Neural Inf.
Process. Syst., 1–5, URL https://dl4physicalsciences.github.io/files/
nips{_}dlps{_}2017{_}20.pdf.

Otsu, N., 1979: A threshold selection method from gray-level his-
tograms. IEEE Transactions on Systems, Man, andCybernetics, 9 (1),
62–66.

Prabhat, S. Byna, V. Vishwanath, E. Dart, M.Wehner, andW.D. Collins,
2015: Teca: Petascale pattern recognition for climate science. Com-
puter Analysis of Images and Patterns, G. Azzopardi, and N. Petkov,
Eds., Springer International Publishing, Cham, 426–436.

Prabhat, O. Rübel, S. Byna, K. Wu, F. Li, M. Wehner, and W. Bethel,
2012: TECA: A parallel toolkit for extreme climate analysis. Pro-
cedia Comput. Sci., Elsevier B.V., Vol. 9, 866–876, doi:10.1016/j.
procs.2012.04.093.

Racah, E., C. Beckham, T.Maharaj, S. Kahou, Prabhat, and C. Pal, 2017:
Extremeweather: A large-scale climate dataset for semi-supervised
detection, localization, and understanding of extreme weather events.
NIPS.

Roberts, M. J., and Coauthors, 2015: Tropical Cyclones in the UP-
SCALE Ensemble of High-Resolution Global Climate Models. J.

Clim., 28 (2), 574–596, doi:10.1175/JCLI-D-14-00131.1, URL
https://doi.org/10.1175/JCLI-D-14-00131.1.

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, 2018:
MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proc.
IEEEComput. Soc. Conf. Comput. Vis. PatternRecognit., IEEECom-
puter Society, 4510–4520, doi:10.1109/CVPR.2018.00474, URL
http://arxiv.org/abs/1801.04381, 1801.04381.

Simonyan, K., and A. Zisserman, 2014: Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv 1409.1556.

Szegedy, C., S. Ioffe, V. Vanhoucke, and A. A. Alemi, 2017: Inception-
v4, inception-ResNet and the impact of residual connections on learn-
ing. 31st AAAI Conf. Artif. Intell. AAAI 2017, AAAI press, 4278–
4284, URL https://arxiv.org/abs/1602.07261v2, 1602.07261.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 2016: Re-
thinking the Inception Architecture for Computer Vision. Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., IEEE Computer
Society, Vol. 2016-December, 2818–2826, doi:10.1109/CVPR.2016.
308, URL https://arxiv.org/abs/1512.00567v3, 1512.00567.

Vitart, F., J. L. Anderson, and W. F. Stern, 1997: Simulation of in-
terannual variability of tropical storm frequency in an ensemble of
gcm integrations. Journal of Climate, 10 (4), 745–760, doi:10.1175/
1520-0442(1997)010<0745:SOIVOT>2.0.CO;2, URL https://doi.
org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2, https:
//doi.org/10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2.

