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Abstract

The significant wave height (SWH) is of great importance in industries such as ocean engineering, marine resource development,

shipping and transportation. Haiyang-2C (HY-2C), the 2nd operational satellite of China’s marine dynamic exploration series,

can provide all-weather, all-day, global observations of wave height, wind, and temperature. In this paper, a deep learning

approach is applied to build a wide swath model based on the SWH from the altimeter and the wind speed from the scatterometer

of HY-2C. Two validation sets, 1-month data at 6-minute intervals and 1-day data with an interval of 10 s, are fed into the

trained model. Experiments indicate that the extending nadir SWH yields a real-time wide swath grid product along track,

which can be offered as support for oceanographic study, and it is superior to take the swell characteristics of ERA5 into account

as the input of wide swath SWH model. In conclusion, the verification results demonstrate the effectiveness and feasibility of

the wide swath SWH model.
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Key Points: 9 

 The nadir significant wave height (SWH) is extended to wide swath SWH. 10 

 A deep learning network is built using wave and wind observed simultaneously by HY-2C, 11 

which yields a real-time and along-track product. 12 

 The swell and wind wave from ERA5 are respectively added as input, and the swell 13 

produces superior validation results. 14 
  15 
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Abstract 16 

The significant wave height (SWH) is of great importance in industries such as ocean engineering, 17 

marine resource development, shipping and transportation. Haiyang-2C (HY-2C), the 2nd 18 

operational satellite of China's marine dynamic exploration series, can provide all-weather, all-day, 19 

global observations of wave height, wind, and temperature. In this paper, a deep learning approach 20 

is applied to build a wide swath model based on the SWH from the altimeter and the wind speed 21 

from the scatterometer of HY-2C. Two validation sets, 1-month data at 6-minute intervals and 22 

1-day data with an interval of 10 s, are fed into the trained model. Experiments indicate that the 23 

extending nadir SWH yields a real-time wide swath grid product along track, which can be offered 24 

as support for oceanographic study, and it is superior to take the swell characteristics of ERA5 into 25 

account as the input of wide swath SWH model. In conclusion, the verification results demonstrate 26 

the effectiveness and feasibility of the wide swath SWH model.  27 

Plain Language Summary 28 

The wider spatial coverage of significant wave height (SWH) can provide more information and 29 

data support. Haiyang-2C (HY-2C) can acquire Ku-band SWH from altimeter and wind speed 30 

from scatterometer at the same time to provide a basis for marine disaster prevention and 31 

mitigation, marine scientific research, etc. In this paper, a gate recurrent unit (GRU) neural 32 

network is used to build a wide swath model with the data provided by HY-2C and ERA5. 33 

Different input features are employed to train and verify the model. The wide swath SWH provides 34 

wider, orbit tracking and real-time grid datasets, which can advance further studies, such as wave 35 

assimilation, spatial-temporal prediction, extreme analysis and so on. The swell of ERA5 has a 36 

positive effect on the wide swath SWH modeling process and performs well, which could be a 37 

promising choice when real-time standard is not strictly required.  38 

1 Introduction 39 

Significance wave height (SWH) is the most widely utilized wave parameter in climate 40 

assessment and various marine industries. Buoys are traditional measurement tools of SWH that 41 

can provide comprehensive information and are studied extensively in researches (Guenaydin 42 

2008; Lin et al., 2020; Kang et al., 2021). However, its disadvantages of single-point 43 

measurements with sparse and limited coverage no longer meet the needs of the rapid development 44 

of economic, military and scientific research fields, thus wider spatial coverage is of general 45 

interest. 46 

Satellite altimeters can quickly and accurately measure the global sea surface height, and 47 

their measurement accuracy has reached the centimeter level. The measured SWH form Geosat 48 

radar (Dobson, 1987), Jason-1 and Envisat (Durrant et al., 2009), SARAL/AltiKa (Bhowmick et 49 

al., 2015; Mahesh Kumar et al., 2015; Sepulveda et al., 2015), Sentinel 3A and 3B (Yang and 50 

Zhang, 2019; Yang et al., 2020), Haiyang-2 series (Wang et al., 2013; Chen et al., 2013; Zhang et 51 

al., 2015; Wang et al., 2020), Chinese-French Oceanography Satellite (CFOSAT) (Liang et al., 52 

2021; Li et al., 2021) altimeter are validated by comparison with those of the National Data Buoy 53 

Center. For such data, the path is still equivalent to a one-dimensional time series, which greatly 54 

limits the number of observations. 55 

Haiyang-2C (HY-2C), China's third marine dynamic environment satellite, is subordinate 56 

to the HY-2 marine remote sensing satellite series. HY-2C combines visible/infrared and 57 

microwave sensors, with high-precision orbit measurement, orbit determination capabilities, and 58 
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all-weather, all-day, and global detection capabilities. Thus, it provides support services for marine 59 

resources development, marine environmental protection, and national defense construction, etc. 60 

Deep learning is a class of efficient algorithms for learning representative and 61 

discriminative input features in a hierarchical manner (Zhang et al., 2016), which has become a hot 62 

topic in various fields, particularly in marine remote sensing, such as classifying oceanographic 63 

objects from Synthetic Aperture Radar (SAR) data (Bentes et al., 2016), retrieving sea surface 64 

wind speed in SAR images (Shen, et al., 2019; Qin et al., 2021), providing higher accuracy SWH 65 

for wave assimilation (Wang et al., 2021; Wang et al., 2021), etc. It is worth noting that Wang et al. 66 

(2020) developed a deep learning approach for retrieving the SWH over an extended swath via a 67 

CFOSAT with simultaneous wind and wave observations. As a matter of fact, we attempt to find a 68 

more specific deep neural network using fewer input features to retrieve a wider swath of SWH. 69 

The gate recurrent unit (GRU) network is designed to solve the gradient disappearance problem 70 

that occurs in standard recurrent neural network, and is a popular and creditable choice because of 71 

its simple structure, fast training speed, and dominant effect. 72 

In this paper, we adopt a deep learning method to obtain a wide swath of SWH from 73 

simultaneous observations of radar altimeter (ALT) and microwave scatterometer (SCA) of 74 

HY-2C. First, the nadir SWH obtained by ALT is employed to select the wind speed of SCA, where 75 

the time difference is less than 5 s, and we spatially choose the closest wind column. 76 

Approximately eight months (from Sep. 25, 2020 to Jun. 1, 2021) of the HY-2C and ERA5 77 

collected datasets are considered and matched. In the configuration cases, the matching criteria are 78 

set within 100 km for geographical distance and half an hour for temporal difference. Then the 79 

validation set is divided by a length of 300, and the statistical results are analyzed through the 80 

leftmost, center and rightmost columns located in the wide swath SWH, in order to illustrate the 81 

performance of the wide swath SWH model in each segmented interval. Finally, the results of the 82 

1-day validation set at 10-second intervals are discussed, and two small areas are selected and 83 

drawn separately to demonstrate the validation effect of the wide swath SWH model at different 84 

ranges of numerical variation. 85 

The structure of this paper can be summarized as follows: Section 2 introduces the 86 

characteristics of HY-2C and ERA5, as well as adopted method and datasets. Section 3 compares 87 

and analyzes the performance of the model. Finally, Section 4 concludes this paper. 88 

2 Data and Method 89 

Haiyang-2C (HY-2C) was successfully launched on September 21, 2020 at the Jiuquan 90 

Satellite Launch Center in Inner Mongolia, China. Unlike the HY-2B satellite in a polar orbit, the 91 

HY-2C satellite operates in an inclined orbit (Pang and Tao, 2016), which travels at an altitude of 92 

1336 km and presents an orbital inclination angle of 66°. Thus, it achieves the purpose of 93 

accelerating satellite revisit to the area within 70 degrees north south form the equator, shortening 94 

the observations interval of the region, and improving the observations efficiency. HY-2C, the first 95 

large-scale inclined orbit remote sensing satellite, was constructed under the National Civil Space 96 

Infrastructure Plan (Ren, 2020). The satellite adopts an orbit with regression periods of 10 and 400 97 

days in the early and later stage, respectively. 98 

The main function of the ALT is to measure the global sea surface height, SWH and gravity 99 

field parameters, with sea and land observations capabilities, and the ALT has an external 100 

calibration working mode that can cover the complete calibration area. Its operating frequency 101 
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denotes13.58 GHz, 5.25 GHz, pulse limited footprint is better than 2 km, and the range accuracy of 102 

marine nadir point is better than 2 cm. Although the HY-2C ALT provides SWH in Ku and C bands, 103 

we select only Ku-band measurements as experimental data in this paper due to its higher accuracy, 104 

and the fact that the C-band is designed mainly to modify the path delay caused by ionosphere 105 

during Ku-band ALT (Jia et al., 2020). 106 

HY-2C carries a Ku-band rotating pencil-beam SCA in a non-sun-synchronous orbit. As 107 

the main payload of marine dynamic environment, SCA has a coverage rate of not less than 90% in 108 

the global sea area for 1 to 2 days. Its main function is to measure the wind vector field (Figure 1), 109 

and the accuracy of wind direction and wind speed measurement are better than 15° and 1.5 m/s, 110 

respectively. It also has an external calibration working mode with an operating frequency of 111 

13.256 GHz and two beams, which are HH polarization for the internal beam and VV polarization 112 

for the external beam. Moreover, Wang et al. (2021) verified the wind product of the SCA and 113 

believed its great availability. 114 

 115 
Figure 1 Information of the wind speed from SCA and the Ku-band SWH from ALT are obtained 116 
simultaneously from HY-2C on May 1, 2021. 117 

 118 

ERA5 is a global climate reanalysis datasets released by the European Center for 119 

Medium-Range Weather Forecasts. It has the advantages of high spatial resolution, hourly 120 

atmospheric, terrestrial and ocean climate variables, 3-hourly uncertainty information, more 121 

satellite observations, and accessing to all input observations (Hersbach et al., 2020). The collected 122 

SWH has a resolution of 0.25° longitude by 0.25° latitude in space and hourly in time. 123 

The wind and wave from remote sensing data and the wave from analysis datasets have 124 

different types of property, and they are regarded as necessary features and labels for purpose of 125 

verifying the effectiveness of the data. Therefore, the SWH of ERA5 are compared with the 126 

observations of HY-2C ALT, the wind speed of ERA5 are by contrast with SCA L2B product, as 127 

shown in Figure 2.  128 

 129 
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 130 
Figure 2 Scatter plots of SWH (a) and wind speed (b) from HY-2C and ERA5 to check the 131 
consistency. The red line indicates a linear fit and the black line means a full correlation. 132 

 133 

It can be seen that both SWH and wind speed show great consistency, indirectly indicating 134 

that it is reasonable to use matched ERA5 SWH as labels at the space and time scales, further 135 

proving the feasibility of the model. The statistical metrics, namely, root mean square error 136 

(RMSE), scattering index (SI), bias (Bias), and the Pearson correlation coefficient (R), are applied 137 

to measure the effectiveness of the data and model, defined as follows. 138 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑜

𝑡 − 𝑦𝑣
𝑡)2

𝑁

𝑡 = 1
 

𝑆𝐼 =  𝑅𝑀𝑆𝐸 𝑚𝑒𝑎𝑛(𝑦𝑜)⁄  

𝐵𝑖𝑎𝑠 =  ∑ (𝑦𝑜
𝑡 − 𝑦𝑣

𝑡)
𝑁

𝑡 = 1
 

𝑅 =  
∑ (𝑦𝑜

𝑡 − 𝑚𝑒𝑎𝑛(𝑦𝑜))(𝑦𝑣
𝑡 − 𝑚𝑒𝑎𝑛(𝑦𝑣))𝑁

𝑡 = 1

√∑ (𝑦𝑜
𝑡 − 𝑚𝑒𝑎𝑛(𝑦𝑜))

2𝑁
𝑡 = 1

√∑ (𝑦𝑣
𝑡 − 𝑚𝑒𝑎𝑛(𝑦𝑣))

2𝑁
𝑡 = 1

 

where 𝑦𝑣
𝑡 and 𝑦𝑜

𝑡 are validation and observations, respectively. 139 

Deep learning approaches can be capable of handling various problems and have been 140 

widely applied in various directions. Its attached GRU model possesses two unique gating devices, 141 

the reset gate 𝑟𝑡 and the update gate 𝑧𝑡, to make a selection between the input 𝑥𝑡 and the state of 142 

hidden layer unit at the previous moment ℎ𝑡−1, enabling the model to preserve important features 143 

in the long-term sequence. Intuitively speaking, the reset gate 𝑟𝑡  determines the chosen 144 

characteristics of combining 𝑥𝑡 with ℎ𝑡−1, and the update gate 𝑧𝑡 defines the information saved 145 

from the candidate state ℎ̃𝑡 to the current moment hidden state ℎ𝑡 (Figure 3a). The GRU model 146 

consists of five layers of neurons. The weights and biases between the neurons are iterated and 147 

updated during the training process, using the adaptive moment estimation optimizer and the mean 148 

square error loss function as supervision to create a wide swath model. The main parameters of the 149 

model are the batch size, the number of hidden layers, the number of hidden units per layer, the 150 

learning rate and iterations, which take the values of 20, 3, 20, 0.001, and 500, respectively.  151 
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 152 

 153 
Figure 3 (a). The structure diagram of the GRU network to obtain the wide swath SWH. (b). A schematic 154 
diagram of the data parameters and widths acquired by the ALT, SCA, and ERA5. It is worth noting that 155 
the widths displayed by ERA5 are selected according to comprehensive consideration of model efficiency 156 
and effectiveness.  157 

 158 

To make width of the nadir SWH close to the dimension of SCA wind speed, different 159 

parameters are considered as inputs, including the nadir SWH, latitude, and longitude acquired by 160 

ALT, the wind speed collected by SCA L2B product, as well as swell, wind wave, and SWH 161 

obtained by ERA5. We first give the nadir SWH at six-minute intervals and apply their 162 

geographical location and corresponding moment for the selection of the derived wind speed. 163 

Wind speed and SWH are acquired on different instruments at the same time, but the presence of 164 

missing data requires the latter to be employed as a reference to filter the former using the time 165 

difference no more than 5 s (Figure 3b). In addition, the distance between the SCA grid and 166 

matched data by ERA5 is limited to less than 100 km, the time window denotes ±30 min, and the 167 

width of the matched SWH account for half of the wind field in accordance with the efficiency and 168 

benefit. The latitude range is selected between 60° S and 60° N due to the validity and large 169 

probability distribution of the data. The scope of the training data set is from September 25, 2020 170 

to April 25, 2021 for half a year, while the validation data set represents independent one-month 171 

with the time range from May 1, 2021 to June 1, 2021. 172 

3 Results and analysis 173 

Wide-dimensional fields have more information and data volume. We utilize the wind 174 

speed and SWH simultaneously retrieved by HY-2C as features and the SWH obtained by ERA5 175 

as labels, so that a wide swath model can be built. It is well known that the ALT data are generated 176 

almost per second. Based on the dual consideration of runtime and the amount of data, we extract 177 

the nadir SWH at six-minute intervals and filter the data with a length of 15,360 samples in the 178 

training set. While for the validation set, we execute the same operation with an integration length 179 

of 2500 observations. The swell and wind wave information in ERA5 has a certain effect on the 180 

building of wide swath SWH model, for which we gather the relevant data after matching based on 181 

the latitude and longitude of the nadir SWH, and apply them as the input features of Experiments 2 182 

and 3, respectively. The other parameters and settings remain unchanged. The processed datasets 183 

are fed into the GRU model, thereby the validation set results are shown in Table 1. 184 

 185 
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Table 1 Numerical results of the validation set in the GRU model with different input features. 186 

Input features of experiments 1-3 RMSE SI Bias R 

Experiment 1: Wind and SWH simultaneously acquired 

by HY-2C, Latitude, and Longitude 
0.4056 0.1528 0.0154 0.9428 

Experiment 2: Wind and SWH simultaneously acquired 

by HY-2C, Latitude; Longitude, and Swell obtained 

from ERA5 

0.3696 0.1381 -0.0069 0.9530 

Experiment 3: Wind and SWH simultaneously acquired 

by HY-2C, Latitude, Longitude, and Wind wave 

collected from ERA5 

0.4344 0.1629 0.0032 0.9353 

 187 

Table 1 depicts that the swell presents a positive influence on the establishment of wide 188 

swath SWH model, on the contrary, the wind wave has a negative impact on it. For example, 189 

compared to RMSE of the Experiment 1, that of the Experiment 2 decreases 0.0360 m, which 190 

indicates that the model performance is improved, while that of the Experiment 3 increases 0.0288 191 

m, implying more inefficient the model output. Wind wave mainly exhibits sharp peak, which is 192 

prone to wave breaking when the wind remains strong, while swell presents smoother, with long 193 

and regular wave lines. The wide swath SWH model concentrates on long-term features in the 194 

process of learning wind and wave characteristics, while for wind wave, it behaves as local 195 

features. Overall, we mainly focus on the first two experiments in the following analysis. 196 

Three columns of data with a length of 300 on the leftmost, center, and rightmost sides of 197 

wide swath SWH are selected as representatives to further analyze the performance of different 198 

stages. In Table 2, the three columns numerical results of Experiment 1 are shown that the center 199 

column has better results than the other two columns under arbitrary segmented data. The reason 200 

for this phenomenon may be that the larger the distance between both sides of the nadir SWH and 201 

the center, the less the importance of the wind in the modeling process, and the worse the effect on 202 

the nadir SWH. 203 

In the segmented data, the validation results of the three columns for Interval 1 are the 204 

worst among those for all intervals. For Interval 5, its leftmost and rightmost columns show 205 

superior values, its center column is excellent and second only to the center column for Interval 4. 206 

We count the total number of points with SWH less than 1 m (troughs) and greater than 7 m (peaks) 207 

for each phase. Results indicate that Interval 1 has 332 minimal and maximal points, and these 208 

local features gradually disappear during the process of training, resulting in inferior performance. 209 

Surprisingly, Interval 5 has only 85 extreme points, thus dominates the results. Based on the above 210 

analysis, Interval 5 (bolder words in Table 2), which locates in the middle of validation set and 211 

remains superior, is selected to display the range and validation results of the three columns of data, 212 

as shown in Figure 4. 213 

 214 

 215 

 216 

 217 
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Table 2 The numerical results of the segmented data on the leftmost, center, and rightmost columns in 218 
Experiment 1. 219 

Segmented data in the validation set RMSE SI Bias R 

Interval 1: 1-300 

The leftmost column 0.6785 0.2633 0.0210 0.8449 

The center column 0.6023 0.2319 -0.0079 0.8931 

The rightmost column 0.7392 0.2813 -0.0524 0.8280 

Interval 2: 301-600 

The leftmost column 0.4650 0.1740 -0.0277 0.9280 

The center column 0.2577 0.0966 0.0351 0.9797 

The rightmost column 0.5155 0.1928 -0.0018 0.9041 

Interval 3: 601-900 

The leftmost column 0.4632 0.1725 -0.0038 0.9335 

The center column 0.2862 0.1064 0.0323 0.9779 

The rightmost column 0.4687 0.1716 -0.0160 0.9333 

Interval 4: 901-1200 

The leftmost column 0.4623 0.1734 0.0580 0.9293 

The center column 0.2420 0.0891 -0.0137 0.9820 

The rightmost column 0.4484 0.1623 -0.0239 0.9453 

Interval 5: 1201-1500 

The leftmost column 0.4289 0.1680 0.0244 0.9180 

The center column 0.2554 0.0996 0.0221 0.9731 

The rightmost column 0.4155 0.1591 0.0197 0.9279 

Interval 6: 1501-1800 

The leftmost column 0.4712 0.1776 0.0426 0.9037 

The center column 0.2844 0.1072 0.0308 0.9688 

The rightmost column 0.4954 0.1843 -0.0100 0.9100 

Interval 7: 1800-2100 

The leftmost column 0.4438 0.1711 0.0528 0.9128 

The center column 0.2673 0.1034 0.0175 0.9662 

The rightmost column 0.5030 0.1906 -0.0454 0.8819 

Interval 8: 2101-2400 

The leftmost column 0.5086 0.1875 0.0737 0.9323 

The center column 0.2798 0.1026 0.0610 0.9763 

The rightmost column 0.4834 0.1758 0.0446 0.9268 

 220 

Comparing Figure 4a-c, it can be found that the center column can evaluate the peaks, 221 

while SWH on the leftmost and rightmost columns are generally underestimated at the peaks and 222 

slightly overestimated at the troughs, which are consistent with the experimental results obtained 223 

in Table 2. Although the red line is not as good as the blue line in Figure 4b for some peaks, it has 224 

a better fit between 1 and 5 m. To summarize, the results of the segmented interval in the three 225 

columns of data has an acceptable performance, understanding the effectiveness of the model. To 226 

distinctly demonstrate the accuracy of the model, the validation results for 1 day (from May 1 to 227 

May 2, 2021) with 10-second intervals are plotted in Figure 5.  228 

 229 
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Figure 4 The line graphs of the segmented data. The leftmost, center and rightmost validation results 230 

of Experiments 1 (blue lines) and 2 (red lines) are denoted in a-c, respectively.  231 
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Figure 5 The results of the wide swath SWH. The observation (a) and the verification (b) of global 232 
wide swath SWH in Experiment 1, and the observation (c, f) and the verification (d and g in 233 
Experiment 1, as well as e and h in Experiment 2) of their magnitude plots in northwestern area and 234 
southeastern area (the red boxes in a and b), respectively. 235 
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 236 

From Figure 5a, it can be found that the data are distributed with a high probability 237 

between 1 and 5 m, and the values are generally larger than 5 m around 60° S. Numerical change in 238 

Figure 5b is basically consistent with the observations in Figure 5a. Two regions located in the 239 

northwest (130-110° W, 10-30° N) and southeast (110-140° E, 60-40° S) are drawn to manifest the 240 

detailed value intervals of wide swath SWH, respectively. Figure 5d and e fluctuate in a small 241 

range and the former has a difference of approximately 0.3 m compared to Figure 5c. Besides, the 242 

latter demonstrates a high consistency with Figure 5c. Combining with Figure 5f, Figure 5g 243 

exhibits a better performance than Figure 5h at larger values, which coincides with the 244 

phenomena reflected in Figure 4b. Figure 5g declares the expansion of the nadir SWH to generate 245 

a real-time grid product with wide swath along track, which can be employed as input for wave 246 

assimilation, spatial-temporal forecasting, extreme analysis and so on. Of course, it is undeniable 247 

that additionally considering swell into the input characteristics has a promising result when 248 

real-time is not strictly required. Furthermore, compared with Figure 1, our results extend the 249 

width of SWH to half of the wind field dimension, which demonstrates the effectiveness and 250 

feasibility of the model. 251 

4 Conclusions 252 

This paper employs the HY-2C data with simultaneously acquired wind and wave to build a 253 

deep learning model, the GRU approach, obtaining a wide swath SWH field along track. The 254 

Ku-band nadir SWH, as well as its latitude and longitude from altimeter are extracted to select the 255 

wind columns whose width occupy half of the scatterometer wind field dimension. The SWH of 256 

ERA5 is configured based on a time difference of half an hour and a spatial difference within 100 257 

km. The validation data are segmented at a length of 300 and the center column outperformed the 258 

leftmost and rightmost columns under arbitrary interval, where the leftmost and rightmost columns 259 

are generally underestimated and slightly overestimated at the peaks and the troughs of wide swath 260 

SWH, respectively. The validation set with the length of 1-day at 10-second intervals is fed into the 261 

trained model, and the results show that a better fit appears, considering the swell to the input in the 262 

amplified northwestern area from 1.4 to 2.5 m. While in the southeast, its SWH ranges from 0 to 10 263 

m and the model performs well without the swell feature for SWH larger than 7 m. When the data 264 

acquired by HY-2C are adopted as features and the data from ERA5 are utilized as the labels, a 265 

more time-sensitive grid product along track is generated. Nevertheless, when the data collected 266 

by HY-2C and the swell from ERA5 are applied as features, superior validation results are 267 

produced. Besides, the width of the SWH is extended to half of the wind field dimension, which 268 

could be further expanded or updated employing deep learning methods according to demands of 269 

the practical situation. The correlative wave parameters may be added appropriately to provide 270 

certain relevant information for the training model, so as to generate better grid products. 271 
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