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Abstract

The Earth’s outer radiation belt response to geospace disturbances is extremely variable spanning from a few hours to several

months. In addition, the numerous physical mechanisms, which control this response, depend on the electron energy, the

time-scale and the various types of geospace disturbances. As a consequence, the various models that currently exist are either

specialized, orbit-specific data-driven models, or sophisticated physics-based ones. In this paper we present a new approach for

radiation belt modelling using Machine Learning methods driven solely by solar wind speed and pressure, Solar flux at 10.7

cm and the $\theta$ angle controlling the Russell-McPherron effect. We show that the model can successfully reproduce and

predict the electron fluxes of the outer radiation belt in a broad energy (0.033–4.062 MeV) and L-shell (2.5–5.9) range and,

moreover, it can capture the long-term modulation of the semi-annual variation. We also show that the model can generalize

well and provide successful predictions, even outside of the spatio-temporal range it has been trained with, using >0.8 MeV

electron flux measurements from GOES-15/EPEAD at geostationary orbit.
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Key Points:9

• A machine learning model is developed to predict the electron fluxes in the outer10

belt in a broad energy (0.033-4.062 MeV) at 2.5¡L¡5.9.11

• The model requires as input solar wind parameters and the Russell–McPherron’s12

angle, which are available in near-real time.13

• The model’s accuracy is high even outside the outside the L-shell training scheme14

(GEO) and outside the time interval used for the training.15
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Abstract16

The Earth’s outer radiation belt response to geospace disturbances is extremely variable17

spanning from a few hours to several months. In addition, the numerous physical mech-18

anisms, which control this response, depend on the electron energy, the time-scale and19

the various types of geospace disturbances. As a consequence, the various models that20

currently exist are either specialized, orbit-specific data-driven models, or sophisticated21

physics-based ones. In this paper we present a new approach for radiation belt modelling22

using Machine Learning methods driven solely by solar wind speed and pressure, Solar23

flux at 10.7 cm and the θ angle controlling the Russell-McPherron effect. We show that24

the model can successfully reproduce and predict the electron fluxes of the outer radi-25

ation belt in a broad energy (0.033–4.062 MeV) and L-shell (2.5–5.9) range and, more-26

over, it can capture the long-term modulation of the semi-annual variation. We also show27

that the model can generalize well and provide successful predictions, even outside of the28

spatio-temporal range it has been trained with, using ¿0.8 MeV electron flux measure-29

ments from GOES-15/EPEAD at geostationary orbit.30

Plain Language Summary31

The electron populations of the outer radiation belt are known to present hazards32

to spacecraft, from instrumentation errors and physical damage to complete loss. he phys-33

ical mechanisms which control the variability of the population depend on various phys-34

ical parameters and, as a consequence, the various prediction models that currently ex-35

ist are either specialized, orbit-specific data-driven models, or sophisticated physics-based36

ones. In this paper we present a new approach for radiation belt modelling using Ma-37

chine Learning methods. driven solely by solar wind speed and pressure, Solar flux at38

10.7 cm and the angle controlling the Russell-McPherron effect. We show that the model39

cannot only successfully reproduce and predict the electron fluxes of the outer radiation40

belt in a broad energy and spatio-temporal range but also, that can generalize well and41

provide successful predictions, even outside of the spatio-temporal range it has been trained42

with. Its applicability also extends to the provision of reliable predictions of the bound-43

ary conditions in physics-based models.44

1 Introduction45

The dynamics of the outer radiation belt are driven by a complex interplay between46

acceleration and loss mechanisms (Reeves & Daglis, 2016; Daglis et al., 2019) leading to47

a broad energy range of energetic electrons. These electron populations in the outer belt48

are known to present hazards to spacecraft. Source (≈ 10–100 keV) and seed (≈ 100–49

300 keV) electrons can accumulate at the surface of a spacecraft leading to adverse ef-50

fects such as instrumentation errors and physical damage due to the surface charging ef-51

fects (Thomsen et al., 2013; Zheng et al., 2019). Furthermore, seed electrons act as a ’reser-52

voir’ which can be further accelerated to relativistic energies (Jaynes et al., 2015; W. Li53

et al., 2016; Katsavrias, Daglis, & Li, 2019; Katsavrias, Sandberg, et al., 2019; Nasi et54

al., 2020) via the interaction with whistler chorus waves that the source population pro-55

duces. These relativistic (typically >0.5 MeV) electrons can penetrate through satellite56

shielding potentially causing internal charging, also leading to satellite loss in extreme57

cases. Even though the aforementioned populations vary primarily in scales of several58

hours or days, the relativistic electron fluxes in the outer radiation belt also exhibit vari-59

ations on longer time scales exhibiting an annual as well as a semi-annual periodicity–60

henceforward SAV (Baker et al., 1999)–which has been recently shown to be driven by61

the Russell-McPherron effect (Katsavrias, Papadimitriou, et al., 2021).62

Several efforts have been focused on modelling the aforementioned variations and63

these efforts typically fall into one of two categories, either empirical, data-driven mod-64

els or physics-based ones. Empirical modelling begun at the dawn of the space age at65
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the early 60’s, using the very first particle radiation satellite data under NASA’s Trapped66

Radiation Environment Model Program (TREMP) producing the long series of success-67

ful models AE1 up to AE8 in 1991 (Vette, 1991), the latter of which are still considered68

the industry standards. The latest incarnation in this long series of US models is the AE969

model (Ginet et al., 2013), which were first produced in 2012 by the US Air Force Re-70

search Laboratory (AFRL), with the latest public version 1.5 being released in 2017. The71

French national aerospace research centre (Office National d’Etudes et de Recherches Aérospatiales–72

ONERA) has also been heavily involved in data-driven modelling, especially in the past73

20 years with models that are mostly orbit-specific, such as the International Geosta-74

tionary Electron model, IGE-2006 (Sicard-Piet et al., 2008) or the low-altitude, proton75

model OPAL (Boscher et al., 2014), while lately many such local models have been in-76

corporated into a unified, global framework, giving rise to the Global Radiation Earth77

ENvironment (GREEN) model (Sicard et al., 2018). ESA has also funded the develop-78

ment of a series of models such as the Slot Region Radiation Environment Model (Sandberg79

et al., 2014), for electrons in the slot region as well as a long series of internal charging80

models, modelling high energy electrons throughout the magnetosphere with the Flux81

Model for Internal Charging (FLUMIC), first released in 1998 and last updated in 200382

(Rodgers & Wrenn, 2003), and the Model of Outer Belt Electrons for Dielectric Inter-83

nal Charging (MOBE-DIC) (Hands et al., 2015) being the most modern such example.84

Physics-based models on the other hand, attempt to tackle the kinetic problem of85

the flow of charged particles within the confines of the Earth’s magnetosphere. ONERA’s86

Salammbo model (Beutier & Boscher, 1995; Varotsou et al., 2005, 2008) addresses this87

by solving the Fokker-Planck diffusion equation in the phase space of the three adiabatic88

invariants that govern the particle’s motion, capturing a wide array of physical processes,89

such as Coulomb interactions with the plasmasphere electrons, the pitch angle diffusion90

due to wave-particle interactions and others. Another such model was created by Subbotin91

and Shprits (2009), called the Versatile Electron Radiation Belt (VERB) code, using a92

modified-invariants phase space of equatorial pitch angle, energy and L∗, and employ-93

ing sophisticated methods to produce the numerical solutions and more detailed inter-94

polation schemes. The British Antarctic Survey radiation belt model (Glauert et al., 2014)95

also used a similar mathematical formalism, but on a different 3D phase space of pitch96

angle, energy and L*, while the boundary conditions are derived by CRRES/MEA data,97

grouped by Kp values and averaged, so as to produce different estimates for various ge-98

omagnetic activity levels. Nevertheless, the use of Kp-parameterized boundary condi-99

tions introduce uncertainties to the prediction of the radiation belt dynamics.100

Modelling the SAV modulation (along with other long-term periodic variations)101

in the particle content of the outer belt has been treated in many ways in the past, but102

is still a matter of much debate. Models such as IGE-2006 (Sicard-Piet et al., 2008) and103

MEO-v2 do include a parameterization for the solar cycle phase dependence, but are built104

on yearly averaged values and are therefore unable to account for shorter scale variations.105

On the other hand, AE-9 Ginet et al. (2013) offers a particular output type which sim-106

ulates variations of the mean model outputs, that also include a 6 month periodicity, but107

this is done from a purely statistical perspective, so there are no means by which to pro-108

vide inputs to this mode to specify a particular moment in time for such a simulation.109

Physics-based models such as the British Antarctic Survey radiation belt model (Glauert110

et al., 2014) and the Salammbô model (Beutier & Boscher, 1995; Varotsou et al., 2005,111

2008) typically rely on some index or parameter of magnetospheric activity (e.g. Kp, mag-112

netopause radial distance etc.) to estimate the acceleration due to wave-particle inter-113

actions and thus predict the changes in electron phase space density, and so is not clear114

how or if they take SAV–and other large scale variations–into account. Finally, machine115

learning models such as the recent MERLIN model (Smirnov et al., 2020) or the Non-116

linear AutoRegressive Moving Average with eXogenous inputs (NARMAX) models (Boynton117

et al., 2019, 2020), built on many years of data, probably include the effects of all such118
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variabilities, but in a way that is difficult to disentangle from all the other effects and119

variations.120

This study aims in incorporating the recent findings concerning the SAV in the rel-121

ativistic electron fluxes of the outer radiation belt in order to develop a model which can122

accurately reproduce this long-term modulation and coupling it with solar wind param-123

eters as inputs to derive accurate predictions. The rest of the paper is organized as fol-124

lows: section 2 describes the data selection and the pre-processing analysis applied in125

the data, section 3 describes the investigation and building of the model, and the results126

in the various energy channels of RBSP/MagEIS and L-shells and section 4 is dedicated127

to the validation of the model and discussion of the results.128

2 Datasets129

In this study we make use of the 11-sec resolution spin-averaged differential fluxes130

(Level 2–Release 4) from the Magnetic Electron Ion Spectrometer (Blake et al., 2013)131

on board the Radiation Belt Storm Probes (RBSP). The dataset used spans the 0.033–132

4.062 MeV range and use data during the September 2013 up to July 2019 time period133

from both RBSP-A and B. We do not use data prior to September 2013 due to MagEIS134

having had several major changes to energy channel definitions, operational modes, and135

flux conversion factors over the early part of the mission (Boyd et al., 2019). Specifically136

we use the background corrected data (Claudepierre et al., 2015) considering measure-137

ments where the background correction error is less than 75%. Finally, we apply the cor-138

rection factors proposed by Sandberg et al. (2021).139

We also analyze electron integral flux measurements with energies >0.8 MeV from140

the Energetic Proton, Electron and Alpha Detector (EPEAD–https://satdat.ngdc.noaa.gov/sem/goes/data/)141

on board the GOES-15 spacecraft (Onsager et al. (1996) and GOES N Series Data Book,142

2010), spanning the 2012–2018 time-period. Following Baker, Zhao, et al. (2019), we use143

data only from the GOES-15 ”East” sensor since the ”West” sensor often exhibits on-144

orbit degradation.145

The dataset further includes 1-min resolution measurements of the solar wind speed146

and dynamic pressure, as well as 1-hour measurements of Solar flux at 10.7 cm available147

by the OMNIWeb service of the Space Physics Data Facility at the Goddard Space Flight148

Center (http://omniweb.gsfc.nasa.gov/).149

For the calculation of the θ angle (which corresponds to the tilt of the Earth’s dipole150

axis with respect to the heliographic equatorial plane), we use the International Radi-151

ation Belt Environment Modelling (IRBEM) library (“International Radiation Belt En-152

vironment Modelling Library”, 2009). Finally, the L-shell values are obtained from the153

magnetic ephemeris files of the ECT Suite (https://www.rbsp-ect.lanl.gov/science/DataDirectories.php/),154

which are calculated using the Tsyganenko (2005) magnetospheric field model (TS05).155

3 Investigation of electron reproduction with multivariate regression156

3.1 Physical parameters and mathematical/physical formulation157

For the performed analysis, the spin-averaged differential electron fluxes with equa-158

torial pitch angles greater than 75 degrees are grouped into daily bins in time and with159

dL=0.2 at L-shell resulting in a dataset of more than ≈530000 data points (excluding160

data gaps, NaN values, e.t.c.), from the ≈2100 daily bins, at 17 L-shell bins, for 18 elec-161

trons energies each. We note that we use in our analysis the 2.5–5.9 L-shell range. This162

effectively includes the slot region and the major part of the outer belt except for the163

GEO environment. The same daily binning in time is applied for the Solar wind speed,164

dynamic pressure, Solar flux at 10.7 cm and the θRM angle. Then a 30-days moving av-165

erage is calculated in order to exclude variations due to the Solar rotation. Using the fi-166
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nal dataset we perform an initial investigation using a multiple regression scheme with167

the mathematical formulation shown below (equation 1).168

J = ec1·sΘ+c2·cΘ+c0 · Pα1+β1·ln(PSW )
SW · V α2+β2·ln(VSW )

SW · SFα3+β3·ln(SF ) (1)169

Where SF is the Solar flux at 10.7 cm and VSW and PSW is the Solar wind speed170

and dynamic pressure, respectively. sΘ and cΘ correspond to the sine and cosine of the171

angle that controls the Russell-McPherron effect (Russell & McPherron, 1973), respec-172

tively, in the following form: sΘ = sin(θRM/2) and cΘ = cos(θRM/2).173

The approach in the aforementioned formulation is congruent with Katsavrias, Am-174

inalragia–Giamini, et al. (2021) as it is the product of power laws of the three variables175

but with added feedback terms in the power index - in the form of the natural logarithm176

of the variables themselves. This essentially creates a product of variable power laws which177

is in the same spirit with existing universal coupling functions such as the Newell func-178

tion or the Epsilon parameter (Newell et al., 2007). Finally, we must emphasize the use179

of the modifying factor which contains the θRM angle dependence, which as shown by180

Katsavrias, Papadimitriou, et al. (2021) is crucial for capturing the long-term modula-181

tion (SAV).182

From a physics point of view, the magnitude of the electron flux in the outer ra-183

diation belt is expressed as a combination of solar wind speed and pressure along with184

the intensity of the cycle in terms of the Solar flux at 10.7 cm, which are indirectly linked185

with the two major drivers of geospace disturbances; the Interplanetary Coronal Mass186

Ejections (ICMEs) and the High Speed Streams (HSS). The reasoning behind the selec-187

tion of these input parameters is based on the results of Katsavrias, Papadimitriou, et188

al. (2021) who showed that the semi-annual variation in the relativistic electron fluxes189

of the outer radiation belt was more pronounced during periods of increased (decreased)190

number of HSS (ICME) occurrence indicating that the SAV is the result of the modu-191

lation of reconnection produced by the variability of the controlling angle of the RM mech-192

anism during periods of enhanced solar wind speed and decreased Solar cycle intensity.193

The latter is in agreement with X. Li et al. (2001) who indicated the anti-correlation of194

the outer edge of the outer belt with the sunspot number which leads consequently to195

variability due to various drivers since ICMEs prevail during the solar maximum and HSSs196

during the descending phase.197

3.2 Results198

Figure 1 presents the results of the multiple regression for the 0.346 and 0.909 MeV199

electron fluxes from MagEIS during the 2013–2019 time-period at L=4.6 (4.5< L¡4.7)200

and 5.2 (5.1< L <5.3), respectively. As shown the regression is quite accurately repro-201

duces the electron fluxes (panels a and c) at both selected energy channels and L-shells,202

with the Pearson’s correlation coefficient being 0.831 and 0.854 for the 0.346 and 0.909203

MeV, respectively, while the mean absolute percentage error (MAPE) is 48.81 and 26.83%,204

respectively.205

In detail, the regression accurately reproduces both the high and low flux values206

during the late maximum and the descending phase of the solar cycle 24 (SC24), espe-207

cially during 2015 up to 2017. Nevertheless, the lowest flux values are overestimated dur-208

ing the minimum phase (2018–2019). We note that despite this overestimation of the lower209

flux values, the evident semi-annual variation during the whole time-period under inves-210

tigation is reproduced very well. The latter highlights the importance of using the θRM211

as an input parameter. Furthermore, the vast majority of the regressed values fall within212

a factor of two of the data, represented by the two green solid lines (panels b and d), and213

mostly cluster along the equality line in blue for both the selected energy channels and214

L-shells. Especially for the 0.346 MeV (1b), the regression seems to overestimate a sig-215
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Figure 1. Examples of the multiple regression. Panels a and c: 30-days running averages

of spin-averaged electron fluxes for 0.346 MeV at L=4.6 and 0.909 MeV at L=5.2, respectively.

Black and red solid lines correspond to the measured and regressed time-series, respectively.

Panels b and d: Cross-plots between the measured and regress electron fluxes. The solid blue

line corresponds to y=x and the solid green lines correspond to y=2·x and y=x/2. The solid red

lines correspond to y=4·x and y=x/4. Dataset spans the whole 2013–2019 time-period. The free

parameters for the regression of the 0.346 MeV at L=4.6 are: c0=-402.79, c1=-0.004, c2=-38.54,

α1=3.68, β1=-1.95, α2=118.52, β2=-9.45, α3=35.07, β3=-3.71 and the corresponding correla-

tion coefficient and mean absolute percentage error are 0.833 and 47.18%, respectively. The free

parameters for the regression of the 0.909 MeV at L=5.2 are: c0=-32.98, c1=-0.20, c2=-21.50,

α1=2.27, β1=-1.48, α2=4.41, β2=-0.07, α3=18.67, β3=-2.04 and the corresponding correlation

coefficient and mean absolute percentage error are 0.854 and 25.92%, respectively.
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nificant fraction of the lower flux values (< 106cm−2sec−1sr−1MeV −1) which, never-216

theless, fall within a factor of four of the measured fluxes (red solid lines). This feature217

is significantly less prominent in the 0.909 MeV (1d) electron fluxes, indicating that it218

may be both L and energy dependent.219

Figure 2. Flux maps of the 30-days running averages of daily flux at L>4 as a function of

L-shell for two energy channels at 0.346 and 1.575 MeV, respectively. Panels a and d correspond

to the MagEIS measured fluxes, panels b and e correspond to the regressed fluxes and panels c

and f to their ratio.

In order to provide a more detailed comparison between the regressed and mea-220

sured fluxes as a function of L-shell, figure 2 shows the flux maps of the 30-days running221

averages of daily flux as a function of L-shell for the 0.346 and 1.575 MeV energy chan-222

–7–
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nels of MagEIS. We note that the regression of each energy channel is done separately223

for each L-shell bin. Panels a and d, show the MagEIS measured fluxes for the two en-224

ergy channels, while panels b and e show the corresponding regressed values. Panels c225

and f show the ratio of the regressed over the measured fluxes with the red (blue) color226

indicating that the model overestimates (underestimates) the true flux values. As shown227

the regression can successfully reproduce the electron fluxes for both sub-relativistic (0.346228

MeV) and relativistic electrons (1.575 MeV) throughout the whole time-period and at229

all L>4.230

In detail, the model can reproduce the measured electron fluxes in the heart of the231

outer radiation belt and especially the intense activity during the descending phase of232

SC24 (2015–2017). It is worth mentioning that this intense activity during the descend-233

ing phase of the Solar cycle coincides with pronounced semi-annual variation and high234

occurrence of High Speed Streams (Katsavrias, Papadimitriou, et al., 2021), indicating235

the crucial role of the SAV during periods of enhanced solar wind speed and decreased236

Solar cycle intensity. Furthermore, as shown in panels c and f, the model overestimates237

the lowest electron flux values, especially during 2014 (Solar maximum) and 2019 (late238

minimum of SC24). We note that this feature is also present in figure 1 and here we show239

that it is dependent on the electron energy, namely, the disagreement between the re-240

gressed and measured electron fluxes is larger for increasing energy and for decreasing241

L-shell values.242

4 Machine learning model243

4.1 Machine learning model structure244

The regression scheme described in the previous section is very useful in the inves-245

tigation of the reproduction of the electron fluxes as well as the influence of each solar246

variable. Nevertheless, in practice and for the construction of a model such an approach247

would require separate regressions for each combination of energy and L-shell and fur-248

thermore does not necessarily perform well when used in a predictive manner, i.e. when249

presented with inputs not used in the derivation of the free parameters. In addition, with250

such an approach it would not be trivial to extend or even interpolate fluxes for L val-251

ues not used in the regression. Equation 1 can be re-written in logarithmic form as in252

equation 2 below, which more clearly shows the separate inputs. They consist of the in-253

tercept and 8 terms, which are the logarithms of the three solar parameters, Solar wind254

speed, dynamic pressure and Solar flux at 10.7 cm, along with their respective squares255

and the two terms of the Russell-McPherron angle.256

ln(J) = c0+c1·sΘ+c2·cΘ+α1·ln(Psw)+β1·ln(Psw)2+α2·ln(Vsw)+β2·ln(Vsw)2+α3·ln(SF )+β3·ln(SF )2

(2)257

Moreover, we use similar binning process with the one described in section 3.1, ex-258

cept that here we infer two distribution components. In detail, the spin-averaged differ-259

ential electron fluxes with equatorial pitch angles greater than 75 degrees are grouped260

into daily bins in time and with dL=0.2 at L-shell. From these bins we infer the mean261

and the 95th quantile (henceforward Q95) of the fluxes. At the same extent, from the262

daily binning of the Solar/solar wind parameters we infer the same distribution compo-263

nents (mean and Q95). Then a 30-days moving average is calculated, both for the mean264

and the Q95, using a window that includes the current timestamp and 29 days prior.265

In order to create a robust model that is parametric with respect to the L-shell value,266

as well as having good predictive capabilities, as is shown further on, we use neural net-267

works. The 8 parameter terms along with the L value are used as input, and the model268

outputs electron fluxes at all 18 energies simultaneously. The neural networks are mul-269
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tilayer feed-forward nets with three hidden layers using the hyperbolic tangent sigmoid270

transfer function and 18 outputs which correspond to the logarithms of the electron fluxes271

for the 18 MagEIS energies. We use a parallel array of three nets where the individual272

outputs are averaged before the final output is derived.273

This modelling approach has three significant benefits. First, the spectral coherency274

of the electron fluxes across the wide electron energy range is maintained as they are one275

consistent output. Second, the model is able to generalize with respect to the L-shell and276

output fluxes for arbitrary L values even outside the range with which it was trained with,277

as is shown further on. Finally it is possible to use the model in a predictive capability,278

i.e. train it with a fraction of the data and test its performance with the remaining data279

at all energies and L values. In this regard we have used a 60-40 division where 1250 of280

the ≈2100 daily values are randomly selected and used to train the neural networks whereas281

the remaining ≈900 daily values are used to evaluate the performance of the model. We282

note that each daily bin contains electron fluxes for all L-shells and energies, barring data283

gaps. Therefore the actual flux data points used for training amount to ≈310000 and284

those for testing to ≈220000 which are more than adequate dataset sizes for training and285

testing such a machine learning approach.286

Finally we note an important aspect taken into account for the evaluation of the287

model’s predictive capability shown in the results. It is a moot point to predict daily elec-288

tron fluxes using the values of the solar parameters from the same day; as discussed for289

each day, we use the moving average of the 29 days prior and the current one, for both290

the fluxes and the solar parameters. However, we train and test the model to use the in-291

put variables of the previous day for the prediction of the electron fluxes, i.e. there is292

a consistent time-shift of one day between predictor and outcome, as it would be nec-293

essary in an operational manner.294

4.2 Model performance and prediction results295

Figure 3 shows comparisons of the data fluxes and the predictions of the model for296

the test dataset at four L-shells and at all electron energies of the MagEIS instrument.297

As seen, the model can accurately predict the electron fluxes in the whole energy range298

with the vast majority of points clustering along the equality line and differing no more299

than a factor of two. We note that the model can accurately predict the electron fluxes300

even in the slot region (panel a) despite the fact that there are much less data points at301

the higher electron energies, this is a strong indication of good generalization of the NNs302

both in L and energy. The presence of high energy electrons in the slot region is attributed303

at the few intense events, during SC24, which filled this region with relativistic electrons.304

At L=3.6 (panel b) we have a significantly increased amount of data points. The model305

has a remarkable accuracy at the lower energy channels (source electrons at E<100 keV)306

with the data points clustering along the equality line and the spread being much less307

than a factor of two. The higher energies (>1 MeV) are also accurately predicted, while308

at intermediate energies there are some outliers which exceed the factor of two. How-309

ever, considering the total number of data points, the outliers represent a small fraction.310

Also it is worth noting that there is no discernible trend in the amount of points which311

overestimate/underestimate the measured electron fluxes. At the heart of the outer ra-312

diation belt (panels c and d at L=4.6 and 5.6, respectively), the vast majority of the pre-313

dicted fluxes are clustered along the equality line differing no more than a factor of two.314

Finally, at L=5.6 (panel d) there is an observed underestimation of the higher flux val-315

ues of the 0.033 and 0.054 MeV electron fluxes, which, nevertheless, is again mostly within316

a factor of two.317

The Q95 component of the distribution (figure 4) exhibit very similar behaviour.318

Once again, the vast majority of the predicted fluxes are clustered along the equality line319

differing no more than a factor of two at all L-shells. Nevertheless, there are the same320
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Figure 3. Cross-plots of the predicted daily mean of the flux values over the measured ones

for four L-shell values at (a) 2.6, (b) 3.6, (c) 4.6 and (d) 5.6. The energy channels are color-

coded with red (blue) corresponding to the higher (lower) MagEIS energies. The black solid lines

correspond to the equality line and to y=2·x and y=x/2, respectively.

two deviations observed also in the mean component. At L=3.6 (panel b), the interme-321

diate energies (235–749 keV) contain some outliers which exceed the factor of two, even322

though once again, the outliers represent a small fraction of the total number of data points,323

while at L=5.6 (panel d) there is again a small underestimation of the higher flux val-324

ues of the 0.033 and 0.054 MeV electron fluxes, which, nevertheless, is again mostly within325

a factor of two.326

Figure 5 shows the occurrence density plot of the predicted versus the observed flux327

for all energies and all L-shells. The left panel corresponds to the daily mean and the328

right panel to the daily Q95 of the electron fluxes. The solid red line is the equality line329

and the solid white are the factor-of-two lines, y=2x and y=x/2. As shown, the occur-330

rence maxima (red color) exhibit a remarkable agreement in both distribution compo-331

nents, following the equality line and the vast majority of the data points are within the332

factor of two from it.333
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Figure 4. Same with figure 3 but for the predicted daily Q95 of the flux values.

Furthermore, figure 6 shows the distribution of the Mean Absolute Percentage Er-334

ror (MAPE–left panels) and the percentage of points within a factor of two (Ratio 2–335

right panels) as a function of electron energy and L-shell, with blue (red) correspond-336

ing to the lower (higher) MAPE and Ratio 2 values. Top panels (a and b) correspond337

to the mean electron fluxes, while bottom panels (c and d) to the Q95.338

For the mean fluxes, the overall MAPE is at most 50% and the Ratio 2 at 75% at339

its absolute minimum with most values being significantly lower and higher, respectively.340

This highlights the successful performance of the model across all L values and energies.341

For L>4 virtually all energy channels have MAPE values less than 30% and Ratio 2 val-342

ues more than 95% in agreement with what was shown in figure 3. For L<4 (slot region343

and the inner boundary of the outer belt) there are two distinct islets that exhibit com-344

paratively increased MAPE and decreased Ratio 2 values. The first islet is roughly lo-345

cated at 2.6< L <3.6 in the 0.2< E <0.9 MeV energy range, while the second smaller346

islet is roughly located at 2.8< L <3.2 in the 1.3< E <2 MeV energy range. The high-347

est MAPE of 50% is found here, as well as the lowest Ratio 2 percentage of 75%. This348

is consistent with the results shown in figure 3b. A possible explanation for this is the349

low occurrence of electrons with relativistic energies at such low L-shells since there were350
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Figure 5. Density plot of the predicted daily mean (left panel) and daily Q95 (right panel)

flux values and the measured ones for the complete dataset at all L-shells and all energies. Solid

black line corresponds to the one-to-one relationship between observations and predictions, while

the solid white lines correspond to y=2·x and y=x/2.

very few intense events during SC24, which were capable of penetrating so deep in the351

inner magnetosphere (Baker, Hoxie, et al., 2019).352

Concerning the Q95 fluxes, a remarkably similar trend is observed. Once again, at353

L>4, all energy channels have MAPE values less than 30% and Ratio 2 values more than354

95%, while at L<4 there are the same two distinct islets–located at the same L-shell and355

energy range–that exhibit comparatively increased MAPE and decreased Ratio 2 val-356

ues. The only difference compared to the mean fluxes is that the highest MAPE of the357

Q95 is 60% (470–597 keV at L≈ 2.8), while the lowest Ratio 2 percentage is 70% (346–358

597 keV at 2.8< L <3.2).359

4.3 Extension and Validation at GEO360

In the previous sections we have investigated and tested the regression and predic-361

tion capabilities of electron fluxes in the outer belt using solar parameters as drivers. Nev-362

ertheless, the results shown were within the time-span and L-shell range provided by the363

MagEIS instrument on board the RBSP satellites. In order to test the generalization and364

prediction capabilities of our model outside this temporal and spatial range we use the365

omni-directional integral fluxes at E>0.8 MeV provided by the EPEAD instrument on366

board GOES-15 during the 2012–2018 time period covering the maximum and descend-367

ing phase of SC24. We use the model to derive differential fluxes using an input of L=6.65368

(± 0.05), which corresponds to the average L-shell location of GOES-15 during the afore-369

mentioned time period. Also, the data from January 2012 to August 2013 are completely370

outside the temporal range of the training dataset, meaning they are completely unknown371

to the model. This offers an opportunity for a robust validation of the performance of372

the model in spatio-temporal dimensions. From the predicted differential fluxes the E>0.8373

MeV integral fluxes are calculated. We note that the GOES/EPEAD time-series are also374

grouped in daily bins and a moving average using a window that contains the current375

time-stamp and 29 before is used.376
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Figure 6. Distribution of the Mean Absolute Percentage Error (MAPE–panel a) and the per-

centage of points within a factor of two (Ratio 2–panel b) as a function of electron energy and

L-shell for the daily mean of the electron fluxes. Same for the daily Q95 at panels c and d.

Figure 7a shows the comparison of the 30-days running averages of the daily mean377

of the integral electron fluxes for E>0.8 MeV at GEO (black solid line) with the predicted378

fluxes inferred from our model (red dashed line). As shown, there is a very good agree-379

ment between the predicted and the measured integral fluxes especially during the de-380

scending phase of SC24, while the model overestimates the lowest flux values (< 104cm2sec1sr1)381

during the maximum (2013–2014) and the minimum (2018) of SC24.382

However, as shown in figure 7b, the large majority of the predicted electron fluxes383

differ no more than a factor of two from the measured ones, with the corresponding MAPE384

and Ratio 2 being 37.31% and 89.85%, respectively. We note, that the predicted flux data385

shown are adjusted by a factor of 3.74 in order to achieve the observed agreement in both386

panels. This is consistent and well within the range shown by Baker, Zhao, et al. (2019)387

who reported that the EPEAD fluxes differ from MagEIS by a factor of one to ten at388

L = 6.6 ± 0.05. These results further demonstrate and validate the predictive capabil-389

ity of our model even for inputs it has not been trained with.390
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Figure 7. Panel a: 30-days running averages of daily mean integral electron fluxes for E>0.8

MeV at GEO from GOES-15/EPEAD during 2012–2018 time period. The black solid line corre-

sponds to the measured integral fluxes. The red dashed line corresponds to the predicted time-

series inferred from the integration of the 0.8–4 MeV differential electron flux from MagEIS with

Ratio 2 and the corresponding mean absolute percentage error being being 89.85% and 37.31%,

respectively. Panel b: Cross-plot of the predicted versus the measured 30-days running averages

of daily mean integral electron fluxes at E>0.8 MeV. Panels c and d are similar with a and d,

respectively, but for the 30-days running averages of daily Q95 integral electron fluxes at E>0.8

MeV. Ratio 2 and the corresponding mean absolute percentage error being being 89.58% and

34.99%, respectively. The black dashed lines mark the September 1st, 2013 which corresponds to

the date of the first measurement of RBSP/MagEIS used to train the model.

Similar results are observed for the Q95 component (panels c and d) with the cor-391

responding MAPE and Ratio 2 being 34.99% and 89.58%, respectively. Once again, there392

is a small overestimation of the lowest Q95 flux values (< 104cm2sec1sr1) during the393

maximum (2013–2014) and the minimum (2018) of SC24. Nevertheless, the model suc-394

cessfully predicts the highest Q95 flux values which fall within the equality line (panel395

d).396

Finally, it must be emphasized that the model successfully provides prediction of397

the 30-day running averages of GOES fluxes (both for the mean and the Q95 daily val-398

ues) even before the September 1st of 2013 accounting for a time-period of 20 months399

(see the vertical dashed lines in figure 7), which as discussed above, are completely out-400

of-sample. This means that the model is able to predict the electron fluxes simultane-401
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ously outside the L-shell training scheme and outside the time interval used for the train-402

ing.403

5 Conclusions404

We have used almost 7 years (2013–2019) of RBSP/MagEIS measurements of elec-405

tron fluxes in the outer radiation belt–which is one of the most reliable electron flux datasets–406

to develop a model which can successfully predict the time-series of the 30-day averages407

(in terms of mean and Q95 values) of electron fluxes in the 0.033–4.062 MeV energy range408

and in the 2.5–5.9 L-shell range.409

The model is based on a simple mathematical formulation that echoes already ex-410

isting coupling functions such as the Newell function or the Epsilon parameter, using a411

product of variable power laws of solar wind speed, dynamic pressure and Solar flux at412

10.7 cm. Moreover, it includes a constant containing the θRM angle, which controls the413

Russell-McPherron effect and which we showed to be crucial for accurately predicting414

both the intensity and the modulation of radiation belt fluxes, especially during the de-415

scending phase of SC24, where the highest intensities occur. Moreover, we have used com-416

parisons with the GOES-15/EPEAD integral fluxes at GEO to demonstrate that the model417

can successfully predict electron fluxes even outside the training scheme - both tempo-418

rally and spatially. Thus, the model provides accurate time-series of the electron flux dis-419

tribution in the outer belt, over long time-periods and over a broad electron energy range420

without being constraint by the L-shell range of the training dataset.421

In addition, since it is driven by parameters which are available in near-real time,422

it has also the potential to be used as an operational model for nowcasting/forecasting423

electron fluxes, which we showcase by using the 1-day time-shift. Furthermore, it can424

be used in conjunction with other models/methodologies, which have a shorter forecast-425

ing horizon, e.g. Katsavrias, Aminalragia–Giamini, et al. (2021), in order to derive even426

more detailed daily predictions. Its applicability also extends to the provision of reliable427

predictions of the boundary conditions in physics-based models.428
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