Natural carbon release compensates for anthropogenic carbon uptake when Southern Hemispheric westerlies strengthen

Laurie Menviel¹, Darryn W. Waugh², Paul Spence³, Matt Chamberlain⁴, Veronique Lago⁵, Zhi Li⁵, and Matthew H. England¹

¹University of New South Wales ²Johns Hopkins University ³CCRC UNSW ⁴CSIRO Oceans and Atmosphere ⁵CCRC, UNSW

November 24, 2022

Abstract

The Southern Ocean (SO) provides the largest oceanic sink of carbon. Observational datasets highlight decadal-scale changes in SO CO2 uptake, but the processes leading to this decadal-scale variability remain debated. Here, using an eddy-permitting ocean, sea-ice, carbon cycle model, we explore the impact of changes in Southern Hemisphere (SH) westerlies on contemporary (i.e. total), anthropogenic and natural CO2 fluxes using idealised sensitivity experiments as well as an interannually varying forced (IAF) experiment covering the years 1948 to 2007. We find that a strengthening of the SH westerlies reduces the contemporary CO2 uptake by leading to a high southern latitude natural CO2 outgassing. The enhanced SO upwelling and associated increase in Antarctic Bottom Water decrease the carbon content at depth in the SO, and increase the transport of carbon-rich waters to the surface. A poleward shift of the westerlies particularly enhances the CO2 outgassing south of 60S, while inducing an asymmetrical DIC response between high and mid southern latitudes. Changes in the SH westerlies in the 20th century in the IAF experiment lead to decadal-scale variability in both natural and contemporary CO2 uptake, while the anthropogenic CO2 uptake increased at a similar rate, thus leading to a stagnation of the total SO CO2 uptake. The projected poleward strengthening of the SH westerlies over the coming century will thus reduce the capability of the SO to mitigate the increase in atmospheric CO2.

Natural carbon release compensates for anthropogenic 1 carbon uptake when Southern Hemispheric westerlies 2 strengthen

L. Menviel 1,2,3 , D. Waugh 1,3,4 , P. Spence 3,5 , M. A. Chamberlain 6 , V. Lago¹, Z. Li¹, M.H. England^{1,3}

6	¹ Climate Change Research Centre, University of New South Wales, Sydney, Australia
7	² Earth and Sustainability Science Research Centre, University of New South Wales, Sydney, Australia
8	3 The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Tasmania
9	7001, Australia
10	⁴ Dpt. of Earth and Planetary Sciences, John Hopkins University, Baltimore, USA
11	⁵ Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
12	⁶ CSIRO Oceans and Atmosphere, Hobart, Australia

Key Points: 13

3

4

19

14	• Sensitivity experiments suggest that as SH westerlies increase and shift poleward,
15	contemporary CO_2 uptake in the SO decreases.
16	• An eddy-permitting simulation suggests that the SO CO ₂ uptake has stagnated
17	between 1980 and 2007 due to stronger SH westerlies.
18	• The simulation exhibits decadal-scale variability with a minimum in SO natural

 CO_2 uptake in 2000 due to strong westerlies.

Corresponding author: L. Menviel, l.menviel@unsw.edu.au

20 Abstract

The Southern Ocean (SO) provides the largest oceanic sink of carbon. Observational datasets 21 highlight decadal-scale changes in SO CO₂ uptake, but the processes leading to this decadal-22 scale variability remain debated. Here, using an eddy-permitting ocean, sea-ice, carbon 23 cycle model, we explore the impact of changes in Southern Hemisphere (SH) westerlies 24 on contemporary (i.e. total), anthropogenic and natural CO_2 fluxes using idealised sen-25 sitivity experiments as well as an interannually varying forced (IAF) experiment cover-26 ing the years 1948 to 2007. We find that a strengthening of the SH westerlies reduces 27 the contemporary CO_2 uptake by leading to a high southern latitude natural CO_2 out-28 gassing. The enhanced SO upwelling and associated increase in Antarctic Bottom Wa-29 ter decrease the carbon content at depth in the SO, and increase the transport of carbon-30 rich waters to the surface. A poleward shift of the westerlies particularly enhances the 31 CO_2 outgassing south of 60°S, while inducing an asymmetrical DIC response between 32 high and mid southern latitudes. Changes in the SH westerlies in the 20th century in 33 the IAF experiment lead to decadal-scale variability in both natural and contemporary 34 CO_2 fluxes. The ~10% strengthening of the SH westerlies since the 1980s led to a 0.016 35 GtC/yr^2 decrease in natural CO₂ uptake, while the anthropogenic CO₂ uptake increased 36 at a similar rate, thus leading to a stagnation of the total SO CO_2 uptake. The projected 37 poleward strengthening of the SH westerlies over the coming century will thus reduce 38 the capability of the SO to mitigate the increase in atmospheric CO_2 . 39

⁴⁰ Plain Language Summary

The Southern Ocean (SO) is the largest oceanic sink of anthropogenic carbon. The Southern Hemispheric (SH) westerlies significantly impact SO dynamics and atmospheric CO₂ uptake. While a strengthening of SH westerlies enhances the uptake of anthropogenic CO₂ it leads to enhanced outgassing of natural CO₂, thus reducing the total CO₂ uptake. The current and projected poleward strengthening of the SH westerlies over the coming century reduces the capability of the SO to mitigate the increase in atmospheric CO₂ concentration.

48 1 Introduction

As a result of anthropogenic emissions, atmospheric CO_2 concentration (CO_{2atm}) has increased from a natural level of 277 ppm in 1750 (Joos & Spahni, 2008) to 405 ppm in 2017 (Le Quéré et al., 2018). Over the period 1870-2017, the total emissions of anthropogenic carbon are estimated at 615 GtC, but this is associated with a net uptake of 190 GtC by the terrestrial biosphere, and 150 GtC by the ocean (Le Quéré et al., 2018). The terrestrial biosphere and the ocean have thus strongly mitigated the anthropogenic emissions of carbon, respectively absorbing $\sim 31\%$ and 24% of the emissions.

The largest oceanic carbon sink is the Southern Ocean (SO), which has contributed 56 $\sim 40\%$ of the global oceanic CO₂ uptake in the 1990s (Sabine et al., 2004; Mikaloff-Fletcher 57 et al., 2006). The oceanic CO_2 uptake is, however, spatially and seasonally variable. Win-58 ter mixing leads to an increase in the concentration of DIC at the surface, thus increas-59 ing surface ocean pCO₂, while biological productivity draws down DIC in summer. In 60 the Antarctic Southern Zone and polar frontal zone, there is a maximum CO_2 uptake 61 in austral summer and a minimum uptake or even outgassing in austral winter (Gray 62 et al., 2018). On the other hand, there is an oceanic CO_2 uptake year round in the sub-63 tropical zone of the SO, peaking in austral winter. 64

There is evidence for large decadal variability in the SO carbon uptake (Li & Ilyina, 2018). Observational estimates, covering the period 1982-2011, suggest the total carbon uptake in SO was slower than expected in the 1990s, but has increased significantly since 2002 to reach a maximum of 1.2 PgC. yr^{-1} in 2011 (LeQuéré et al., 2007; Landschützer et al., 2015; Gruber, Landschützer, & Lovenduski, 2019). There is, however, significant uncertainty associated with these estimates due to the sparsity of the data, particularly in the 1990s (Ritter et al., 2017), and little information prior to 1982. It has furthermore been suggested that this data scarcity might lead to a 39% overestimation of the the amplitude of SO decadal CO₂ uptake variability (Gloege et al., 2021).

The weaker SO carbon uptake observed in the 1990s has been attributed to a pos-74 itive trend in the Southern Annular Mode (SAM) (Marshall, 2003; LeQuéré et al., 2007; 75 Lenton & Matear, 2007; Lovenduski et al., 2007, 2008). The SO circulation is mostly driven 76 77 by SH westerly winds, which generate an equatorward Ekman transport and an associated upwelling of carbon-rich deep waters. Changes in the position and strength of the 78 SH westerlies are linked to the dominant mode of atmospheric variability in the south-79 ern hemisphere, the SAM. Positive SAM trends, which are associated with poleward con-80 traction and stronger than average westerly winds, have been observed since 1979, par-81 ticularly during austral summer and autumn (Fogt & Marshall, 2020). 82

Numerical studies have highlighted the role of SH westerlies in modulating the up-83 welling of DIC rich deep water and thus the exchange between atmospheric and oceanic 84 carbon. Stronger SH westerlies enhance the SO upwelling, leading to an oceanic loss of 85 carbon and thus an increase in CO_{2atm} (Toggweiler, 1999; Lauderdale et al., 2013; Mun-86 day et al., 2014; Lauderdale et al., 2017; Menviel et al., 2018). The outgassing of nat-87 ural carbon as a result of stronger SO upwelling could however be partly mitigated by 88 enhanced export production at the surface of the SO (Menviel et al., 2008; Hauck et al., 89 2013). In addition, the impact of latitudinal changes in the position of the SH wester-90 lies on oceanic carbon and CO_{2atm} is less robust, as it might depend on the initial po-91 sition of the SH westerlies and on how the latitudinal change in the SH westerly impact 92 the oceanic circulation (Völker & Köhler, 2013; Lauderdale et al., 2013, 2017). 93

Most of the numerical studies analysing the impact of SH westerly changes men-94 tioned above focused on natural carbon, but given the increase in anthropogenic carbon 95 emissions since 1870, the natural carbon cycle has been perturbed, and the impact of 96 changes in the strength and position of the SH westerly winds on anthropogenic and to-97 tal carbon uptake also needs to be taken into account. A few studies performed with coarse 98 resolution ocean models (Lenton & Matear, 2007; Lovenduski et al., 2007, 2008) showed 99 that positive phases of the SAM lead to an outgassing of natural CO_2 , while enhancing 100 the uptake of anthropogenic CO_2 , thus leading to a reduction in the total CO_2 uptake. 101

While changes in the SAM seem to be the prevailing hypothesis to explain a lower 102 than expected total CO_2 uptake in the 1990s, it was found that changes in heat and fresh-103 water fluxes reduce the impact of these stronger winds (Matear & Lenton, 2008). Landschützer 104 et al. (2015) also suggested that the re-invigoration of the carbon uptake in the SO could 105 not be attributed to the SAM because the ERA-interim reanalysis did not display the 106 associated wind changes, and instead attributed the enhanced carbon uptake to increased 107 solubility in the Pacific sector of the SO due to surface cooling, and a weaker upwelling 108 of DIC-rich waters in the Atlantic and Indian sectors of the SO. McKinley et al. (2020) 109 went one step further and instead suggested that the lower 1990s CO_2 uptake was in-110 stead a response to the slower CO_{2atm} growth rate. 111

There is thus not only uncertainties in the decadal variability but also the processes 112 controlling SO carbon uptake, and there is a need for further studies examining these 113 issues. In addition, there is a need to include the impacts of mesoscale eddy activity. The 114 prevalent mesoscale eddy activity in the SO significantly influences the heat and salt trans-115 port and thus SO circulation. Mesoscale eddies drive a southward transport opposing 116 the Ekman northward transport in the SO, and the response of the ocean circulation to 117 changes in the winds can vary substantial due to these eddies. For example, a doubling 118 of the magnitude of SH westerly winds doubles the simulated circumpolar transport in 119 coarse resolution models that do not resolve eddies, but this doubling does not occur in 120

eddy-resolving simulations (Munday et al., 01 Mar. 2013). Further, (Dufour et al., 2013)
has shown that even though a strengthening and poleward shift of the SH westerlies, representing positive phases of the SAM, leads to stronger Ekman-induced northward natural DIC transport, a third of this is compensated by enhanced southward natural DIC transport through eddies.

Here, we perform a suite of simulations with an eddy-permitting ocean, sea ice, bio-126 geochemical model to fill in the above gaps. Specifically we perform (i) simulations with 127 changes in the strength and latitudinal position of SH westerly winds to quantify the im-128 pact of these changes on the natural, anthropogenic and total carbon budget, and (ii) 129 a simulation with inter annually varying forcing (IAF) over the period 1948-2007 to ex-130 amine the decadal variability in SO carbon fluxes and uptake. The model and simula-131 tions are described in the next section, and results for the idealized simulation and in-132 ter annual forced simulations presented in Sections 3.1 and 3.2 respectively. Discussion 133 and conclusions are in the final paragraph. 134

$_{135}$ 2 Methods

Changes in SO carbon uptake are examined using simulations performed with a 136 mesoscale eddy-permitting global ocean, sea-ice, Nutrient-Phytoplankton-Zooplankton-137 Detritus (NPZD) model (Menviel et al., 2018). The ocean-sea ice model is the MOM5 138 ocean model (Griffies, 2012) coupled to the dynamic/thermodynamic Sea Ice Simulator 139 (SIS), configured with $1/4^{\circ}$ Mercator horizontal resolution, and 50 vertical levels (Spence 140 et al., 2017). This model is coupled to the WOMBAT (Whole Ocean Model with Bio-141 geochemistry and Trophic-dynamic) NPZD model (Kidston et al., 2011; Oke et al., 2013; 142 Law et al., 2017). The physical and biogeochemical parameters are tuned to reduce bias 143 in the ocean state compared to observations, and to reduce the drift in biogeochemical 144 fluxes. The ocean model uses Redi diffusivity ($600 \text{ m}^2/\text{s}$) and Gent McWilliams (GM) 145 skew diffusion ($600 \text{ m}^2/\text{s}$) parameterizations to compensate for unresolved mesoscale pro-146 cesses and to improve the simulated Antarctic Bottom Water (AABW) transport and 147 the 3-D distribution of ocean biogeochemical tracers relative to observations. For instance, 148 dissolved oxygen in SO and alkalinity of bottom waters penetrating into ocean basins. 149 This eddy-permitting ocean model allows us to better represent many key features of the 150 ocean circulation (e.g. boundary currents, bathymetry, and eddies). However, we can-151 not effectively evaluate the importance of eddy compensation in changes of the MOC (or 152 eddy saturation of the ACC), because the model still requires parameterizations (e.g. GM 153 diffusion) to account for the unresolved eddy effects. While the GM component effec-154 tively compensates for the advective MOC transport at steady state, the GM transport 155 does not respond the same as resolved eddies to changes forcing and are unable to ap-156 propriately represent eddy compensation and saturation (Hofmann & Maqueda, 2011; 157 Farneti et al., 2015; Sinha & Abernathy, 2016). 158

WOMBAT includes DIC, alkalinity, oxygen, phosphate and iron, that are linked 159 to the phosphate uptake and remineralisation through a constant Redfield ratio. The bio-160 geochemical parameters are based on those of the ACCESS-ESM1.5 (Ziehn et al., 2020), 161 with modifications of the detritus sinking rate (20 m/day), the background iron concen-162 tration (0.3 μ mol Fe/m³) and the inorganic production fraction (0.0653), which improve 163 the biogeochemical simulation in the $1/4^{\circ}$ ocean model. The air-sea CO₂ exchange is a 164 function of wind speed (Wanninkhof, 1992) and sea ice concentration. Two DIC trac-165 ers are included, a natural DIC and a total DIC, with the difference between the two pro-166 viding an estimate of anthropogenic DIC. The natural DIC exchanges carbon with a con-167 stant pre-industrial atmospheric CO_2 concentration of 284 ppm, whereas the total DIC 168 exchanges carbon with the time evolving, observed pCO_2 , which takes into account the 169 current increase due to anthropogenic emissions. For the total DIC tracer the atmospheric 170 CO_2 concentration increases from 310 ppm at year 1948 to 391.6 ppm at year 2011, with 171 an average rate of increase of 1.6 ppm/yr (Fig. 7a). Note, physical and biogeochemical 172

changes in the ocean simulations do not impact the atmospheric state, and in all simulations pCO_2 for the radiative forcing is the same.

To examine the impact of changes in SH winds on natural and anthropogenic car-175 bon, a suite of simulations is performed (Table 1). The model is initialised with modern-176 day temperature and salinity distributions, and biophysical fields derived from an observation-177 based climatology (Olsen et al., 2016). The model is first spun-up for 700 years with ver-178 sion 2 of the Coordinated Ocean-ice Reference Experiments (CORE) Normal Year Forc-179 ing (NYF) reanalysis data (Griffies et al., 2009), which provides a climatological mean 180 atmospheric state for equilibrating ocean models at 6-hour intervals for 1 year, includ-181 ing synoptic variability. The model uses bulk formulae for air-sea fluxes as described in 182 Griffies et al. (2009). During the 700 years spin up only the natural DIC tracer is ac-183 tive. After this equilibration, the model is run from year 1840 to 2011 with the NYF, 184 and with the total DIC tracer being forced by observed atmospheric CO₂ concentration, 185 to obtain the *control* simulation. The drift in *control* is reasonable, with a DIC drift of 186 -0.0123 mmol/m^3 in the SO, and -0.0194 mmol/m^3 in the deep ocean south of 20°S. There 187 is no significant drift in the air-sea CO_2 flux. 188

Three idealised wind perturbation experiments, in which the SH near surface wind 189 speeds are abruptly modified, are initiated from atmospheric CO_2 year 1970 of the NYF 190 control simulation (Table 1). The wind perturbations are applied in the same manner 191 as described in (Hogg et al., 2017). The zonally uniform and temporally steady pertur-192 bations are applied to the CORE-NYF 6-hourly wind field between $25^{\circ}S$ and $70^{\circ}S$ with 193 smoothing within 5° latitude of the perturbation boundaries. Changes in the surface wind 194 speed impact the windstress, as well as the buoyancy fluxes between the atmosphere and 195 ocean. In the strong simulation the zonal and meridional components of the windstress 196 are increased by $\sim 20\%$ between 32°S and 65°S, whereas they are decreased by $\sim 16\%$ in 197 weak (Fig. 2). In the strong/shift perturbation, the strong forcing is combined with a 198 $\sim 4^{\circ}$ S shift of the SH winds between 32°S and 65°S. The magnitude of the changes in 199 these perturbation simulations is based on late 21^{st} century projections from CMIP5 mod-200 els (Zheng et al., 2013), and the methodology follows Hogg et al. (2017). All perturba-201 tion simulations are integrated for 42 years, with the pCO_2 representing years 1970 to 202 2011. 203

The model setup and wind perturbation experimental design are similar to the one 204 employed in a series of previous ocean circulation studies (Spence et al., 2014; Hogg et 205 al., 2017; Downes et al., 2017; Waugh et al., 2019), except that the previous simulations 206 did not use neutral ocean physics parameterisations. In the simulations presented here, as well as the one described in Menviel et al. (2018), neutral physics parameterisations 208 are used to improve the representation of ocean tracers relative to observations. A brief 209 overview of the natural carbon cycle response to the *strong/shift* experiment is presented 210 in Menviel et al. (2018), and a comparison of the simulated *control* biogeochemical fields 211 against observations is shown in the supplementary material of Menviel et al. (2018). 212

To better constrained the impact of varying westerlies on the oceanic carbon up-213 take over the 2nd half of the 20th century, a more realistic simulation is performed, forced 214 with the time-evolving atmospheric forcing derived from the CORE IAF version 2 (Large 215 & Yeager, 2009) from 1948 to 2007. CORE-IAF provides air-sea fluxes of momentum, 216 heat and freshwater at time intervals ranging from 6 hours to one month. This simula-217 tion is referred to as the IAF simulation. The IAF simulation is initialised from the NYF 218 control simulation at year 1948. Comparison of the IAF and control simulations aims 219 to show the impact of time-varying atmospheric forcing on the oceanic carbon cycle. In 220 previous studies we found that the SH wind trend dominates the modelled Southern Ocean 221 response to the IAF forcing by isolated the historical trends in surface heat, freshwater 222 and momentum fluxes. Certainly, in the future the influence of increasing surface heat-223 ing and freshwater fluxes (including glacial melt water trends which are not part of the 224 IAF forcing) on the Southern Ocean will increase. 225

To better understand the drivers of changes in ocean-atmosphere CO_2 fluxes, changes in natural surface water pCO_2 are decomposed into their natural DIC, alkalinity (ALK) and solubility (sea surface salinity, SSS and sea surface temperature, SST) contributions in the following way (Sarmiento & Gruber, 2006):

$$\Delta p CO_2 = \Delta p CO_{2DIC} + \Delta p CO_{2ALK} + \Delta p CO_{2SST} + \Delta p CO_{2SSS} \tag{1}$$

230

234

237

238

239

For DIC, ALK and SSS, ΔpCO_2 is:

$$\Delta p C O_{2X} = \Delta X * \gamma_X * \overline{p} C O_2 / \overline{X}$$
⁽²⁾

where \overline{X} represents the surface pCO₂, and mean DIC, ALK or SSS value in *control*. γ_{DIC} is the high-latitude Revelle factor and is equal to 13.3. γ_{ALK} is the high-latitude sensitivity factor equal to -12.6 and γ_{SSS} is equal to 1.

The SST contribution is derived from

$$\Delta p C O_{2SST} = e^{(\Delta SST * \gamma_{SST})} * \overline{p} C O_2 - \overline{p} C O_2 \tag{3}$$

where γ_{SST} is equal to $0.0423/^{\circ}$.

236 3 Results

3.1 Idealized experiments

3.1.1 Changes in SO CO₂ fluxes as a response to varying SH westerlies

The SO tracers, mixed layer depth and circulation features in the NYF control sim-240 ulation are in good agreement with observations. For example, the transport through 241 Drake Passage is 135 Sv (Fig. S1) and the lower cell of the overturning circulation (shown 242 in blue at density ≥ 1036.8 kg/m³, referenced at 2000m depth) is relatively well repre-243 sented with a transport of 25.5 Sv in *control* (Fig. 1a). The values, as well as horizon-244 tal and vertical ocean gradients of the simulated biogeochemical fields in *control* are in 245 overall agreement with observations (Menviel et al., 2018). The DIC and alkalinity val-246 ues in the intermediate North Atlantic and SO are however slightly underestimated, while 247 they are overestimated in the intermediate North Pacific. 248

In the *control* NYF run at years 2007-2011, the SO is a net sink of contemporary 249 (i.e. total) carbon (Fig. 2f, black), taking up 1.73 GtC/yr south of 35°S and with the 250 maximum uptake occurring between 35° S and 50° S. Due to the upwelling of DIC-rich 251 deep waters occurring south of \sim 55°S, the contemporary carbon uptake is small there. 252 In fact, if the atmospheric CO_2 concentration was at pre-industrial levels (i.e. 284 ppm), 253 there would be an outgassing of natural CO_2 south of $\sim 55^{\circ}S$, in the order of 0.24 GtC/yr (Figs. 2d, 3b). Through Ekman transport, mixed layer waters in SO move equatorward, 255 and nutrients and DIC are consumed by phytoplankton, leading to a natural CO_2 up-256 take between 52°S and 35°S, latitudes at which the Antarctic Intermediate Waters (AAIW) 257 and the sub-Antarctic mode waters (SAMW) are formed.

Changes in the strength and location of the SH westerlies (Table 1) impact both 259 the natural and anthropogenic air-sea CO_2 fluxes (Fig. 2). The stronger upwelling in ex-260 periment strong leads to a higher outgassing of natural carbon south of 49° S (from 0.21 261 GtC/yr in *control* to 0.77 GtC/yr in *strong*), and reduces the uptake of natural carbon 262 between $42^{\circ}S$ and $49^{\circ}S$ (from -0.36 to -0.18 GtC/yr, Figs. 2d and 3e,f). While the up-263 take of anthropogenic carbon is also higher south of 50° S, the resultant contemporary 264 carbon uptake over the SO is reduced by 21% in strong compared to control as the changes 265 in natural CO_2 flux dominates. 266

The reverse is simulated when the westerlies are weaker, with enhanced natural carbon uptake but reduced anthropogenic carbon uptake, leading to a 9% increase in contemporary carbon uptake over the SO in *weak* compared to *control* (Figs. 2 and 3c,d).

If the winds are also shifted poleward (strong/shift), there is both a stronger outgassing of natural carbon and enhanced anthropogenic carbon uptake south of 50°S compared to *control*. If compared to the *strong* experiment, then there is a stronger outgassing of natural CO₂ south of 57°S, however, the ougassing is slightly reduced between 48°S and 58°S and the uptake stronger between 40°S and 48°S. As a result, the overall impact on the contemporary carbon uptake is similar to *strong* with a 21% lower contemporary carbon uptake over the SO compared to *control*.

The results of the above analysis are summarised in Fig. 4, which shows a close to linear relation for each CO_2 flux with windstress magnitude. As the windstress increases over the SO, the contemporary CO_2 uptake decreases by 6 GtC/yr per N/m². As the windstress increases the natural CO_2 outgassing south of 50°S and the SO switches from being a net sink to a net source of natural CO_2 (11.8 GtC/yr per N/m²). This is partly compensated by enhanced anthropogenic CO_2 uptake with windstress (-6.2 GtC/yr per N/m²).

284

3.1.2 Attribution of surface pCO_2 changes

To understand the changes in CO_2 fluxes resulting from the varying SO windstress, 285 an attribution of surface pCO₂ changes to natural DIC, ALK, SST and SSS is performed 286 on the idealised experiments (Fig. 3i-k). This analysis shows that the changes in nat-287 288 ural DIC and ALK drive the changes in natural CO_2 flux. As the SO upwelling strengthens in *strong*, it increases the DIC and ALK concentration at the surface of the SO. A 289 greater DIC concentration increases surface pCO_2 by about 24 ppm between $45^{\circ}S$ and 290 60° S, however greater ALK decreases pCO₂ by about 12 ppm in the same region (Fig. 291 3j). The reverse is simulated when the SO upwelling is reduced in *weak*, with a surface 292 pCO_2 decrease due to the lower DIC, and a slight pCO_2 increase due to the associated 293 lower ALK (Fig. 3i). While changes in surface salinity are negligible, due to surface fluxes 294 being kept constant, SST changes provide a small negative feedback. There is a small 295 global cooling (-0.4°C) at the surface of the SO in experiment strong, with up to $-2^{\circ}C$ 296 locally in the meanders off New Zealand and South Africa, thus leading to a ~ 3.5 ppm 297 lower surface pCO_2 between 35°S and 55°S. The reverse is observed in experiment weak 298 with a 0.3° C SO warming, with up to 1.8° C locally (Fig. 3i). These temperature changes 299 are mostly due to the influence of the winds on SO isopycnals. Stronger westerlies lead 300 to a steepening of the isopycnals, and thus a slight equatorward shift of the front. 301

Similarly to strong, the strong/shift experiment displays relatively large ($\sim 20-24$ 302 ppm) positive surface pCO_2 anomalies mostly due to increased DIC (Fig. 3k). These anoma-303 lies are however displaced $\sim 5^{\circ}$ poleward compared to strong. This poleward shift also 304 leads to larger surface ALK anomalies, thus providing a stronger compensating effect. 305 However, the largest surface pCO_2 anomalies are due to DIC increase near the Antarc-306 tic coast resulting from enhanced deep-ocean convection. This is associated with a sur-307 face ocean warming, which provides a small positive contribution (2 ppm) to the sur-308 309 face pCO_2 increase (Fig. 3k).

The changes in minimum and maximum sea-ice cover between experiments *strong*, *weak* and *control* are very small, and therefore do not contribute significantly to the observed changes in CO_2 flux (Fig. 3). However, the poleward shifted westerlies in experiment *strong/shift* lead to the opening of a polynya between 60°S and 70°S in the Weddell Sea (not shown here) (Hogg et al., 2017; Menviel et al., 2018). This polynya induces a strong deep-ocean convection event in late winter/spring, which leads to a natural CO_2 outgassing.

317 3.1.3 Changes in oceanic DIC

As discussed above, the outgassing of natural carbon in the SO increases with wind-318 stress as the upwelling of DIC-rich waters is enhanced (Fig. 4). A strengthening of the 319 SH westerlies enhances both the lower and upper overturning cells, with stronger AAIW 320 and AABW transport by up to 8 and 10 Sv, respectively in strong compared to control 321 (Fig. 1). The natural DIC concentration within AABW ($\sigma > 1027.75 \text{ kg/m}^3$) is thus lower 322 in strong (-2.24 mmol/m³) and higher in weak ($+0.58 \text{ mmol/m}^3$) compared to control 323 (Figs. 5a-c and 6a, black). A lower natural DIC concentration with a strengthening of 324 the SH westerlies is also seen within AAIW (1027.4 > σ >1027 kg/m³), with a 4.7 mmol/m³ 325 decrease in *strong*, and 4.0 mmol/ m^3 increase in *weak*. 326

The strong ventilation of abyssal and deep waters in *strong/shift* lowers the nat-327 ural DIC concentration by 8.5 mmol/m^3 within AABW. On the other hand, the DIC 328 concentration increases north of 40° S in the upper 2000 m compared to strong (Fig. 5c). 329 Within SAMW (1027 > σ >1026.7 kg/m³), the natural DIC increases in *strong/shift* 330 by 7.5 mmol/ m^3 , whereas it decreases by 0.6 mmol/ m^3 in strong (Figs. 5c and 6c). This 331 DIC increase is also consistent with an increase in the age of the watermass, previously 332 identified in Waugh et al. (2019), which could be due to a decrease in SAMW subduc-333 tion (Downes et al., 2017). 334

These natural DIC changes can be decomposed into their organic, carbonate and 335 preformed components (Text S1) to better assess the processes involved. The SH west-336 erly strengthening in strong leads to a $\sim 10 \text{ mmol/m}^3$ decrease in regenerated DIC ev-337 erywhere in SO (Fig. S2), which is partly compensated by an increase in preformed DIC. 338 The carbonate component leads to positive anomalies in the upper 1000m, and partic-339 ularly between 40° S and 60° S. This is a result of the 8 to 9% increase in primary and 340 export production in SO and associated enhanced carbonate dissolution at intermedi-341 ate depth of the SO. A similar picture emerges in *strong/shift*, but with an amplitude 342 twice as large. This weaker biological pump efficiency in strong and strong/shift results 343 from the lower residence time of the waters in the SO, which is primarily a function of 344 the stronger AABW formation and transport and SO upwelling rate. 345

The strength of the winds also impacts the distribution of anthropogenic DIC with the pattern of change being similar to that of natural DIC except of opposite sign. A windstress increase results in higher anthropogenic DIC concentration everywhere in the SO (Figs. 5e and 6 blue). Specifically, the anthropogenic DIC concentration (for years 2007-2011) in *strong* is 0.93 mmol/m³, 1.25 mmol/m³ and 0.7 mmol/m³ higher in AABW, AAIW and SAMW, respectively than in *control*. Similarly, the anthropogenic DIC concentration is lower in *weak* than in *control* with a large change (~1.9 mmol/m³) in AAIW and SAMW, but only a slight decrease within AABW.

The anthropogenic DIC concentration in AABW, AAIW, and SAMW is much higher in *strong/shift* than *control*, with increases of 2.71 mmol/m³, 2.05 mmol/m³, and 3.2 mmol/m³, respectively (Figs. 5f and 6, blue star). This larger anthropogenic carbon uptake is related to the polynya opening and associated strengthened deep-ocean convection in *strong/shift*.

Overall, natural DIC changes dominate the total DIC concentration change within 358 359 all watermasses and in all experiments (Fig. 5g-i), with a decrease in total DIC as the wind increases within AABW and AAIW (Fig. 6a,b). The changes within SAMW are 360 much smaller, and are dominated by the *strong/shift* experiment, which records an in-361 crease in natural and total DIC concentration due to the poleward shift of the winds. 362 The changes in natural DIC dominate the changes in total DIC because the vertical ad-363 vection of carbon into the mixed layer through Ekman divergence in the SO dominates the carbon budget (Fig. S3). Vertical DIC advection into the upper 200m due to Ek-365 man divergence south of 50° S is also about twice as large as subduction north of 50° S 366 in strong, with the reverse being true for weak. Changes in primary production, which 367

provide an upper estimate of changes in export production, provide a negative feedback north of 50°S, but are two order of magnitude lower than changes in vertical advection (Fig. S3), in agreement with previous studies (Hauck et al., 2013).

371 **3.2 IAF experiment**

372

3.2.1 SO CO_2 fluxes

We now consider the changes in air-sea CO_2 fluxes in the *IAF* simulation, in which 373 the SH westerlies increase from $\sim 0.09 \text{ N/m}^2$ in 1948-1952 to $\sim 0.13 \text{ N/m}^2$ in 2003-2007 374 (Fig. 7b, Table 1). While the westerlies also shift poleward by $\sim 3.5^{\circ}$ in that experiment, 375 the poleward shift occurs between 1948 and 1974 (Fig. 7c). After that, the mean lat-376 itudinal position of the maximum SO windstress stays relatively constant at \sim 52°S. *IAF* 377 simulates strong decadal-scale variability in natural CO_2 and thus contemporary CO_2 378 uptake (orange curve in Fig 7g). A 0.01 GtC/yr^2 increase in contemporary CO₂ uptake 379 between 1948 and 1975 is also simulated. However, the uptake stays relatively constant 380 between 1980 and 2007, at a mean value of 1.36 GtC/yr. While the *IAF* and *control* dis-381 play similar trends between 1970 and 1980, the contemporary CO_2 uptake in *control* keeps 382 on increasing linearly between 1992 and 2007 (black line in Fig 7g) in contrast to IAF. 383

The simulated contemporary CO_2 fluxes in *IAF* can be compared to observational 384 estimates derived from the self-organizing map-feed-forward neural network (SOM-FFN) 385 dataset (Landschützer et al., 2016). As the SOM-FFN is available for the period 1982-386 2015, we compare simulation and observational estimate for the overlapping period of 1982-2007 (grey line in Fig 7g). There is poor agreement in between the variations in 388 contemporary air-sea CO_2 fluxes in *IAF* and the fluxes inferred from SOM-FFN (Landschützer 389 et al., 2016) between 1982 and 1990, however the *IAF* simulation and observations are 390 in close agreement between 1991 and 2007 (Fig. 1e, R=0.41 between 1982 and 2007 and 391 R=0.72 between 1991 and 2007). Both simulation and observations suggest a maximum 392 oceanic CO_2 uptake in the early 1990s and late 2000s, and a minimum uptake between 393 1998 and 2001. This reduced uptake between 1998 and 2001 is however under-estimated 394 in our simulation. In addition, the mean simulated CO_2 uptake is overestimated by ~ 0.5 395 GtC/yr. 396

This contemporary CO_2 flux can be decomposed into anthropogenic and natural 397 contributions. The SO anthropogenic CO_2 uptake increases from 0.6 to 1.2 GtC/yr (Fig 398 7f), and becomes larger than *control* after 1992. However, the uptake of natural CO_2 300 south of 35° S decreases from 0.68 to 0.24 GtC/yr between 1970 and 2007. Since the early 1980s the simulated natural CO_2 uptake decreases at a rate of 0.016 GtC/yr². The stag-401 nation of the contemporary CO_2 uptake since ~1980 is thus likely due to changes in the 402 atmospheric forcing, and in particular the increase in the SH westerlies. The strength 403 of the SH westerlies varies significantly on an interannual and decadal timescale in IAF, but both the natural and contemporary CO_2 fluxes are well correlated to the wind changes 405 (Fig. 7), with stronger SH winds linked to reduced uptake of natural CO_2 (R=-0.83). 406 As in the idealised experiments, stronger and poleward shifted westerlies strengthen AABW 407 formation and transport (Fig. 7d). Changes in natural carbon uptake are strongly cor-408 related to changes in AABW (R=-0.91), with stronger AABW linked to higher natural 409 410 $\rm CO_2$ outgassing south of 50°S. The maximum mixed layer depth in the Weddell Sea is deeper over years 2003-2007 than 1948-1952 (Fig. S4), consistent with the stronger AABW 411 transport. 412

The pattern of simulated and observed surface contemporary pCO₂ trends in the 1990s (taken here are 1992 to 2001) and the 2000s (taken here as 2001 to 2006) are shown in Figure 8. Both simulation and observation display a \sim 50% larger contemporary pCO₂ trend in the 1990s than 2000s north of 60°S, while the CO_{2atm} rate of increase was 1.6 ppm/yr in 1990s compared to 2.1 in 2000s, indicating a re-invigoration of the SO CO₂ sink.

In agreement with observations, the IAF simulates the maximum pCO₂ trend in 419 the South Pacific in the 1990s (Fig. 8a,e). A maximum trend in the Pacific between 60° S 420 and 50° S is also seen in the simulated natural pCO₂ trend (Fig. 8g). The decomposi-421 tion into the non-thermal (DIC+ALK) and thermal trends shows that this is due to the 422 non-thermal trend, with an increase in contemporary DIC, principally driven by a large 423 increase in natural DIC (Figs. 8c,i and S6c). On the other hand, a cooling in that re-424 gion tends to decrease surface pCO_2 (Fig. 8k). The simulation also suggests a large non-425 thermal contribution in the Weddell and Ross Seas. These surface DIC increases cor-426 respond to areas with increased mixed layer depth (Fig. S4). The amplitude of the mixed 427 layer depth changes in the Weddell and Ross Seas indicate increased convection, which 428 is also consistent with the simulated increase in AABW (Fig. 7c). The decrease in sim-429 ulated contemporary pCO_2 trend in the 2000s is associated with a decrease in natural 430 pCO_2 trend (Fig. 8b,h). Similar to observations (Fig. 8f), negative trends occur close 431 to Antarctica and north of 40° S. 432

The IAF simulation and observations however tend to disagree south of 60° S, with 433 IAF contemporary pCO₂ not increasing enough in the 1990s and not decreasing enough 434 in the 2000s (Figs. 8 and S6a). Landschützer et al. (2015) suggest that these changes 435 in contemporary pCO_2 south of 60°S mostly arise from the non-thermal trends. In agree-436 ment with observations, the *IAF* simulation suggest little changes in the thermal com-437 ponent south of 60° S, indicating that the changes in the non-thermal components are 438 underestimated. An increase in contemporary pCO_2 similar to the one inferred in the 439 SOM-FFN is however simulated in strong/shift (Fig. S6b, blue), indicating that either 440 latitudinal changes in the SH westerlies over the 1990s and 2000s are underestimated in 441 IAF, or that changes in surface salinity are underestimated. 442

⁴⁴³ Over the full period of the IAF simulation, the simulated anthropogenic CO₂ fluxes ⁴⁴⁴ are negatively correlated with SH westerlies (i.e. more carbon uptake as winds strengthen) ⁴⁴⁵ everywhere in the SO, and particularly between 60°S and 40°S (Fig. 9b). Both contem-⁴⁴⁶ porary and natural CO₂ fluxes are however positively correlated to changes in the winds ⁴⁴⁷ south of 50°S, implying a tendency towards CO₂ outgassing with a strengthening of the ⁴⁴⁸ winds (Fig. 9a,c).

The natural and contemporary CO_2 fluxes however display some zonal differences 449 across the SO. While natural and contemporary CO_2 fluxes are positively correlated with 450 the strength of the SH westerlies in the Atlantic and Indian sectors of the SO, the con-451 trary is simulated in the Pacific (Figs. 9). This asymmetry is mostly due to changes in 452 natural DIC (Fig. S5). This lower surface DIC concentration in the Pacific sector is also associated with a shoaling of the mixed layer depth, whereas the mixed layer depth in-454 creases significantly in the Atlantic sector. The negative correlation between natural CO_2 455 flux and SH westerly wind strength in the Pacific sector of SO may be related to a deep-456 ening and/or westward shift of the Amundsen Sea low over the period 1948-2007. A deepening of the Amundsen Sea low has been observed since 1979, and westward shift has 458 been observed for the period 1994-2008 (Turner et al., 2013). This cyclonic circulation 459 over the eastern Pacific sector could explain the relatively higher SST and lower natu-460 ral surface DIC concentration over that region. 461

The mixed layer depth increase in the Atlantic sector indicates that there is also enhanced deep-ocean convection in *IAF*. The amplitude of the mixed layer depth increase is however lower in *IAF* compared to *strong/shift* due to weaker and a more equatorward position of the SH westerlies at years 2003-2007 in *IAF*.

466 3.2.2 Oceanic DIC distribution

We now examine how the distribution of DIC within the oceans has changed in the *IAF* simulation. Observations-based estimates of changes in anthropogenic DIC concentration are available for year 2007 compared to 1994 (Gruber, Clement, et al., 2019) (Fig.

S7b), and are compared to IAF for the same years (Fig. S7a). In IAF the ocean absorbs 470 74.8 Gt of anthropogenic carbon between 1970 and 2007. In the SO, anthropogenic DIC 471 concentration is highest in the upper 1000 m, being primarily entrained in AAIW, and 472 SAMW. A minor part of anthropogenic DIC is also entrained in AABW. Simulated and 473 observation-based estimates of anthropogenic DIC concentration anomalies over the pe-474 riod are within 2 mmol $/m^3$ of each other, with the simulation overestimating the anthro-475 pogenic DIC anomalies within AAIW, which could indicate that the simulated AAIW 476 formation rate is slightly overestimated. The observed anthropogenic DIC concentration 477 below 3000 m depth are associated with high uncertainties, thus preventing a model-data 478 comparison. 479

Over the course of the IAF simulation (between 1948 and 2007), there is a 30 mmol/m³ 480 increase in anthropogenic DIC within SAMW, a 20 mmol/m³ increase within AAIW and 481 a 2 mmol/m³ increase within AABW (Fig. 10d-f). There is also a 1 mmol/m³ increase 482 in anthropogenic DIC spreading in the abyss of the southern Pacific Ocean, associated 483 with AABW. Natural DIC also increases within AAIW (2 mmol/m³) and SAMW (1 mmol/m³, 484 Figs. 6, squares and 10a-c), and spread into the Pacific basin. On the other hand, nat-485 ural DIC decreases below 1000 m depth south of 60°S in both the Atlantic and Pacific 486 sector of SO. These negative DIC anomalies spread in the abyss in the Pacific basin. A 487 $\sim 6 \text{ mmol/m}^3$ decrease in natural DIC is simulated in the deep Atlantic basin, which most 488 likely results from changes in North Atlantic Deep Waters (NADW). As a result, the total DIC concentration increases by only 1 mmol/m³ within AABW, by 1.5 mmol/m³ be-490 low 1500 m depth in the SO, while the total DIC concentration increases by 19 mmol/m^3 491 in AAIW and 29 mmol/m³ within SAMW (Figs. 6, squares and 10g-i). The different pat-492 terns in the Atlantic and Pacific basins reflect the different watermasses in these basins with an incursion of NADW in the south Atlantic, and a clear AABW propagation in 494 the abyssal Pacific. 495

This pattern of lower natural DIC below 1500 m depth in the SO and within AABW, 496 and higher natural DIC within AAIW and SAMW is similar to, while of lower magni-497 tude, than the one simulated in *strong/shift* (Figs. 6 and 10). The responses of the up-498 per and lower overturning cells to a poleward intensification of the SH westerlies as sim-499 ulated in *IAF* are consistent with the response obtained in CORE-II and CMIP5 mod-500 els (Downes et al., 2018), and highlight stronger AABW (Fig. 7), with negative natu-501 ral DIC anomalies spreading into the abyssal Pacific (Fig. 10), little changes within AAIW 502 but reduced subduction of SAMW. 503

⁵⁰⁴ 4 Discussion and conclusions

We have used an eddy-permitting global ocean, sea-ice, carbon cycle model to quantify the impact of varying SH westerlies on carbon uptake and oceanic DIC concentrations. These experiments show that as SH westerly winds strengthen the capability of the SO to act as a sink of contemporary carbon reduces. While a poleward shift of the westerlies impact the latitudinal distribution of CO_2 fluxes, the overall effect on SO CO_2 fluxes of stronger westerlies with (strong/shift) or without (strong) a poleward shift are similar.

As the westerly winds strengthen, the SO upwelling is enhanced, thus increasing 512 the DIC concentration in the mixed layer and reducing the DIC concentration at depth. 513 These changes in SH westerlies are associated with changes in the lower and upper over-514 turning cells, with an increase in both cells as the winds strengthen, while changes in the 515 latitudinal position of the westerlies can lead to asymmetrical changes in the cells. Both 516 a strengthening and poleward shift of the winds lead to a strengthening of AABW for-517 mation and subsequent transport at depth, which reduces both the natural and total DIC 518 content within AABW. This is also associated with a 10% strengthening of the ACC, 519 thus enhancing mixing within CDW. As a result, the natural and total DIC decrease within 520

the SO below 500 m depth, while leading to an increase in surface DIC. This AABW strength-521 ening thus contributes to increased natural CO_2 outgassing (Menviel et al., 2014, 2015). 522 As the SH westerly winds increase, the total DIC concentration decreases within AABW, 523 CDW, and AAIW, but increases within SAMW. Due to a slowdown of the upper cell, 524 a poleward shift of the winds further increases the natural and total DIC concentration 525 within SAMW. However, given that this water mass is shallow and thus upwells back 526 to the surface rapidly, it does not provide an efficient way to increase the oceanic car-527 bon reservoir. 528

529 An additional simulation forced with the interannually varying atmospheric forcing (IAF) between 1948 and 2007 provides estimates of SO changes in contemporary, nat-530 ural and anthropogenic CO_2 fluxes. Our *IAF* simulation displays significant decadal scale 531 variability in total CO_2 fluxes with an amplitude of ~0.2 GtC/yr since 1948 thus sup-532 porting previous inferences of decadal scale changes in SO CO₂ fluxes (Li & Ilyina, 2018; 533 Lovenduski et al., 2008; Gruber, Landschützer, & Lovenduski, 2019). The simulated decadal 534 scale changes in total CO_2 fluxes are due to changes in natural CO_2 fluxes primarily aris-535 ing from changes in the magnitude of the SH westerlies, but also due to changes in lat-536 itudinal position of the SH winds. Minimums in total CO₂ uptake arise from a strength-537 ening of the SH winds, while maximum uptakes result from an equatorward shift of the 538 winds. 539

The mean natural CO_2 flux is relatively constant between 1948 and 1972, while the 540 anthropogenic CO_2 uptake increases, thus leading to an increase in contemporary CO_2 541 uptake of $\sim 0.5 \text{ GtC/yr}$. From 1972 to 2007 the mean natural CO₂ uptake decreases, and is close to 0 in the early 2000s, due to the strengthening of the SH westerlies and asso-543 ciated enhanced AABW transport. The increase in natural CO_2 outgassing south of 50°S 544 is however compensated by enhanced anthropogenic carbon uptake. The net effect is a 545 stagnation of the contemporary CO_2 uptake in the SO since 1980: as pCO_2 increased 546 between 1980 and 2007 due to anthropogenic emissions, the total oceanic carbon uptake 547 should have also increased, instead it stayed constant. The timing and magnitude of the 548 stagnation in total oceanic carbon uptake in the SO from ~ 1981 to 2007 is in agreement 549 with observational estimates (Lovenduski et al., 2008; Landschützer et al., 2015; Gru-550 ber, Landschützer, & Lovenduski, 2019) and is due to changes in the westerlies. In agree-551 ment with previous studies (LeQuéré et al., 2007; Lovenduski et al., 2008; Matear & Lenton, 552 2008), our results suggest that the slow down of the ocean CO_2 uptake in the 1990s was 553 not due to a lower atmospheric CO_2 growth rate (McKinley et al., 2020), but instead 554 was due to a positive phase of the SAM. 555

Gruber, Landschützer, and Lovenduski (2019) suggested that the anthropogenic 556 DIC concentration was lower than expected in the intermediate and mode waters of the 557 SO between 1994 and 2007. Within our modelling framework stronger and poleward 558 shifted SH westerlies in 1990s would have led to positive anthropogenic DIC anomalies 559 in SO watermasses south of 35° S (Fig. 6). Only weaker SH westerlies, or a very large 560 $(\geq 5^{\circ})$ poleward shift of the SH westerlies could reduce the anthropogenic DIC concen-561 tration within AAIW and SAMW. Therefore, in agreement with previous studies (Keppler 562 & Landschützer, 2019; Gruber, Landschützer, & Lovenduski, 2019), our modelling work 563 confirm that these observed anthropogenic DIC anomalies are unlikely due to a change 564 565 in the SH winds.

If SH westerly winds continue to strengthen, as projected under RCP8.5/SSP5-85 566 scenarios (Grose et al., 2020), our experiments indicate there would be an increase in an-567 thropogenic carbon uptake, but there would also be a greater loss of natural carbon. Fu-568 ture changes in SO carbon uptake will thus result from a fine balance between natural 569 carbon release and anthropogenic carbon uptake, which will itself depend on changes in 570 SH westerlies and SO stratification. In addition, a poleward intensification of the west-571 erlies could also enhance the probability of polynya formation and associated increase 572 in deep-ocean convection. In the 1970's a polynya formed on the Maud Rise, serving as 573

⁵⁷⁴ a precursor to a large polynya in the Weddell Sea (Carsey, 1980). Since then, only in 2017

was another polynya observed on the Maud Rise (Swart et al., 2018), but it did not in-

duce a Weddell Sea polynya due to the relatively low surface salinity at the surface of

the Weddell Sea (Cheon & Gordon, 2019). Our idealised *strong/shift* experiment sug-

gests that enhanced deep-ocean convection in the SO could lead to a transient, decadal

 $_{579}$ CO₂ outgassing of up to 1 GtC/yr, primarily through a loss of natural DIC from increased

580 AABW formation.

581 Acknowledgments

⁵⁸² This project was supported by the Australian Research Council. L. Menviel, and P. Spence

acknowledge funding from the Australian Research Council grants FT180100606 and FT190100413.

584 Experiments were performed on Raijin at NCI with support from the National Compu-

tational Merit Allocations Scheme (NCMAS).

Data availability Results of the modelling experiments have been submitted to Research Data Australia: https://doi.org/10.26190/5f31f0318a5c8

588 References

589	Carsey, F. (1980). Microwave Observation of the Weddell Polynya. Monthly weather
590	review, 108, 2032-2044.
591	Cheon, W., & Gordon, A. (2019). Open-ocean polynyas and deep convection in the
592	Southern Ocean. Scientific Reports, 9. doi: 10.1038/s41598-019-43466-2
593	Downes, S., C., L., Brook, J. P., & P., S. (2017). Regional Impacts of the Westerly
594	Winds on Southern Ocean Mode and Intermediate Water Subduction. Journal
595	of Physical Oceanography, 47(10), 2521 - 2530. doi: 10.1175/JPO-D-17-0106
596	.1
597	Downes, S., Spence, P., & Hogg, A. (2018). Understanding variability of the South-
598	ern Ocean overturning circulation in CORE-II models. Ocean Modelling, 123,
599	98 - 109. Retrieved from http://www.sciencedirect.com/science/article/
600	pii/S1463500318300234 doi: https://doi.org/10.1016/j.ocemod.2018.01.005
601	Dufour, C. O., Sommer, J. L., Gehlen, M., Orr, J. C., Molines, JM., Simeon,
602	J., & Barnier, B. (2013). Eddy compensation and controls of the en-
603	hanced sea-to-air CO2 flux during positive phases of the Southern Annu-
604	lar Mode. Global Biogeochemical Cycles, 27(3), 950-961. Retrieved from
605	https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/gbc.20090
606	doi: https://doi.org/10.1002/gbc.20090
607	Farneti, R., Downes, S., Griffies, S., Marsland, S., Behrens, E., Bentsen, M.,
608	Yeager, S. (2015). An assessment of Antarctic Circumpolar Current and
609	Southern Ocean meridional overturning circulation during 1958-2007 in a suite
610	of interannual CORE-II simulations. Ocean Model., 93, 84-120.
611	Fogt, R. L., & Marshall, G. J. (2020). The Southern Annular Mode: Variability,
612	trends, and climate impacts across the Southern Hemisphere. WIREs Climate
613	Change, 11(4), e652. Retrieved from https://onlinelibrary.wiley.com/
614	doi/abs/10.1002/wcc.652 doi: https://doi.org/10.1002/wcc.652
615	Gloege, L., McKinley, G. A., Landschtzer, P., Fay, A. R., Frlicher, T. L., Fyfe,
616	J. C., Takano, Y. (2021). Quantifying errors in observationally based
617	estimates of ocean carbon sink variability. Global Biogeochemical Cycles,
618	35(4), e2020GB006788. Retrieved from https://agupubs.onlinelibrary
619	.wiley.com/doi/abs/10.1029/2020GB006788 doi: https://doi.org/10.1029/
620	2020GB006788
621	Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Russell, J. L., Talley,
622	L. D., Sarmiento, J. L. (2018). Autonomous Biogeochemical Floats Detect
623	Significant Carbon Dioxide Outgassing in the High-Latitude Southern Ocean.
624	Geophysical Research Letters, 45(17), 9049-9057. Retrieved from https://
625	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078013 doi:
626	https://doi.org/10.1029/2018GL078013
627	Griffies, S. (2012). Elements of the modular ocean model (mom): 2012 release (gfdl
628	ocean group technical report no. 7) (Tech. Rep.). NOAA/Geophysical Fluid
629	Dynamics Laboratory, Princeton, USA.
630	Griffies, S., Biastoch, A., Boning, C., Bryan, F., Danabasoglu, G., Chassignet, E.,
631	Yin, J. (2009). Coordinated Ocean-ice Reference Experiments (COREs).
632	Ocean Model., 26, 1-46.
633	Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A. J., Bador, M., Boschat, G.,
634	Power, S. (2020). Insights From CMIP6 for Australia's Future Cli-
635	mate. Earth's Future, 8(5), e2019EF001469. Retrieved from https://
636	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EF001469 doi:
637	10.1029/2019EF001469
638	Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema,
639	M., Wanninkhof, R. (2019). The oceanic sink for anthropogenic
640	CO2 from 1994 to 2007. Science, 363(6432), 1193–1199. Retrieved
641	from http://science.sciencemag.org/content/363/6432/1193 doi:
642	10.1126/science.aau5153

643	Gruber, N., Landschützer, P., & Lovenduski, N. (2019). The variable Southern
644	Ocean carbon sink. Annual Review of Marine Science, 11, 159-186.
645	Hauck, J., Vlker, C., Wang, T., Hoppema, M., Losch, M., & Wolf-Gladrow, D. A.
646	(2013). Seasonally different carbon flux changes in the southern ocean
647	inresponse to the southern annular mode. Global Biogeochemical Cycles,
648	27(4), 1236-1245. Retrieved from https://agupubs.onlinelibrary.wiley
649	.com/doi/abs/10.1002/2013GB004600 doi: https://doi.org/10.1002/
650	2013GB004600
651	Hofmann, M., & Maqueda, M. M. (2011). The response of Southern Ocean eddies to
652	increased midlatitude westerlies: A non-eddy resolving model study. <i>Geophys.</i>
653	<i>Res. Lett.</i> , 38, doi:10.1029/2010GL045972.
654	Hogg, A., Spence, P., Saenko, O., & Downes, S. (2017). The Energetics of Southern
655	Ocean Upwelling. J. Phys. Oceanogr., 47, 135-153.
656	Joos, F., & Spahni, R. (2008). Rates of change in natural and anthropogenic radia-
657	tive forcing over the past 20,000 years. Proceedings of the National Academy
658	of Sciences, 105(5), 1425–1430. Retrieved from https://www.pnas.org/
659	content/105/5/1425 doi: 10.1073/pnas.0707386105 Keppler, L., & Landschützer, P. (2019). Regional Wind Variability Modulates the
660	Southern Ocean Carbon Sink. Sci. Rep., 7384. doi: 10.1038/s41598-019-43826
661	
662	-y Kidston, M., Matear, R., & Baird, M. (2011). Parameter optimisation of a marine
663 664	ecosystem model at two contrasting stations in the Sub-Antarctic Zone. Deep-
665	Sea Research II, 58, 2301-2315.
666	Landschützer, P., Gruber, N., & Bakker, D. C. E. (2016). Decadal variations and
667	trends of the global ocean carbon sink. <i>Global Biogeochemical Cycles</i> , 30. doi:
668	10.1002/2015GB005359
669	Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker, D. C. E.,
670	van Heuven, S., Wanninkhof, R. (2015). The reinvigoration of the
671	Southern Ocean carbon sink. Science, $349(6253)$, $1221-1224$. Retrieved
672	from http://science.sciencemag.org/content/349/6253/1221 doi:
673	10.1126/science.aab2620
674	Large, W., & Yeager, S. (2009). The global climatology of an interannually varying
675	air-sea flux data set. Clim. Dyn., 33, 341-364.
676	Lauderdale, J. M., Garabato, A. C. N., Oliver, K. I. C., Follows, M. J., & Williams,
677	R. G. (2013). Wind-driven changes in Southern Ocean residual circulation,
678	ocean carbon reservoirs and atmospheric CO_2 . Climate Dynamics, $41(7)$,
679	2145-2164. doi: $10.1007/s00382-012-1650-3$
680	Lauderdale, J. M., Williams, R. G., Munday, D. R., & Marshall, D. P. (2017,
681	Mar 01). The impact of Southern Ocean residual upwelling on atmospheric
682	CO2 on centennial and millennial timescales. Climate Dynamics, $48(5)$, 1611–
683	1631. Retrieved from https://doi.org/10.1007/s00382-016-3163-y doi:
684	10.1007/s00382-016-3163-y
685	Law, R. M., Ziehn, T., Matear, R. J., Lenton, A., Chamberlain, M. A., Stevens,
686	L. E., Vohralik, P. F. (2017). The carbon cycle in the Australian Commu-
687	nity Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model
688	description and pre-industrial simulation. Geoscientific Model Development,
689	10, 2567-2590. doi: 10.5194/gmd-10-2567-2017
690	Lenton, A., & Matear, R. (2007). Role of the Southern Annular Mode (SAM)
691	in Southern Ocean CO_2 uptake. Global Biogeochemical Cycles, 21,
692	doi:10.1029/2006GB002714.
693	Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning,
694	A. C., Zhu, D. (2018). Global Carbon Budget 2017. Earth System Science
695	Data, 10(1), 405-448. Retrieved from https://www.earth-syst-sci-data
696	.net/10/405/2018/ doi: 10.5194/essd-10-405-2018
697	LeQuéré, C., Rödenbeck, C., Buitenhuis, E., Conway, T., Langenfelds, R., Gomez,

698	A., Heimann, M. (2007). Saturation of the Southern Ocean CO_2 sink due
699	to recent climate change. Science, 316, 1735-1738.
700	Li, H., & Ilyina, T. (2018). Current and future decadal trends in the oceanic carbon
701	uptake are dominated by internal variability. Geophysical Research Letters,
702	45(2), 916-925. Retrieved from https://agupubs.onlinelibrary.wiley
703	.com/doi/abs/10.1002/2017GL075370 doi: $10.1002/2017GL075370$
704	Lovenduski, N., Gruber, N., & Doney, S. (2008). Toward a mechanistic understand-
705	ing of the decadal trends in the Southern Ocean carbon sink. Global Biogeo-
706	chemical Cycles, 22 , doi:10.1029/2007GB003139.
707	Lovenduski, N., Gruber, N., Doney, S., & Lima, I. (2007). Enhanced CO ₂ outgassing
708	in the Southern Ocean from a positive phase of the Southern Annular Mode.
709	Global Biogeochemical Cycles, 21, doi:10.1029/2006GB002900.
710	Marshall, G. (2003). Trends in the Southern Annular Mode from observations and
711	reanalyses. J. Clim., 16, 4134-4143.
712	Matear, R., & Lenton, A. (2008). Impact of Historical Climate Change on the
713	Southern Ocean Carbon Cycle. Journal of Climate, 21(22), 5820-5834. doi:
714	10.1175/2008JCLI2194.1
715	McKinley, G. A., Fay, A. R., Eddebbar, Y. A., Gloege, L., & Lovenduski, N. S.
716	(2020). External Forcing Explains Recent Decadal Variability of the Ocean
717	Carbon Sink. AGU Advances, 1(2), e2019AV000149. Retrieved from https://
718	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019AV000149
719	(e2019AV000149 2019AV000149) doi: https://doi.org/10.1029/2019AV000149
720	Menviel, L., England, M., Meissner, K., Mouchet, A., & Yu, J. (2014). Atlantic-
721	Pacific seesaw and its role in outgassing CO_2 during Heinrich events. <i>Paleo</i> -
722	ceanography, 29, 58-70. doi: 10.1002/2013PA002542
723	Menviel, L., Mouchet, A., Meissner, K., Joos, F., & England, M. (2015). Impact of
724	oceanic circulation changes on atmospheric δ^{13} CO ₂ . Global Biogeochemical Cy-
725	<i>cles</i> , 29, 1944-1961. doi: 10.1002/2015GB005207
726	Menviel, L., Spence, P., Yu, J., Chamberlain, M., Matear, R., Meissner, K., & Eng-
727	land, M. (2018). Southern Hemisphere westerlies as a driver of the early
728	deglacial atmospheric CO_2 rise. Nature Communications, 9, 2503. doi:
729	10.1038/s41467-018-04876-4
730	Menviel, L., Timmermann, A., Mouchet, A., & Timm, O. (2008). Climate and
731	marine carbon cycle response to changes in the strength of the southern hemi-
732	spheric westerlies. Paleoceanography, 23, doi:10.1029/2007PA001604.
733	Mikaloff-Fletcher, S., Gruber, N., Jacobson, A., Doney, S., Dutkiewicz, S., Gerber,
734	M., Sarmiento, J. (2006). Inverse estimates of anthropogenic CO_2 up-
735	take, tranport, and storage by the ocean. Global Biogeochemical Cycles, 20,
736	GB2002. doi: 10.1029/2005GB002530
737	Munday, D. R., Johnson, H. L., & Marshall, D. P. (01 Mar. 2013). Eddy Satu-
738	ration of Equilibrated Circumpolar Currents. Journal of Physical Oceanogra-
739	phy, 43(3), 507 - 532. Retrieved from https://journals.ametsoc.org/view/
740	journals/phoc/43/3/jpo-d-12-095.1.xml doi: 10.1175/JPO-D-12-095.1
741	Munday, D. R., Johnson, H. L., & Marshall, D. P. (2014). Impacts and effects
742	of mesoscale ocean eddies on ocean carbon storage and atmospheric pCO2.
743	Global Biogeochemical Cycles, 28(8), 877-896. Retrieved from https://
744	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014GB004836 doi:
745	10.1002/2014GB004836
746	
747	Oke, P., Griffin, D., Schiller, A., Matear, R., Fiedler, R., Mansbridge, J., Ridg-
	Oke, P., Griffin, D., Schiller, A., Matear, R., Fiedler, R., Mansbridge, J., Ridg- way, K. (2013). Evaluation of a near-global eddy-resolving ocean model.
	way, K. (2013). Evaluation of a near-global eddy-resolving ocean model.
748	way, K. (2013). Evaluation of a near-global eddy-resolving ocean model. Geoscience Model Development, 6, 591–615. doi: 10.5194/gmd-6-591-2013
748 749	 way, K. (2013). Evaluation of a near-global eddy-resolving ocean model. Geoscience Model Development, 6, 591–615. doi: 10.5194/gmd-6-591-2013 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Suzuki.,
748 749 750	 way, K. (2013). Evaluation of a near-global eddy-resolving ocean model. Geoscience Model Development, 6, 591–615. doi: 10.5194/gmd-6-591-2013 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Suzuki., T. (2016). The Global Ocean Data Analysis Project version 2 (GLODAPv2)
748 749	 way, K. (2013). Evaluation of a near-global eddy-resolving ocean model. Geoscience Model Development, 6, 591–615. doi: 10.5194/gmd-6-591-2013 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Suzuki.,

753	Ritter, R., Landschtzer, P., Gruber, N., Fay, A. R., Iida, Y., Jones, S., Zeng,
754	J. (2017). Observation-Based Trends of the Southern Ocean Carbon Sink.
755	Geophysical Research Letters, 44(24), 12,339-12,348. Retrieved from https://
756	agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL074837 doi:
757	https://doi.org/10.1002/2017GL074837
758	Sabine, C., Feely, R., Gruber, N., Key, R., Lee, K., Bullister, J., Rios, A. (2004).
759	The oceanic sink of anthropogenic CO_2 . Science, 305, 367-371.
760	Sarmiento, J., & Gruber, N. (2006). Ocean biogeochemical dynamics (Vol. 526pp).
761	Princeton University Press, Princeton, NJ.
762	Sinha, A., & Abernathy, R. (2016). Time Scales of Southern Ocean Eddy Equilibra-
763	tion. J. Phys. Ocean, 46(9), 2785-2805. doi: https://doi.org/10.1175/JPO-D
764	-16-0041.1
765	Spence, P., Griffies, S. M., England, M. H., Hogg, A. M., Saenko, O. A., & Jourdain,
766	N. C. (2014). Rapid subsurface warming and circulation changes of antarc-
767	tic coastal waters by poleward shifting winds. Geophysical Research Letters,
768	41(13), 4601-4610. Retrieved from https://agupubs.onlinelibrary.wiley
769	.com/doi/abs/10.1002/2014GL060613 doi: 10.1002/2014GL060613
770	Spence, P., Holmes, R., Hogg, A., Griffies, S., Stewart, K., & England, M. (2017).
771	Localized rapid warming of West Antarctic subsurface waters by remote winds.
772	Nature Climate Change, 7, 595-603.
773	Swart, N., Gille, S., & et al., J. F. (2018). Recent Southern Ocean warming and
774	freshening driven by greenhouse gas emissions and ozone depletion. <i>Nature</i>
775	Geoscience, 11, 836-841.
776	Toggweiler, J. (1999) . Variation of atmospheric CO ₂ by ventilation of the ocean's
777	deepest water. Paleoceanography, 14, 571-588.
778	Turner, J., Phillips, T., Hosking, J. S., Marshall, G. J., & Orr, A. (2013). The
779	amundsen sea low. International Journal of Climatology, 33(7), 1818-1829. Re-
780	trieved from https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/
781	joc.3558 doi: https://doi.org/10.1002/joc.3558
782	Völker, C., & Köhler, P. (2013). Responses of ocean circulation and carbon cycle to
783	changes in the position of the Southern Hemisphere westerlies at Last Glacial
784	Maximum. Paleoceanography, 28, 726-739. doi: 10.1002/2013PA002556
785	Wanninkhof, R. (1992). Relationship between gas exhange and wind speed over the
786	ocean. Journal of Geophysical Research, 97, 7373-7381.
787	Waugh, D. W., McC. Hogg, A., Spence, P., England, M. H., & Haine, T. W. N.
788	(2019). Response of southern ocean ventilation to changes in midlatitude west-
789	erly winds. Journal of Climate, 32(17), 5345-5361. Retrieved from https://
790	doi.org/10.1175/JCLI-D-19-0039.1 doi: 10.1175/JCLI-D-19-0039.1
791	Zheng, F., Li, J., Clark, R., & Nnamchi, H. (2013). Simulation and Projection of the
792	Southern Hemisphere Annular Mode in CMIP5 Models. Journal of Climate,
793	26, 9860-9879. doi: 10.1175/JCLI-D-13-00204.1
794	Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix,
795	M., Srbinovsky, J. (2020). The australian earth system model: Access-
796	esm1.5. Journal of Southern Hemisphere Earth Systems Science. doi:
797	10.1071/ES19035

Experiment	Atm. forcing	SO τ (N/m ²)	Lat. of max τ
IAF	CORE IAF v.2	0.09 in 1948-1952 0.12 in 1970-1974 0.13 in 2003-2007	$49^{\circ}S$ $52^{\circ}S$ $52.5^{\circ}S$
control weak strong strong/shift	CORE NYF v.2 CORE NYF v.2 CORE NYF v.2 CORE NYF v.2	0.12 0.08 0.17 0.17	52°S 52°S 52°S 56°S

Table 1. Atmospheric forcing, mean strength (averaged over 58° S- 40°) and latitude of maximum SO (SO) windstress (τ) in the experiments performed.

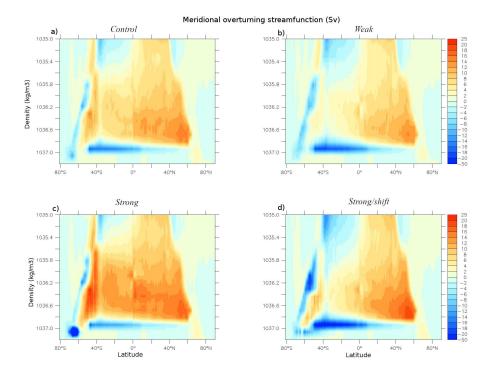


Figure 1. Overturning in density space for a) control, b) weak, c) strong and d) strong/shift. Here density is calculated relative to 2000 m reference depth. AABW is at $\sigma \geq 1037 \text{ kg/m}^3$, and AAIW at 1036 $> \sigma > 1036.5 \text{ kg/m}^3$.

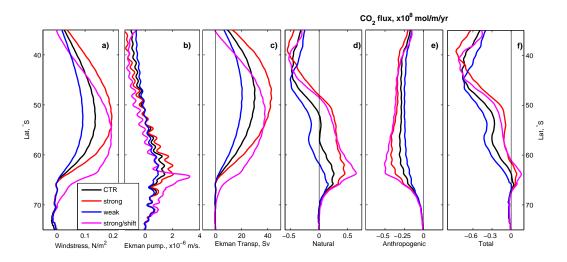


Figure 2. Zonally averaged a) zonal windstress (N/m^2) ; b) upward Ekman pumping (m/s); c) northward Ekman transport (Sv); Zonally integrated CO₂ fluxes $(x10^8 \text{ mol/m/yr})$ in d) natural carbon, e) anthropogenic carbon, and f) total carbon. for the (black) *control*, (red) *strong*, (blue) *weak* and (magenta) *strong/shift* experiments averaged over years 2007-2011. Negative values indicate an ocean CO₂ uptake and positive oceanic CO₂ outgassing.

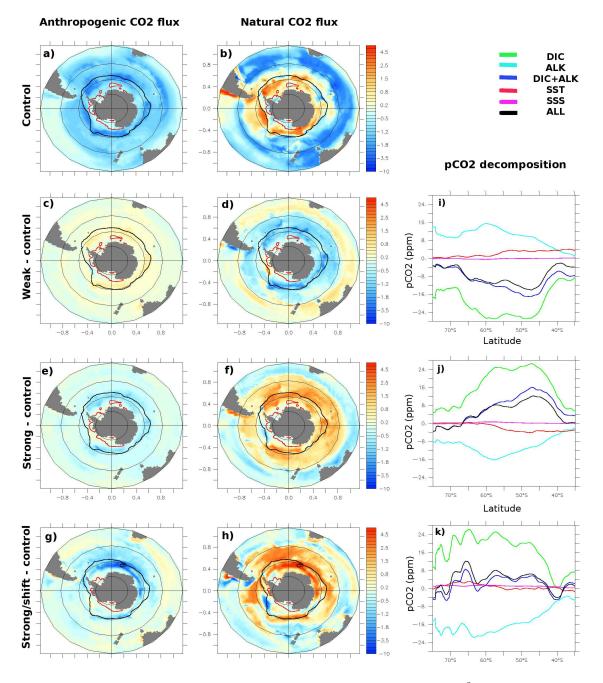


Figure 3. (left) Anthropogenic and (middle) natural CO₂ flux out of the ocean $(mol/m^2/yr)$ for a,b) the control run; c,d) weak, e,f) strong and g,h) strong/shift compared to control for years 2007-2011. The 15% sea-ice concentration contour for September (black) and March (red) are shown for each experiment. Positive anomalies indicate stronger CO₂ outgassing or reduced CO₂ uptake. (right) Zonally averaged DIC (green), alkalinity (cyan), SST (red), SSS (magenta) contributions to the natural oceanic pCO₂ anomalies (ppm) for i) weak, j) strong and k) strong/shift compared to control for years 2007-2011. The combined DIC plus alkalinity contributions are in blue and the sum of all the contributions in black.

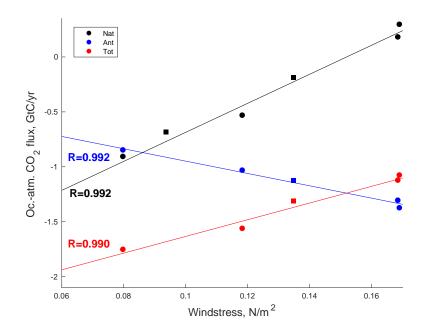


Figure 4. Relationship between mean SO windstress and integrated CO_2 flux south of 35°S for natural (black), anthropogenic (blue), and total carbon (red) for all experiments averaged over years 1998-2002. *IAF* averaged over years 1948-1953 is also included for the natural CO_2 flux, but not for the anthropogenic and total CO_2 fluxes, as the contemporary atmospheric CO_2 concentration was different. Negative values indicate oceanic CO_2 uptake. The squares indicate the *IAF* at years 1948-1953 and 1998-2002.

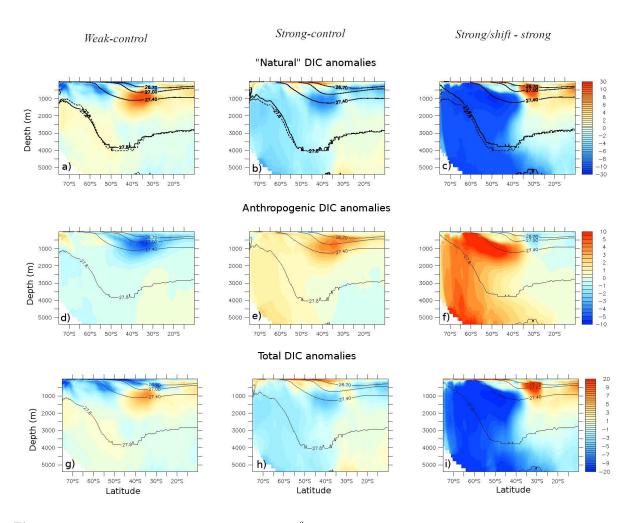


Figure 5. Zonally averaged DIC anomalies (mmol/m^3) averaged over years 2007-2011 for (left) weak, and (middle) strong compared to control, and (right) for strong/shift compared to strong for (top) natural DIC, (middle) anthropogenic DIC and (bottom) total DIC. The potential density lines delimiting AABW ($\sigma > 27.75 \text{kg/m}^3$), AAIW ($27.4 > \sigma > 27 \text{ kg/m}^3$), and SAMW ($27 > \sigma > 26.7 \text{ kg/m}^3$) for the sensitivity experiments (solid lines), and the 27.75 kg/m³ for the control (dashed lines).

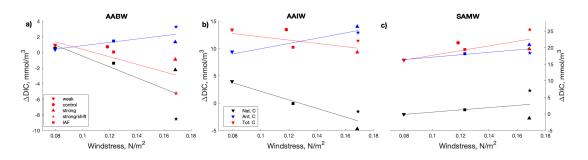


Figure 6. Changes in DIC concentration $(mmol/m^3)$ within a) AABW, b) AAIW, and c) SAMW for natural DIC (black), anthropogenic DIC (blue) and total DIC (red) for experiments *weak* (downward triangle), *control* (circle), *strong* (upward triangle), *strong/shift* (star) and *IAF* (square). Anomalies are averages of years 2003-2007 compared to years 1970-1974 of *control* for *weak*, *strong*, *strong/shift* and *control*. For *IAF* anomalies represent years 2003-2007 compared to *IAF* years 1970-1974, and the windstress refers to the mean windstress over the period 1970-2007. Solid lines represent trends with windstress within each watermass and for natural DIC (black), anthropogenic DIC (blue) and total DIC (red).

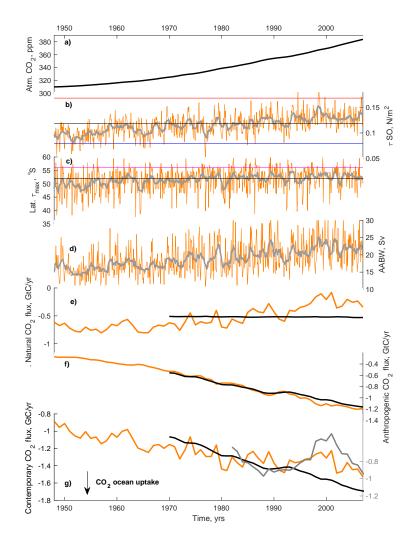


Figure 7. Time series of a) atmospheric CO₂ concentration (ppm) used as a forcing for the anthropogenic carbon tracer; b) SO windstress averaged over $58^{\circ}S-40^{\circ}S$; c) Latitude (°S) of the maximum SO windstress; d) AABW transport, defined as the minimum overturning streamfunction in the deep ocean south of 20°S; Integrated ocean-air CO₂ flux (GtC/yr) south of $35^{\circ}S$ for e) natural, f) anthropogenic, and g) total carbon for (orange) the IAF run compared to (grey) observational estimates as inferred from the SOM-FFN (Landschützer et al., 2016). The control run is shown in black for comparison. Negative values indicate an ocean CO₂ uptake and positive oceanic CO₂ outgassing. The black, blue, red horizontal and magenta lines in b) and c) show the SO windstress in experiments *control, weak, strong* and *strong/shift*, respectively.

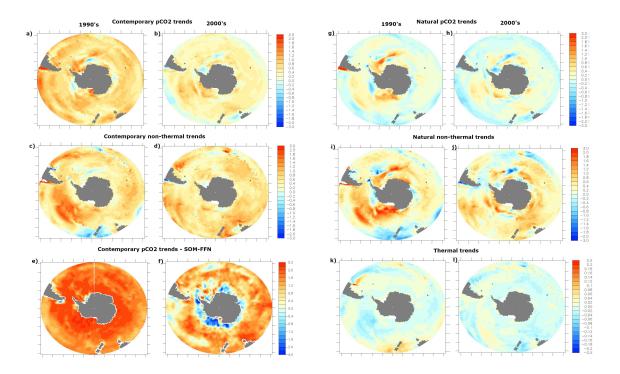
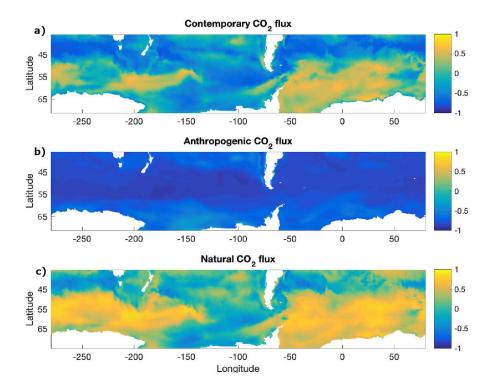
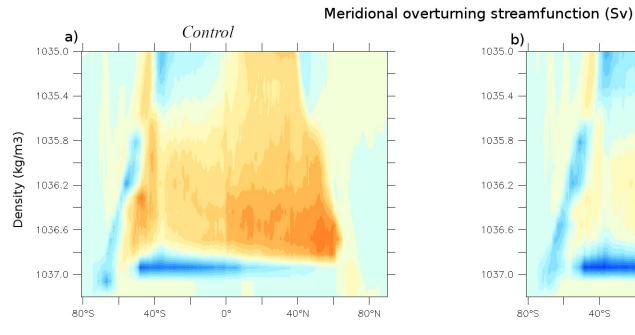


Figure 8. **a**, **b**) Surface contemporary pCO₂ trends (ppm/yr) as simulated in *IAF* and **c**, **d**) the non-thermal contribution to contemporary pCO₂ trends (ppm/yr). **e**, **f**) Surface contemporary pCO₂ trends (ppm/yr) as estimated from the SOM-FFN **a**, **c**, **e**) between years 1992 and 2001 and **b**,**d**,**f**) between years 2001 and 2006; **g**,**h**) Surface natural pCO₂ trends (ppm/yr) as simulated in *IAF*, **i**, **j**) non-thermal contribution to natural pCO₂ trends (ppm/yr), and **k**, **l**) thermal contribution to natural pCO₂ trends (ppm/yr), and **k**, **l**) between years 2001 and 2006.

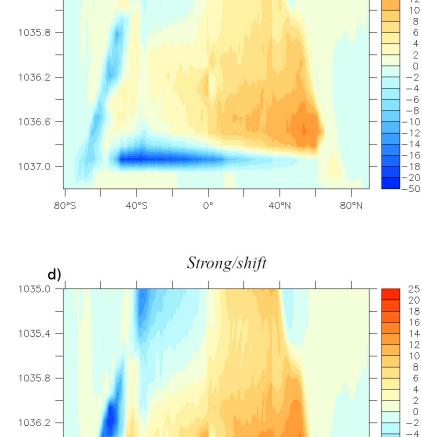
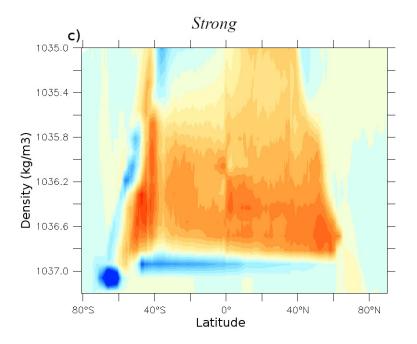

Figure 9. (left) Correlations between CO_2 fluxes as simulated in *IAF* and SH westerlies over the full period of the simulation (1948-2007) for a) contemporary, b) anthropogenic and c) natural CO_2 fluxes.

Figure 10. Zonally averaged DIC anomalies (mmol/m³) as simulated in *IAF* for years 2003-2007 compared to years 1948-1952 averaged over **a**, **d**, **g**) the Atlantic Ocean, **b**, **e**, **h**) the Pacific Ocean, and **c**, **f**, **i**) the global ocean and for for **a-c**) natural DIC, **d-f**) anthropogenic DIC and **g-i**) total DIC. The potential density lines delimiting AABW ($\sigma > 27.75 \text{ kg/m}^3$), AAIW ($27.4 > \sigma > 27 \text{ kg/m}^3$), and SAMW ($27 > \sigma > 26.7 \text{ kg/m}^3$) (solid lines) are shown.

Figure 1.



Weak

b) 1035.0

1035.4

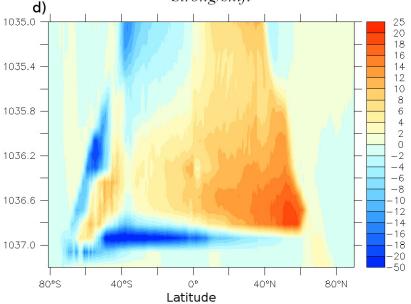


Figure 2.

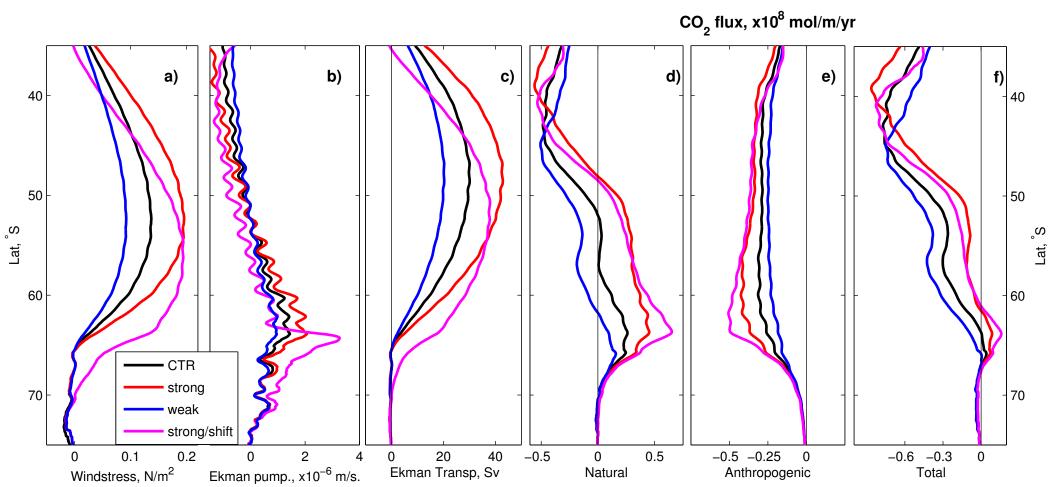


Figure 3.

Anthropogenic CO2 flux **Natural CO2 flux** a) b) 4.5 0.8 -2.5 1.5 0.4 Control 0.8 0.2 0.0 -0.5 -0.4 1.2 1.8 -0.8 -3.5 pCO2 decomposition -10 C) d) i) 4.5 24. Weak - control 0.8 -2.5 16. 1.5 pCO2 (ppm) 0.4 8. 0.8 0.2 0. 0.0 -0.5 -8. -0.4 1.2 -16 -1.8

-3.5

-10

4.5

2.5

1.5

0.8 0.2

-0.5

-1.2

-1.8

-3.5

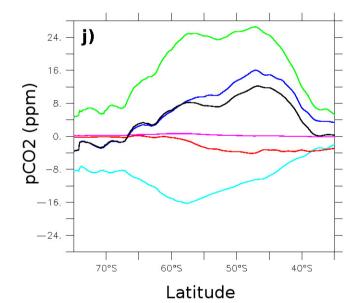
-10

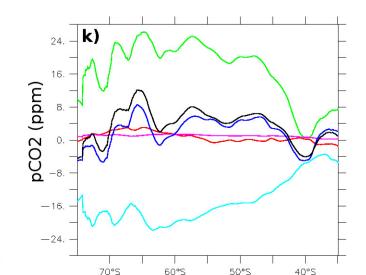
-24.

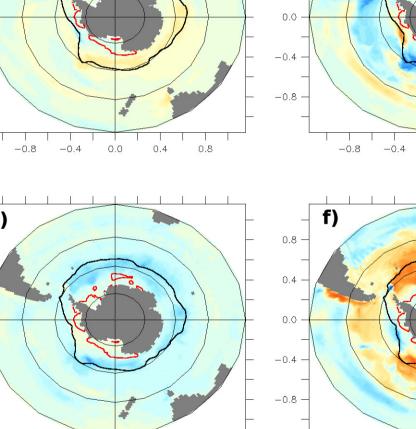
70°S

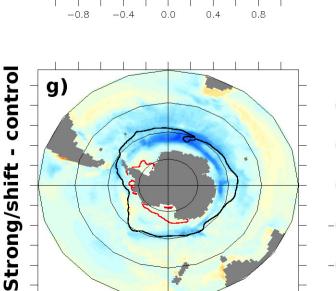
DIC

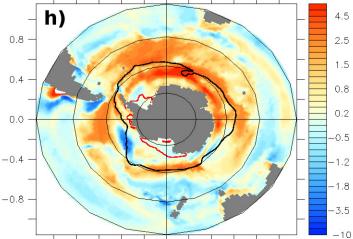
ALK


DIC+ALK


SST


SSS


ALL


40°S

-0.8

-0.4

0.0

0.4

0.0

0.4

0.8

. 0.8

e) Strong - control

Figure 4.

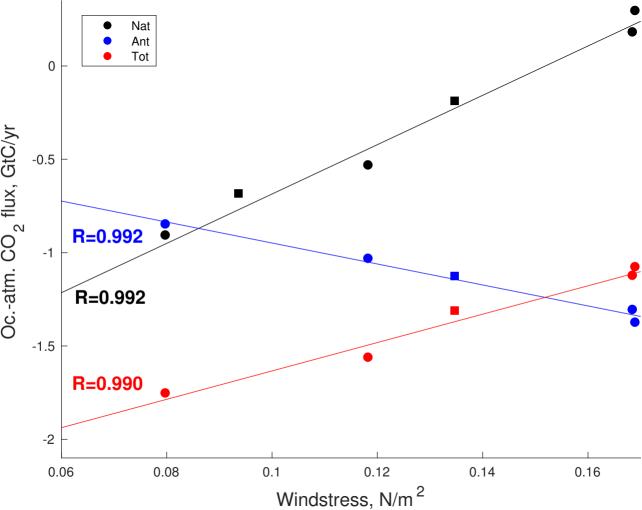
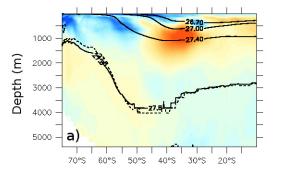
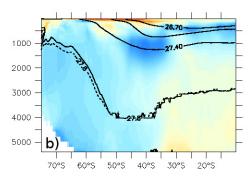
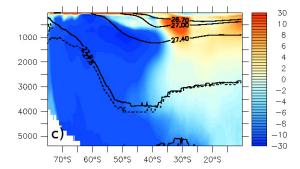
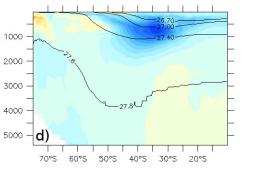



Figure 5.

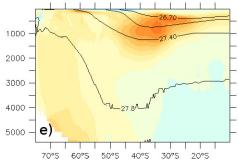

Weak-control

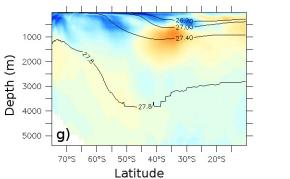

Strong-control

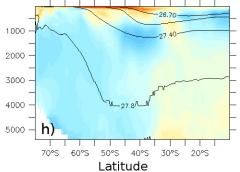
Strong/shift - strong

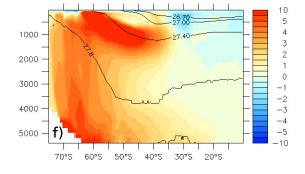


"Natural" DIC anomalies




Anthropogenic DIC anomalies




Depth (m)

Total DIC anomalies



Figure 6.

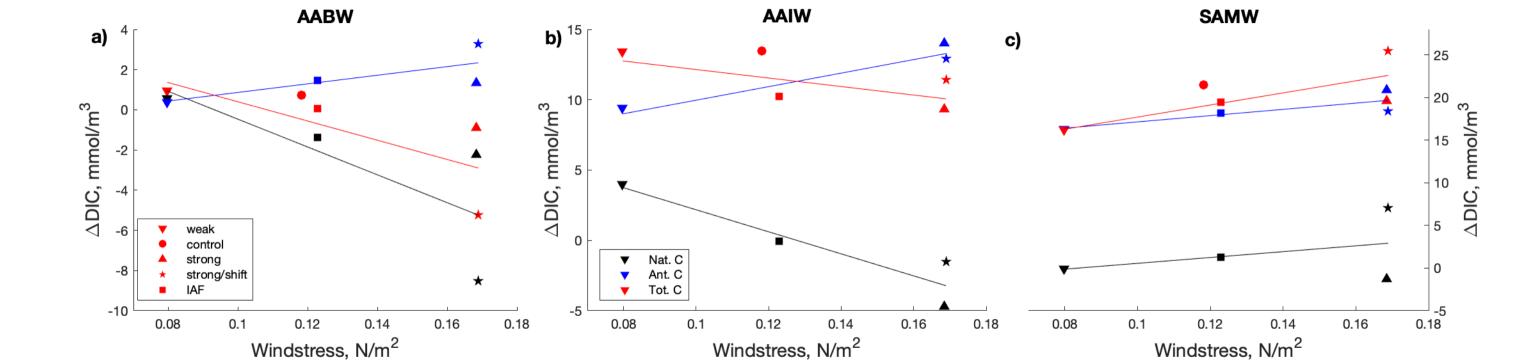


Figure 7.

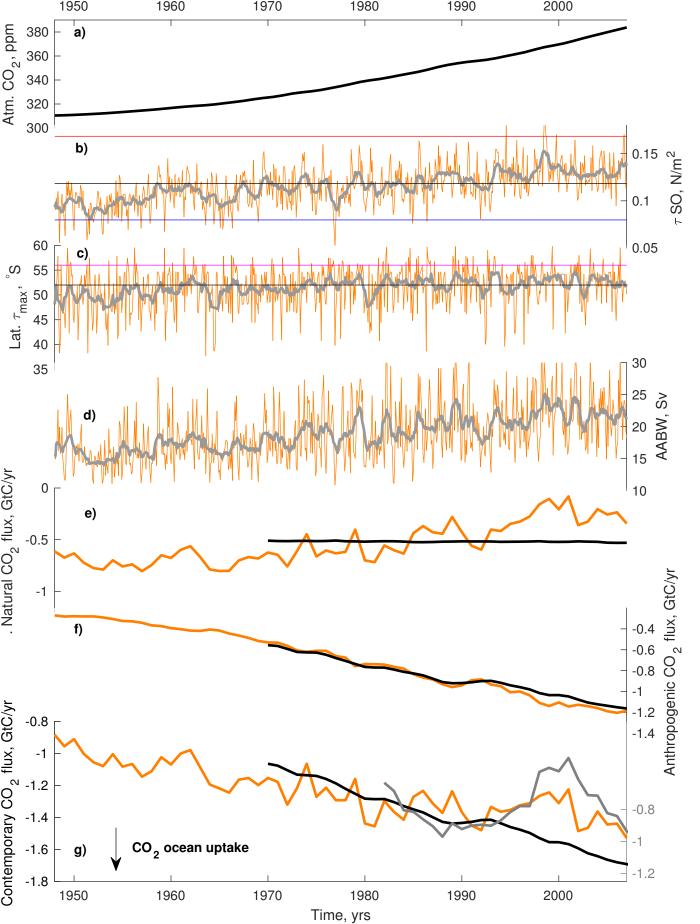
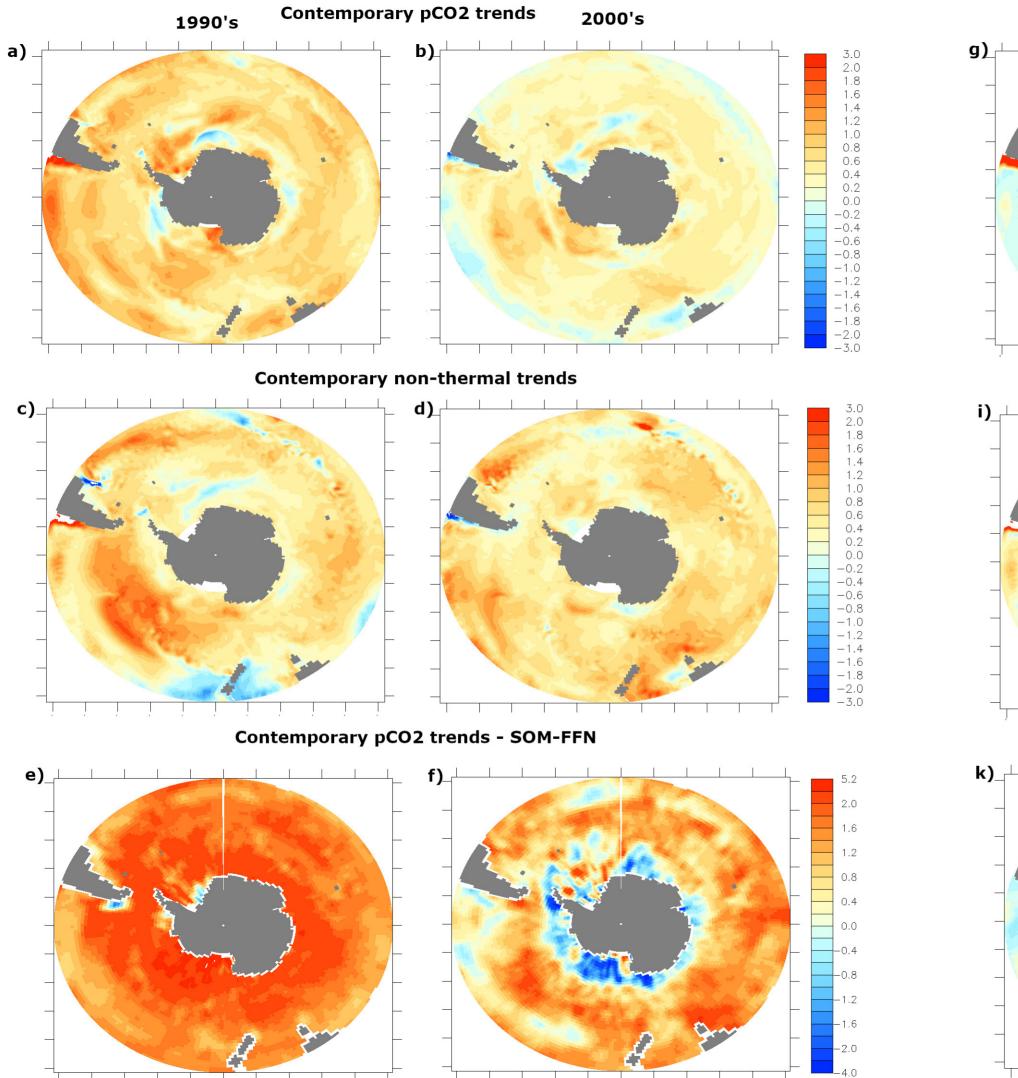
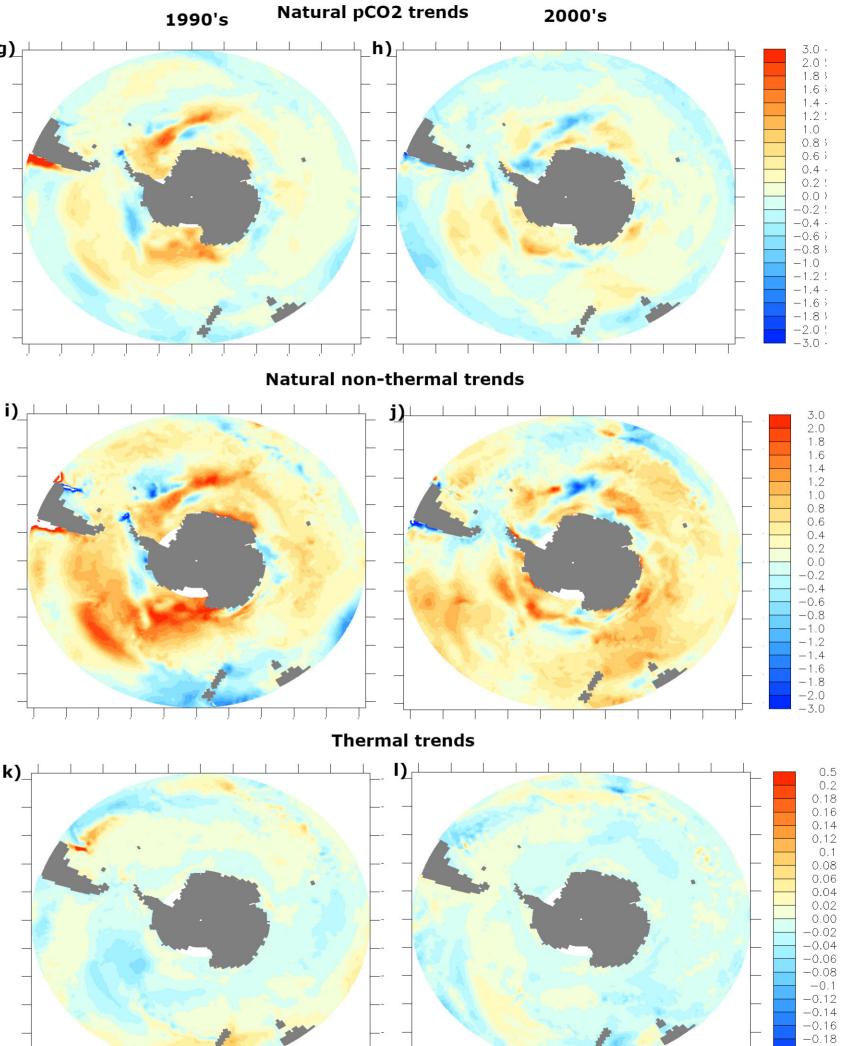




Figure 8.

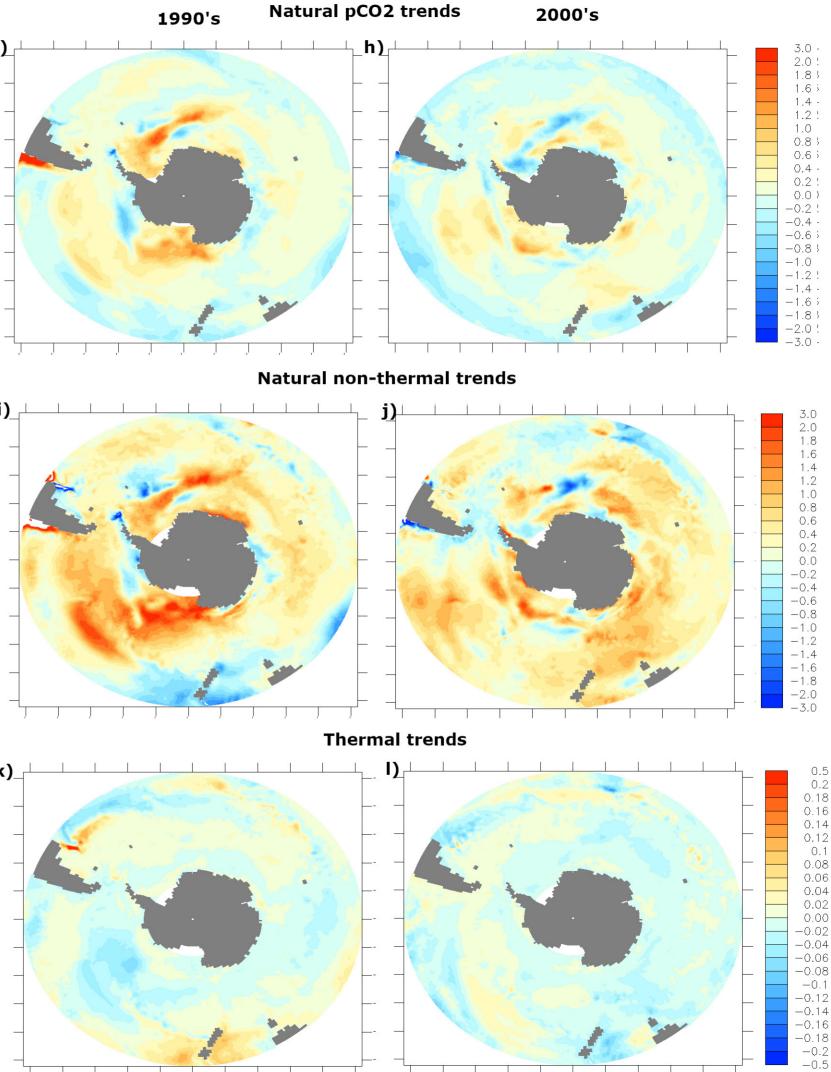


Figure 9.

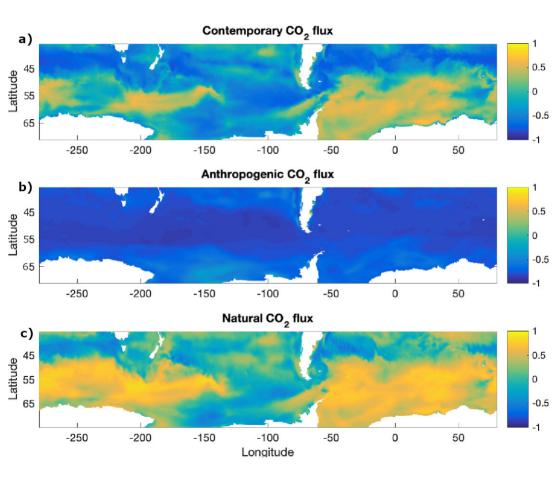
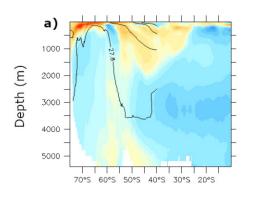
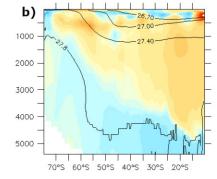
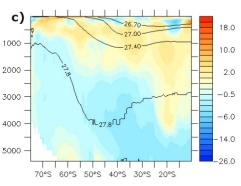
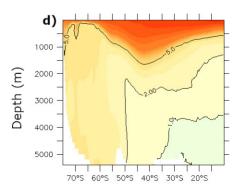
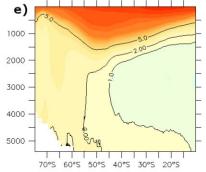



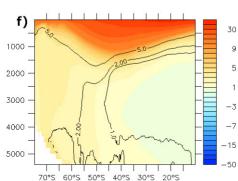
Figure 10.

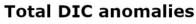

Atlantic

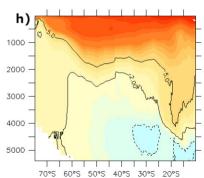

Pacific

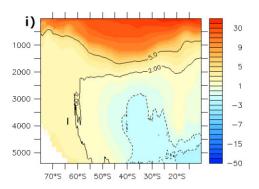

Global

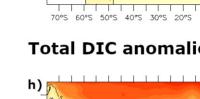


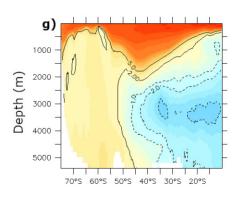

Natural DIC anomalies











Anthropogenic DIC anomalies

