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Abstract

High crop yield variation between years, impacted for example by extreme weather shocks and by other shocks on the food

production system, can have substantial effect on food production. This, in turn introduces vulnerabilities within global food

system. To mitigate the effects of these shocks there is a clear need for understanding how different adaptive capacity measures

link to the crop yield variability. While existing literature provides many local scale studies on this linkage, no comprehensive

global assessment yet exists. We assessed reported crop yield variation for wheat, maize, soybean and rice for time period 1981-

2009 by measuring both yield loss risk (variation in negative yield anomalies considering all years) and changes in yields during

only dry shock and hot shock years. We used machine learning algorithm XGBoost to assess globally the explanatory power

of selected gridded anthropogenic indicators (i.e., adaptive capacity measures; such as Human Development Index, irrigation

infrastructure, fertilizer use) on yield variation on 0.5 degree resolution, within climatically similar regions to rule out the role

of average climate conditions. We found that the anthropogenic indicators explained 40-60% of yield loss risk variation whereas

the indicators provided noticeably lower (5-20%) explanatory power during shock years. On continental scale, especially in

Europe and Africa the indicators explained high proportion of the yield loss risk variation (up to around 80%). Assessing

crop production vulnerabilities on global scale provides supporting knowledge to target specific adaptation measures, thus

contributing to global food security.
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Key Points: 10 

• Anthropogenic indicators can explain up to 60% of variation for the negative crop yields 11 

• Less than 20 % of variation of crop yield anomalies during temperature or soil moisture 12 

shocks can be explained by anthropogenic indicators 13 

  14 
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Abstract 15 

High crop yield variation between years, impacted for example by extreme weather shocks and by other shocks on the 16 

food production system, can have substantial effect on food production. This, in turn introduces vulnerabilities within 17 

global food system. To mitigate the effects of these shocks there is a clear need for understanding how different 18 

adaptive capacity measures link to the crop yield variability. While existing literature provides many local scale studies 19 

on this linkage, no comprehensive global assessment yet exists. We assessed reported crop yield variation for wheat, 20 

maize, soybean and rice for time period 1981-2009 by measuring both yield loss risk (variation in negative yield 21 

anomalies considering all years) and changes in yields during only dry shock and hot shock years. We used machine 22 

learning algorithm XGBoost to assess globally the explanatory power of selected gridded anthropogenic indicators 23 

(i.e., adaptive capacity measures; such as Human Development Index, irrigation infrastructure, fertilizer use) on yield 24 

variation on 0.5 degree resolution, within climatically similar regions to rule out the role of average climate conditions. 25 

We found that the anthropogenic indicators explained 40-60% of yield loss risk variation whereas the indicators 26 

provided noticeably lower (5-20%) explanatory power during shock years. On continental scale, especially in Europe 27 

and Africa the indicators explained high proportion of the yield loss risk variation (up to around 80%). Assessing crop 28 

production vulnerabilities on global scale provides supporting knowledge to target specific adaptation measures, thus 29 

contributing to global food security.   30 

 31 

1 Introduction 32 

The recent developments of population growth, urbanization, economic development, and climate change continue to 33 

cause significant pressure on the global food system (FAO, 2019). Food systems are vulnerable to systemic and 34 

environmental disruptions which can stem from anthropogenic factors such as shocks in food trade systems or 35 

environmental conditions such as unfavorable weather conditions (Cottrell et al., 2019). Short term supply shocks 36 

such as abrupt drop in the production quantities or crop yields can result in food scarcity which has propagating effects 37 

through global markets (Distefano et al., 2018). On longer term, especially small holders who produce around a third 38 

of global food (Ricciardi et al., 2018) face myriad of systemic factors hindering adaptation options, e.g., limited 39 

economic and financial resources, lower socioeconomic and educational status or unavailability of appropriate 40 

technologies (Cohn et al., 2017). Thus, to increase resilience within food production systems, it is important to identify 41 

areas most vulnerable to different disruptions.  42 

 43 

The key drivers of food production shocks are extreme weather events together with geopolitical and economic events 44 

(Cottrell et al., 2019). However, the importance of these drivers is characterized by regional variation; for example, 45 

food production in South Asia suffers mostly from hydrological extremes (e.g., droughts and floods), whereas 46 

geopolitical and economic crises are the main shock drivers in Sub-Saharan Africa (Cottrell et al., 2019). All these 47 

shocks impact food security and especially the most vulnerable communities through food availability (Cottrell et al., 48 

2019), food prices (Chatzopoulos et al., 2020) and quality of food (Fahad et al., 2017). To ensure better mitigation to 49 
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the shocks, and thus more resilient food systems, it is important to better understand the key factors and the 50 

geographical features influencing the responses to these shocks.  51 

 52 

Climatic conditions have been shown to be key factors in crop yield variation, explaining approximately 20-60% of 53 

the global crop yield variation (Ray et al., 2015; Vogel et al., 2019). However, we lack comprehensive understanding 54 

of the other key factors and the potential of human actions to mitigate crop yield losses. Findings from existing studies 55 

indicate that anthropogenic indicators related to socio-economic level and food production factors have potential to 56 

explain part of this gap. These studies have been focusing especially on droughts and climate change adaptation, 57 

suggesting that from vulnerability and adaptive capacity perspective, indicators such as high level of economic activity 58 

measured as gross domestic product (Simelton et al., 2009, 2012), human capital (e.g. (Antwi-Agyei et al., 2012; 59 

Gbetibouo et al., 2010) or increased irrigation (Fuss et al., 2015; Müller et al., 2018; Troy et al., 2015) seems to 60 

correlate well with lower vulnerability or less volatile crop yields. For fertilizer use, key crop production factor, the 61 

studied effects have been mixed. Using national scale data Simelton et al. (2012) and Kamali et al. (2019) found that 62 

fertilizer use was linked with lower vulnerability to droughts. On the other hand, Müller et al., (2018) found in a global 63 

grid scale modelling study that while higher fertilizer use may lead to lower relative yield variability during years with 64 

good yields due to rising mean yields, years with adverse weather conditions do not experience benefit from additional 65 

nutrient inputs. Studies with unequal effects and varying spatial scales show that there is potentially high subnational 66 

heterogeneity in both yield variation as well as anthropogenic indicators. While the previous studies have been 67 

conducted on diverse spatial scales (from villages to country and global level), only one global study (Simelton et al., 68 

2012) is linking multiple anthropogenic and production related indicators to crop yield variation, done using national 69 

scale data.  70 

 71 

In this study, we shed light on the abovementioned vulnerability issue and its implications for resilience by focusing 72 

on crop yield variation and anthropogenic indicators on a subnational scale. More specifically, we examine 1) to what 73 

level long-term averages of selected anthropogenic indicators (see Data and methods) can explain negative crop yield 74 

variation, and 2) how well the anthropogenic indicators explain geographical differences in crop yield anomalies in 75 

responses to heat and drought shocks. We utilized XGBoost algorithm to create regression models where the response 76 

variable was observed crop yield data disaggregated to grid-level, and the explanatory variables were mostly 77 

subnational or higher resolution anthropogenic indicators; a considerable enhancement from using national scale data 78 

as done in existing studies. We used these global gridded datasets to study the relationship between anthropogenic 79 

indicators and the yield variation of four key crops: wheat, maize, soybeans and rice. The wheat, maize, soybean and 80 

rice are globally major staple crops covering 65% of global calorie intake (Tilman et al., 2011), with soybeans used 81 

also extensively as feed for livestock (Hartman et al., 2011). In addition, these crops cover slightly more than 25% of 82 

global food trade in terms of monetary values (MacDonald et al., 2015), thus having impact also on food security 83 

through global trade networks and for providing income for farmers.  84 

 85 

2 Data and methods 86 
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In this study, we focus on six key societal and crop production related indicators: i) Human Development Index, ii) 87 

governance effectiveness, iii) fertilizer use (nitrogen, phosphorous and potassium), iv) water stress, v) irrigation and 88 

vi) agricultural suitability for growing crops (see Table 1). Here we refer to these socio-economic and food production 89 

indicators as “anthropogenic indicators” as they represent the human dimension controlling crop production. Unlike 90 

e.g.  climatic factors, these can potentially be influenced and controlled by human actions and policies.  91 

 92 

To study the differences among distinct climatic systems, we split the data into six geographical areas using Holdridge 93 

Life Zones that are based on three key climatological factors controlling crop production (precipitation, 94 

biotemperature, and aridity) (Holdridge, 1947; Holdridge, 1967; Kummu et al., 2021). We combined the original 38 95 

Holdridge Life Zones into six zones with similar climatic characteristics: “Cool”, “Temperate”, “Steppe”, “Arid”, 96 

“Sub tropical”, and “Humid tropical” (see Fig. S1). We then analysed the association between crop yield anomalies 97 

and the six indicators on 0.5 degree (~60 km at the equator) grid cell resolution with a gradient boosting regression 98 

algorithm XGBoost (T. Chen & Guestrin, 2016). This was used for three cases:  yield loss risk for years 1981-2009 99 

and shock factor-cases for “hot” and “dry” years. Data and methods are described in more detail below.  100 

 101 

2.1 Data  102 

2.1.1 Crop yield data 103 

For the crop yield and harvested area data, we used rasterised (0.5 degree resolution) maize, rice, soybean and wheat 104 

annual yield and harvested area data (Ray et al., 2019) for years 1981-2009. The crop data from Ray et al (2019) is 105 

procured from census observations from around 20’000 political units and gaps within reported data is filled with 5-106 

year averages. The crop yield dataset has been widely used in crop yield variation studies (e.g., Ray et al 2012, 2015, 107 

2019, Vogel et al 2019). 108 

 109 
  110 
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Table 1 Description of the data used in the study and their sources. 111 

Data name Abbreviation Description Source 

Holdridge Life Zones HLZ Produced by monthly climate data 
averaged over 1970-2000 
(WorldClim v.2.1)  

Kummu et al (2021) 

Crop yield data 

Crop-specific annual 
yield and harvested area 

  

Gridded data at 0.5 degree resolution. 
Data for years 1981-2009 

 

Ray et al (2019) 

Anthropogenic 
indicators 

   

Human Development 
Index  

HDI Subnational level HDI. 5 arc-minute 
raster; years 1995-2005  

Smits and Permanyer 
(2019), data gaps filled 
using method from 
Kummu, Taka and 
Guillaume, (2018) 

Governance 
effectiveness 

GOV 5 arc-minute raster, national scale; 
years 1995-2005 

WGI (2018) 

Water stress WS Baseline water stress index 0-1; 
vector data with HydroBASINS6 
resolution (Lehner & Grill, 2013) 

Hofste et al (2019) 

Irrigation infrastructure WINF Historical Irrigation Dataset of area 
equipped for irrigation: 5 arc-min 
raster, 1995-2005 in 5-year 
timesteps. 

Siebert et al (2015)  

Fertilizer use FER Crop-specific application rates of 
nitrogen, phosphorus, potassium; 5 
arcmin raster, around year 2000  

Mueller et al (2012, 
West et al (2014) 

Suitability index SI Crop specific agro-climatic potential 
yields combined with soil/terrain 
data (GAEZ v3); 30 arc-min raster 

Fischer et al (2012) 

Temperature and soil 
moisture data 

   

Air temperature (°C)  Daily minimum and maximum 
temperature for years 1981-2009; re-
gridded from 0.25 to 0.5 degree 

AgMERRA reanalysis 
dataset by Ruane et al 
(2015) 

Daily soil moisture 
(m3/m3) 

 Soil moisture attained at 12:00 as the 
daily estimate for soil moisture for 
years 1981-2009; re-gridded from 
0.28 to 0.5 degree 

ERA5 re-analysis 
dataset by Hersbach et 
al (2020) 

 112 

 113 

2.1.2 Anthropogenic indicators  114 

For the socio-economic data we used two indicators: Human Development Index (HDI) at subnational level (Smits & 115 

Permanyer, 2019) and national-level governance effectiveness (GOV; WGI 2018, Varis et al 2019). The gaps in HDI 116 
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data were filled by using a method from (Kummu et al., 2018). Both indicators were rasterised to 5 arc-minute 117 

resolution spanning over 1990-2015.  118 

 119 

To assess the use of water resources we used baseline water stress (WS; Hofste et al., 2019) and area equipped for 120 

irrigation (WINF; Siebert et al 2015). Baseline water stress, i.e., average water withdrawals per available renewable 121 

surface and ground water supplies for the time period 1960-2014, was used as the indicator for local pressure on water 122 

use on hydrological subbasin level (HydroBASINS6). For fertilizer use (FER) we included a linear combination of 123 

crop-specific gridded application rates for three main fertilizer components: nitrogen, phosphorous and potassium 124 

(Mueller et al., 2012; West et al., 2014). These fertilizer fractions were combined using principal component analysis 125 

(PCA) with rasterPCA-function from RStoolbox – package (Leutner et al., 2019) in RStudio (RStudio Team, 2019), 126 

and the first component (highest variance explained) was used as an explanatory variable in the model. The reference 127 

year is mostly year 2000 whereas some data are collected between 1994-2001. Although the dataset provides only a 128 

snapshot for fertilizer application rates, to our knowledge there are no globally comprehensive timeseries on gridded 129 

fertilizer application rates. Furthermore, while changes in fertilizer application rates for some countries have changed 130 

substantially (especially in Southern Asia), the overall trend seems to be less drastic (Lu & Tian, 2017). 131 

 132 

Suitability Index (SI) was extracted from FAO Global Agro-Ecological Zones (GAEZ) (Fischer et al., 2012). It aims 133 

to capture how suitable areas are to crop-specific cultivation based on different management practices and a set of 134 

environmental indicators, such as soil and terrain-slope conditions. Here, we utilized the crop specific global SI-raster 135 

with intermediate-level of inputs.  136 

 137 

All the indicator datasets were rasterised and aggregated to 0.5 degree resolution (Fig. 1). Due to the lack of 138 

comprehensive timeseries data for several of the indicators, we used a raster cell specific average between 1995-2005 139 

(where applicable, see Table 1) as a representative value for the whole time period. This may skew our results as some 140 

countries have experienced major economic growth and societal changes within our study period. However, globally 141 

the change for several indicators have been relatively modest (see e.g., Fig. S2 for subnational HDI). The selected 142 

time period of 1995-2005 represents roughly the middle point of crop yield data (1981-2009). To diminish the impact 143 

of outliers, all data were normalized between 2.5 and 97.5% of the respective ranges. The distributions and variable 144 

correlations are presented in Fig. S3.  145 

 146 

2.1.3 Temperature and soil moisture data 147 

Abiotic stresses caused by extreme climatic events such as prolonged periods of high temperatures (here used as “hot” 148 

shocks) or low soil moisture (“dry” shocks) can cause worsening conditions for crop growth through interference of 149 

multiple factors such as nutrient and water balance, photosynthesis or assimilate partitioning (Fahad et al., 2017). 150 

Here, we utilize air temperature (Ruane et al., 2015) and soil moisture (Hersbach et al., 2020) anomalies to study the 151 

links between crop yields and anthropogenic indicators during so called “shock years”, as defined below.  152 

 153 
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To account for the intraday variation in temperature data, the daily temperatures were assumed to follow sine-function 154 

so that daily minimum and maximum temperature was the lowest and highest daily value, respectively.  The amplitude 155 

of the variation was half of the difference between the daily low and high temperatures. For the daily soil moisture, 156 

the hourly soil moisture attained at 12:00 in the ERA5 data set was used as the daily estimate for soil moisture. To 157 

account for the different soil conditions globally, we standardized and transformed the data to relative soil moisture 158 

deficit. This transformation was done for each raster cell by subtracting daily values from the cell specific maximum 159 

reported daily soil moisture value for the whole time period and then dividing by the difference between minimum 160 

and maximum reported daily soil moistures.   161 

 162 

Both temperature (0.25 degrees) and soil moisture (0.28) datasets were re-gridded to 0.5 degree resolution: 163 

temperature data were resampled using bilinear interpolation and the soil moisture data with piecewise linear 164 

interpolation. We used data from years 1981-2009 for both datasets.  More detailed description of the method for 165 

temperature and soil moisture data manipulation is shown in Heino et al. (2021). 166 

 167 

 168 

2.2 Methods 169 

The general methodological framework is presented in Fig. 1, while more detailed description of the methods is 170 

given below.  171 
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 172 
Figure 1 Conceptual methodological framework. More detailed descriptions of the data sources and methods can be found in 173 
Sections 2.1 Data and 2.2 Methods.    174 
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 175 

2.2.1 Yield loss risk 176 

For studying the interannual variation in the yield anomalies, the annual absolute yields for each grid cell were first 177 

detrended by subtracting the running 5-year mean from the annual yields.  Then these detrended yields were divided 178 

by the running 5-year mean of the annual yields to obtain comparable yield anomalies for each grid cell. The 179 

prevalence of the yield data is relatively stationary across the whole time-period as most of the grid cells have yield 180 

data for almost the whole study period. 181 

 182 

The yield loss risk portrays the variation in loss events and is defined here as the standard deviation of negative yield 183 

anomalies within each grid cell across years 1981-2009. Higher yield loss risk in a given grid cell depicts larger extent 184 

of negative yield anomalies, i.e., higher losses in terms of annual yield. To obtain more representative yield loss risk, 185 

we removed all grid cells with less than 15 crop specific observations to limit the potential outliers in areas where 186 

extent of crop cultivation varies substantially from year to year. The sample sizes used for each Holdridge zone and 187 

crop combination as well as the distribution of the yield loss risk values are shown in Fig. S4. 188 

 189 

2.2.2 Shock factor 190 

To study the effect of extreme temperature and soil moisture anomalies on yields, we used two distinct cases: “hot 191 

years” denotes years with high temperatures and “dry years” those with very low soil moisture (Fig. 1). The extent of 192 

the anomalies was measured within each grid cell that fall above 90th percentile threshold for temperature and soil 193 

moisture deficit. Only years when the number of days was over one standard deviation higher compared to the cell 194 

specific mean ("hot” or “dry” years) were included in the shock models. Both cases were considered separately, thus 195 

a single year can belong into “hot”, “dry” or both categories. For more detailed description of calculating the “hot” or 196 

“dry” conditions, see Heino et al (2021). 197 

 198 

Both the temperature and soil moisture conditions have substantial interannual variation. To make the yield effects of 199 

the anomalies comparable for each grid cell-year pair, the absolute crop yield anomalies were scaled using the shock 200 

size, i.e., standard deviation in the number dry or hot days for a given year. Thus, a grid cell (0.5 degree) with similar 201 

crop yield anomalies, a year with higher temperature or soil moisture anomaly would receive a lower (closer to zero) 202 

value compared to year with lower anomaly. The sample sizes used for each Holdridge zone and crop combination as 203 

well as the distribution of the outcome values for “hot” and “dry” cases are shown in Fig. S5 and the unadjusted mean 204 

yield anomalies during shock years are presented in Fig. S6.  205 

 206 

2.2.3 Modelling setup 207 

We used predictive regression models to study the explanatory power of the anthropogenic indicators on crop yield 208 

anomalies. The models were built using gradient boosting algorithm XGBoost (T. Chen & Guestrin, 2016) which 209 

implements a non-parametric ensemble machine learning method utilizing weak learners, e.g., decision trees for 210 
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various regression and classification tasks (Friedman, 2001). Decision tree models are generally well suited to detect 211 

non-linear relationships such as crop yields (Leng & Hall, 2020), as well as handle multicollinear variables, and they 212 

do not require assumptions on the distributions (e.g., assumption of normality) of the input data. This enables us to 213 

use data with non-normally distributed data (see Figs. S3-S5). In this study, the model implementation including model 214 

tuning and predictions was done using xgboost- and caret-packages (T. Chen et al., 2021; Kuhn, 2020) in R software 215 

(R Core Team, 2020).  216 

 217 

We did three separate analyses looking at the association between crop yield variability and anthropogenic indicators 218 

with different outcome variables:  yield loss risk and shock factors for “hot” and “dry” years (see Sections 2.2.1 and 219 

2.2.2). For all outcome variables, the regressions were run separately for each Holdridge zone and crops to estimate 220 

the importance of the different variables in areas with similar climatic conditions. Holdridge zones with less than 250 221 

observations (i.e., grid cells with data for all indicators) were excluded from the analysis. The performance of the 222 

models was assessed using the squared Pearson correlation coefficient (sign preserved) between the observed and 223 

predicted outcomes.     224 

 225 

Similarity in observation caused by spatial autocorrelation can cause training and test sets to become similar if assigned 226 

randomly. This can lead to overly optimistic performance estimates, when in reality the good performance comes from 227 

overfitting (Meyer et al., 2019). To combat this issue in the training and test sets, we first split the grid points into 228 

small batches using global 100 x 100 hexagon grid with majority of hexagons covering 40-50 adjacent grid cells. All 229 

the grid cells within a single hexagon are assigned to the same training or test sets. We then used a nested cross-230 

validation (CV) where first the outer CV splits the data into 10 folds with no overlapping grid points and uses each 231 

fold once for evaluating the model chosen in the inner CV loop. The outer cross-validation loop feeds nine folds to 232 

the inner CV that performs also 10-fold cross-validation to tune the hyperparameters using grid search with default 233 

settings in caret-package. The hyperparameter combination with the lowest root mean squared error was chosen. 234 

Accordingly, for each Holdridge zone, the outcome variable in a given grid cell was predicted using one of the 10 235 

chosen models that did not use said grid point in the training phase.     236 

 237 

To analyse the importance of the variables, we used xgb.importance-function from xgboost-package (T. Chen et al., 238 

2021). The importance was measured as Gain-values, which indicates how the inclusion of a variable within a certain 239 

split of the boosted tree model improves the accuracy of the prediction.  Higher Gain-value indicate that the variable 240 

was more important for the prediction. Using the variable importance, however, comes with a few caveats. Firstly, the 241 

importance does not reveal the actual direction of the relationship between a variable and the outcome variable. 242 

Secondly, collinear variables might not have accurate Gain-values as the models can “prefer” one of the collinear 243 

variables by putting more weight on the same variable at each split while disregarding the other collinear variables (T. 244 

Chen et al., 2018). To supplement the variable importance and to measure the direction of the relationships, we utilize 245 

accumulated local effects –visualization (ALE) that provides a method to assess the marginal effects different 246 

indicators have on the outcome variables (Apley & Zhu, 2020). 247 
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3 Results 248 

3.1 Yield loss risk 249 

We found substantial geographical distinctiveness when assessing the yield loss risk on each grid cell (Fig. 2). For 250 

wheat, the strongest negative anomalies occur in a major wheat producer country Australia, as well as North-eastern 251 

China and various parts of Africa (Fig. 2a). For maize and rice, the spatial pattern is somewhat similar, as largest risks 252 

occur in North-eastern Brazil, Southern Africa, Morocco, Middle East and parts of Central Asia (Fig. 2b, d).  When 253 

comparing the values with the mean yield loss risks of respective Holdridge zones, especially Africa shows several 254 

hotspots for wheat, maize, and rice with over 20 percentage points higher risk for yield loss compared to the respective 255 

zone’s mean value (Fig. S7). For soybean, while having lower yield loss risks, the most vulnerable areas were found 256 

in North-eastern China, eastern Europe and central Asia, Ethiopia as well as Uruguay and Northern Argentina (Fig. 257 

2c).  258 

 259 

Figure 2 Yield loss risk, i.e., standard deviation of negative yield anomalies measured for a. wheat, b. maize, c. soybean, and d. 260 
rice. Increasing yield loss risk indicates that a grid cell has larger negative yield anomalies (i.e., yields lower than 5-year 261 
average) during the study period. In other words, areas with higher yield loss risk experience worse negative yield anomalies 262 
than areas with lower yield loss risk.  White areas indicate no production of the crop in question.  263 

 264 

3.2 Shock factor 265 

When considering only the climatic shock, i.e.  dry and hot years (see Methods), our findings highlight those areas 266 

with highest crop yield anomaly during shock years (Fig. 3; scaled so that comparable between grid cells; see Methods) 267 
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are mainly same as those where the yield loss risk is the highest (Fig. 2). For example, the strongest negative yield 268 

anomaly for wheat during dry years (Fig. 3a) are found in Australia, similar to the yield loss risk (Fig. 3a). Also, 269 

Eastern Europe and Central Asia as well as parts of Midwestern Northern America shows high negative shock factor 270 

for wheat (Fig. 3a, b) and maize (Fig. 3c, d). Eastern United States and Southern parts of Latin America have the 271 

highest negative impacts in soybean cultivation from both hot and dry shocks. For rice, (Fig. 3g, h) there seems to be 272 

much less geographical variation and generally lower negative shock factors than the other crops, in line with previous 273 

studies where climatic conditions have been found to have lower effects for rice compared to other crops (e.g., Ray et 274 

al 2015).  When comparing the shock factors to the mean of respective Holdridge zones (Fig. S8), all the studied crops 275 

show similar geographical patterns as in absolute shock factor values (Fig. 3) indicating that the mean effect across 276 

each of the climatic zones is rather minor (Fig. S9). 277 
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 278 
Figure 3 Mean yield anomalies during shock years adjusted by shock size. The sign of the shock factor indicates whether the 279 
mean yields for shock years are higher (positive values; blue) or lower (negative values; brown) than the running 5-year mean 280 
yield. The size of the shock factor indicates how large the shock size adjusted yield anomaly is during shock years. Dry years are 281 
those when number of days with soil moisture deficit in the >90th percentile is more than 1 standard deviation from the long-term 282 
mean. Hot years indicate that the number of days when number of days with air temperature in the >90th percentile is more than 283 
1 standard deviation from the long-term mean.  284 

 285 
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3.3 Explanatory power of anthropogenic indicators 286 

Anthropogenic indicators had substantially higher explanatory power in yield loss risk -case compared to when only 287 

shock years, either “dry” or “hot”, were examined (Fig. 4). This applies to all the studied crops and Holdridge climate 288 

zones. For the yield loss risk-case, the explanatory power of the models across both the crops and Holdridge zones 289 

seem to be quite clustered, whereas for the shock cases, especially hot years have somewhat larger range of values 290 

with regards to the explanatory power of the models (e.g., Cool, Temperate, Steppe and Subtropical zones: Fig. 4a, b, 291 

c, e). The mean explanatory power for yield loss risk varied generally between 40-60%, depending on climate zone 292 

(Fig. 4) and crop (Fig. 5), whereas the mean explained variation in shock years was substantially lower, around 5 to 293 

20%.  294 

 295 

 296 

Figure 4 Variation explained within different Holdridge zones. Blue colour represents yield loss risk -case for years 1981-2009, 297 
and yellow and red colours represent shock factor -cases for dry and hot years, respectively (see Methods). Each point represents 298 
variation explained by models for single crop and horizontal bars represent the mean explanatory power across all crops. 299 
Explained variation is measured as the squared Pearson’s correlation coefficient between the observed and predicted outcome. 300 

The explanatory power for yield loss risk in years 1981-2009 was rather similar (in average around 40-50%) across 301 

all crops (Fig. 4). The best model performance in explaining the yield loss risk was observed in Subtropical and Humid 302 

tropical climate zones (ca 50-55% on average), and lowest in Cool and Temperate zones (around 40%) (Fig. 4). In 303 

terms of hot/dry shock years only, the mean shock factors were usually better explained in hot years, the difference to 304 

dry years being in average 5-10 percentage points. For the crops, wheat models (Fig. 5a) had the largest mean 305 

explanatory power for hot years (around 20%) while the mean value for dry years was around 10% for wheat, maize 306 

and soybean and lower for rice (Fig. 5).  307 
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 308 

Figure 5 Variation explained for different crops. Blue colour represents yield loss risk -case for years 1981-2009, and yellow and 309 
red colours represent shock factor -cases for dry and hot years, respectively (see Methods). Each point represents variation 310 
explained by models for single Holdridge zone and horizontal bars represent the mean explanatory power across all Holdridge 311 
zones. Explained variation is measured as the squared Pearson’s correlation coefficient between the observed and predicted 312 
outcome. 313 

Measuring the explained variation for intersections of Holdridge zones and continents shows substantial geographical 314 

variation for all the crops in the yield loss risk -case (Fig. 6).  In majority of Africa, for example, the explained variation 315 

was above 50% for all the crops.  For the temperate regions in Europe and United States the fitted models explained 316 

over 40% of the variation for wheat (Fig. 6a) and maize (Fig. 6d). By contrast, for the majority of the areas, the models 317 

captured less than 30% of the variation in mean yield anomalies during shock years. Only wheat (Fig. 6c) and maize 318 

(Fig. 6f) models in the Temperate Holdridge zones during hot years performed better, having explanatory power over 319 

40%. The explanatory power was particularly low, for both dry and hot years, for areas in Latin America and East 320 

Asia.   321 
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 322 

 323 

Figure 6 Explanatory power of the models within intersection of each Holdridge zone and continents for each crop (n = 37-42). 324 
Explained variation is measured as the squared Pearson’s correlation coefficient between the observed and predicted outcome. 325 

3.4 Importance of anthropogenic indicators 326 

On global average, the most important predicting indicators were Human Development Index (HDI), governance 327 

(GOV) and fertilizer use (FER) (Fig. 7). However, these indicators, especially FER, also had the highest range in 328 

importance values across different crops and climate zones (Fig. 7e).  When comparing the shock years to the general 329 

yield loss case, some interesting differences were observed: the socio-economic indicators (HDI, GOV) had higher 330 

importance in yield loss case than shock years, while for all other indicators, except for WS with no difference, the 331 

relationship is the opposite (Fig. 7). The difference is particularly strong in case of GOV, which is much more 332 

important in yield loss case than in shock case. This indicates that the importance of different anthropogenic indicators 333 

is different in ‘normal’ conditions than shock conditions.  334 

 335 

When assessing the direction of the association between the indicators and the yield loss risk, indicators such as HDI 336 

or FER had quite varying impacts within different Holdridge zones (Fig. S10). Quite unsurprisingly, higher fertilizer 337 
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use seems to contribute to lower yield variability for all the Holdridge zones with the exception for a few areas such 338 

as steppe for maize and soybean and subtropical for wheat. For HDI, the relationships between the indicator value and 339 

modelled variation were often nonlinear.  Increasing of HDI over the 0.5 normalized HDI (i.e., half of the maximum 340 

HDI value) seems to yield substantially less variation in yield loss risk (Fig. S10).  341 

 342 

 343 
Figure 7 Mean variable importance for each indicator. The indicators included are a. Human Development Index (HDI), b. 344 
Governance efficiency (GOV), c. water stress (WS), d. irrigation infrastructure (WINF), e. fertilizer use (FER) and f. 345 
Suitability index (SI). Variable importance is measured as mean Gain-values of models (n=10) for a given crop (n=4) and 346 
Holdridge zone combination (n =24).  Higher Gain-value indicates that the variable is more important making the prediction. 347 
Blue colour represents yield loss risk -case for years 1981-2009, and yellow and red colours represent shock factor -cases for 348 
dry and hot years, respectively (see Methods). Each point represents variable importance for single model for a given crop and 349 
Holdridge zone, the distribution shows how tightly clustered the variable importance values are, and horizontal bars represent 350 
the mean explanatory power across all crops and Holdridge zones.  351 

 352 
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4 Discussion and conclusions 353 

4.1 Key findings 354 

We studied crop yield vulnerabilities and their relationship to global socioeconomic indicators with three specific 355 

cases. First, we focused on yield variation measured as standard deviation of the negative yield anomalies (yield loss 356 

risk -case). In the other cases, we considered mean yield anomalies during shock years only (hot years for high 357 

temperature and dry years for high soil moisture deficit). Our results suggest that the long-term mean of the selected 358 

anthropogenic indicators has substantial explanatory power over the variation of negative yield anomalies within 359 

different climatological contexts (Fig 4. and Fig. 6). While the indicators used here are not necessarily directly linked 360 

to different adaptation capabilities, they seem to have clear association with the yield variation for most of the studied 361 

crops and Holdridge climatic zones. 362 

 363 

When using mean yield anomalies during shock years as the target variable, the explanatory power is noticeably lower 364 

than in yield loss risk -case (Fig. 3 and Fig. 4). One potential reason for the difference is that the indicators with only 365 

a single long-term average for a given indicator cannot capture the potential for adaption measures that are employed 366 

on farm level during the shock years. The farm-level management decisions together with sufficient regional diversity 367 

in farm characteristics can reduce the regional impacts of climate related shocks (Reidsma et al., 2010). In addition, 368 

decision to employ adaptation measures can depend on many factors, such as cultivated crop type (grain or cash crop), 369 

education level, access to electricity for irrigation, or access to credit (Alauddin & Sarker, 2014; Bryan et al., 2009; 370 

H. Chen et al., 2014). With generic indicators such as HDI we cannot differentiate the actual locations where 371 

adaptation methods are utilized.  372 

 373 

The most important indicators support the fact that areas with increasing HDI and fertilizer use values have lower 374 

negative yield variation which supports also findings of existing studies (Antwi-Agyei et al., 2012; Kamali et al., 375 

2019; Simelton et al., 2012). However, the relationship between different indicators and yield variability is not 376 

straightforward in many areas. For example, HDI and yield variation had a convex relationship as areas with low and 377 

high HDI have considerably lower yield loss risk compared the “middle-ground” areas (Fig. S10). Studies such as 378 

Reidsma et al. (2010) and Bharwani et al. (2005) suggest that poorer farmers might be better at adapting to climate 379 

variability compared to richer farmers who respond more actively to market signals rather than climate signals. 380 

Simelton et al. (2012), who also observed similar results, hypothesized that farmers in poorer countries relied on more 381 

traditional farming and adaptation methods which are no longer utilized when country moves from poor to middle-382 

incoming country, thus increasing drought vulnerability.   383 

 384 

Surprisingly, irrigation infrastructure (WINF) was relatively unimportant indicator for the predictions (Fig. 7) even 385 

though it has been previously identified as major factor reducing crop yield variation as well as buffer against extreme 386 

warm days (Butler & Huybers, 2013; Troy et al., 2015; Vogel et al., 2019). The dataset used here (Siebert et al., 2015) 387 

is not crop specific, thus detecting effects of irrigation for a certain crop may be challenging.  While we used same 388 
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irrigation infrastructure extent for all the crops, there are major differences where irrigation is used with a given crop 389 

(Portmann et al., 2010), creating noise in the model.   390 

 391 

4.2 Limitations and way forward 392 

Assessing the relationship of crop yield anomalies and anthropogenic indicators on a global scale has several 393 

challenges. Firstly, comprehensive global timeseries on farm-management practices that span sufficient long time 394 

period are non-existent. Using long term mean values for indicators might not be representative for countries that have 395 

experienced drastic changes during the study time period. Secondly, we employ a set of rather generic indicators which 396 

might not correlate directly with the management practices and decision done in the farms. While generic indicators 397 

such as gross domestic product or human development index are generally used as proxies for location specific 398 

adaptive capacity, more specific political and socio-economic contexts are needed to measure the impacts of specific 399 

interventions (Challinor et al., 2010). However, to our knowledge, comparable data on a global scale at subnational 400 

or higher resolution does not exist. Further, crop responses may be highly non-linear compared to each other, (Jackson 401 

et al., 2021), thus selecting an arbitrary shock threshold may have very different adaptation implications depending 402 

on the crop in question. Also, additional environmental factors such as soil type may have substantial impacts on the 403 

results (Folberth et al., 2016) further complicating the relationships. 404 

 405 

4.3 Concluding remarks 406 

The global food systems are facing increasing risks as the hot and dry conditions are getting more common (Sarhadi 407 

et al., 2018). Further, the increasing shocks can affect multiple crops or crops within different “breadbaskets” 408 

simultaneously (Gaupp et al., 2020; Tigchelaar et al., 2018) causing major challenges especially from food security 409 

perspective if the lack of production cannot be compensated by trade. From a longer time perspective, climate change 410 

is also pushing substantial size of the food production outside of the current. climatic conditions (Kummu et al., 2021). 411 

These changes amplify the need for understanding local vulnerabilities across the globe.  The results from our high-412 

resolution study indicate the most vulnerable crop production areas to negative crop yield variability, where 413 

prioritizing the mitigation efforts could increase the local food security. While the variation in yields cannot be entirely 414 

prevented, agricultural policies which support increasing local nutrient availability through nutrient recycling and 415 

effective fertilizer use promote resilience towards shocks.  In addition, proper social and institutional support as well 416 

as understanding local contexts when developing the areas suffering from low education and poverty have important 417 

contribution for supporting local food security.  418 

 419 

  420 
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Introduction  

This supporting information provides additional figures to support the findings of the main text.  
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Fig. S1 Holdridge areas intersected with crop growing areas for a. wheat, b. maize, c. soybean and d. 
rice. 
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Fig. S2 Difference of subnational Human Development Index (HDI) values (1990-2010) compared to 
the mean of 1995-2005. We sampled 5000 grid cells from the subnational HDI raster and plotted the 
timeseries for HDI values for each grid point. Grey lines portray values for the grid cells and blue line 
depicts linear trend for all the sampled grid cells.  
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Fig. S3 Distributions (diagonal) and variable correlations for the anthropogenic indicators. 
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Fig. S4 Distributions and sample sizes (number of cells) used to train the models in the yield loss risk -
case. Higher yield loss risk indicates that a grid cell has larger spread in negative yield anomalies (yields 
lower than running 5-year average) during the study period. 
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Fig. S5 Distributions and sample sizes (number of cells) used to train the models in the shock factor -
cases. Dry years are those when soil moisture deficit is in the >90th percentile is more than 1 standard 
deviation from the long-term mean (as the number of days). Hot years indicate that the number of days when 
air temperature is in the 90-100% percentile is more than 1 standard deviation from the long-term mean. 
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Fig. S6 Mean yield anomalies during shock years. The sign of the yield anomaly indicates whether the 
mean yields for shock years are higher (positive values; blue) or lower (negative values; brown) than the 
running 5-year mean yield. Dry years are those when number of days with soil moisture deficit in the >90th 
percentile is more than 1 standard deviations from the long-term mean. Hot years indicate that the number of 
days when number of days with air temperature in the >90th percentile is more than 1 standard deviation from 
the long-term mean.  
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Fig. S7 Difference (as percentage points) between yield loss risk (standard deviation of negative yield 
anomalies) compared to the mean yield loss risk weighted by mean harvested area for a Holdridge 
zone for a. wheat, b. maize, c. soybean, and d. rice. Increasing yield loss risk (in red) indicates that a grid 
cell has larger spread in negative yield anomalies (yields lower than running 5-year average) during the study 
period compared to the mean yield loss risk of the respective Holdridge zone. Decreasing yield loss risk in 
(blue) indicates smaller variation in negative yield anomalies compared to the weighted mean of the 
respective Holdridge zone. Values close to zero indicate that the yields align the Holdridge zone’s mean 
yields over 1981-2009, and white areas indicate no production of the crop in question.  
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Fig. S8 Difference (as percentage points) in shock factors across shock years. Dry years are those when 
soil moisture deficit is in the >90th percentile is more than 1 standard deviation from the long-term mean (as 
the number of days). Hot years indicate that the number of days when air temperature is in the 90-100% 
percentile is more than 1 standard deviations from the long-term mean. For each grid cell, the mean shock 
factors are compared to the mean of the whole Holdridge zone. Negative value indicates that the detrended 
yields normalized by shock sizes are lower than the mean value for a given Holdridge zone. Positive value 
(blue) indicates that yields during shock years are higher than the mean value for a given Holdridge zone. 
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Fig. S9 Mean yield anomalies during temperature ("hot") and soil moisture ("dry") shock years in 
Holdridge zones. Dry years are those when soil moisture deficit is in the >90th percentile is more than 1 
standard deviation from the long-term mean (as the number of days). Hot years indicate that the number of 
days when air temperature is in the 90-100% percentile is more than 1 standard deviation from the long-term 
mean.  
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Fig. S10 Main effects for normalized subnational human development index (SHDI) and fertilizer use 
for assessing the negative crop yield variation at each Holdridge zone from Cool to Humid tropical. 
The effects are estimated using accumulated local effects -plot (ALE-plot) (Apley & Zhu, 2020) from the 10 
models fitted for each crop and Holdridge zone combination aggregated using loess-smoothing. The ALE-
plot shows the average marginal effect that the indicator has on the model’s outcome variable. The figure 
shows the magnitude of the effect on yield loss risk (y-axis) with given indicator values (x-axis). The shaded 
areas indicate 95% confidence intervals. 
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