Over Half of the Negative Crop Yield Variability Explained by Anthropogenic Indicators

Pekka Kinnunen¹, Matias Heino¹, Vilma Sandström¹, Maija Taka¹, Deepak K Ray², and Matti Kummu¹

¹Aalto University ²University of Minnesota

November 21, 2022

Abstract

High crop yield variation between years, impacted for example by extreme weather shocks and by other shocks on the food production system, can have substantial effect on food production. This, in turn introduces vulnerabilities within global food system. To mitigate the effects of these shocks there is a clear need for understanding how different adaptive capacity measures link to the crop yield variability. While existing literature provides many local scale studies on this linkage, no comprehensive global assessment yet exists. We assessed reported crop yield variation for wheat, maize, soybean and rice for time period 1981-2009 by measuring both yield loss risk (variation in negative yield anomalies considering all years) and changes in yields during only dry shock and hot shock years. We used machine learning algorithm XGBoost to assess globally the explanatory power of selected gridded anthropogenic indicators (i.e., adaptive capacity measures; such as Human Development Index, irrigation infrastructure, fertilizer use) on yield variation on 0.5 degree resolution, within climatically similar regions to rule out the role of average climate conditions. We found that the anthropogenic indicators explained 40-60% of yield loss risk variation whereas the indicators provided noticeably lower (5-20%) explanatory power during shock years. On continental scale, especially in Europe and Africa the indicators explained high proportion of the yield loss risk variation (up to around 80%). Assessing crop production vulnerabilities on global scale provides supporting knowledge to target specific adaptation measures, thus contributing to global food security.

1 2 3	Over Half of the Negative Crop Yield Variability Explained by Anthropogenic Indicators
4	
5	P. Kinnunen* ¹ ,M. Heino ¹ , V. Sandström ¹ , M. Taka ¹ , D. K. Ray ² , M. Kummu* ¹
6	¹ Water and Development Research Group, Aalto University, Espoo, Finland
7	² Institute on the Environment, University of Minnesota, Twin Cities, USA
8	*Corresponding authors: Pekka Kinnunen (pekka.kinnunen@aalto.fi), Matti Kummu
9	(matti.kummu@aalto.fi)
10	Key Points:
11	• Anthropogenic indicators can explain up to 60% of variation for the negative crop yields
12	• Less than 20 % of variation of crop yield anomalies during temperature or soil moisture
13	shocks can be explained by anthropogenic indicators
14	

15 Abstract

16 High crop yield variation between years, impacted for example by extreme weather shocks and by other shocks on the 17 food production system, can have substantial effect on food production. This, in turn introduces vulnerabilities within 18 global food system. To mitigate the effects of these shocks there is a clear need for understanding how different 19 adaptive capacity measures link to the crop yield variability. While existing literature provides many local scale studies 20 on this linkage, no comprehensive global assessment yet exists. We assessed reported crop yield variation for wheat, 21 maize, soybean and rice for time period 1981-2009 by measuring both yield loss risk (variation in negative yield 22 anomalies considering all years) and changes in yields during only dry shock and hot shock years. We used machine 23 learning algorithm XGBoost to assess globally the explanatory power of selected gridded anthropogenic indicators 24 (i.e., adaptive capacity measures; such as Human Development Index, irrigation infrastructure, fertilizer use) on yield 25 variation on 0.5 degree resolution, within climatically similar regions to rule out the role of average climate conditions. 26 We found that the anthropogenic indicators explained 40-60% of yield loss risk variation whereas the indicators 27 provided noticeably lower (5-20%) explanatory power during shock years. On continental scale, especially in Europe 28 and Africa the indicators explained high proportion of the yield loss risk variation (up to around 80%). Assessing crop 29 production vulnerabilities on global scale provides supporting knowledge to target specific adaptation measures, thus 30 contributing to global food security.

31

32 **1 Introduction**

The recent developments of population growth, urbanization, economic development, and climate change continue to 33 34 cause significant pressure on the global food system (FAO, 2019). Food systems are vulnerable to systemic and 35 environmental disruptions which can stem from anthropogenic factors such as shocks in food trade systems or 36 environmental conditions such as unfavorable weather conditions (Cottrell et al., 2019). Short term supply shocks 37 such as abrupt drop in the production quantities or crop yields can result in food scarcity which has propagating effects 38 through global markets (Distefano et al., 2018). On longer term, especially small holders who produce around a third 39 of global food (Ricciardi et al., 2018) face myriad of systemic factors hindering adaptation options, e.g., limited 40 economic and financial resources, lower socioeconomic and educational status or unavailability of appropriate 41 technologies (Cohn et al., 2017). Thus, to increase resilience within food production systems, it is important to identify 42 areas most vulnerable to different disruptions.

43

The key drivers of food production shocks are extreme weather events together with geopolitical and economic events (Cottrell et al., 2019). However, the importance of these drivers is characterized by regional variation; for example, food production in South Asia suffers mostly from hydrological extremes (e.g., droughts and floods), whereas geopolitical and economic crises are the main shock drivers in Sub-Saharan Africa (Cottrell et al., 2019). All these shocks impact food security and especially the most vulnerable communities through food availability (Cottrell et al.,

49 2019), food prices (Chatzopoulos et al., 2020) and quality of food (Fahad et al., 2017). To ensure better mitigation to

50 the shocks, and thus more resilient food systems, it is important to better understand the key factors and the 51 geographical features influencing the responses to these shocks.

52

53 Climatic conditions have been shown to be key factors in crop yield variation, explaining approximately 20-60% of 54 the global crop yield variation (Ray et al., 2015; Vogel et al., 2019). However, we lack comprehensive understanding 55 of the other key factors and the potential of human actions to mitigate crop yield losses. Findings from existing studies 56 indicate that anthropogenic indicators related to socio-economic level and food production factors have potential to 57 explain part of this gap. These studies have been focusing especially on droughts and climate change adaptation, 58 suggesting that from vulnerability and adaptive capacity perspective, indicators such as high level of economic activity 59 measured as gross domestic product (Simelton et al., 2009, 2012), human capital (e.g. (Antwi-Agyei et al., 2012; 60 Gbetibouo et al., 2010) or increased irrigation (Fuss et al., 2015; Müller et al., 2018; Troy et al., 2015) seems to correlate well with lower vulnerability or less volatile crop yields. For fertilizer use, key crop production factor, the 61 62 studied effects have been mixed. Using national scale data Simelton et al. (2012) and Kamali et al. (2019) found that 63 fertilizer use was linked with lower vulnerability to droughts. On the other hand, Müller et al., (2018) found in a global 64 grid scale modelling study that while higher fertilizer use may lead to lower relative yield variability during years with 65 good yields due to rising mean yields, years with adverse weather conditions do not experience benefit from additional nutrient inputs. Studies with unequal effects and varying spatial scales show that there is potentially high subnational 66 67 heterogeneity in both yield variation as well as anthropogenic indicators. While the previous studies have been conducted on diverse spatial scales (from villages to country and global level), only one global study (Simelton et al., 68 69 2012) is linking multiple anthropogenic and production related indicators to crop yield variation, done using national 70 scale data.

71

72 In this study, we shed light on the abovementioned vulnerability issue and its implications for resilience by focusing 73 on crop yield variation and anthropogenic indicators on a subnational scale. More specifically, we examine 1) to what 74 level long-term averages of selected anthropogenic indicators (see Data and methods) can explain negative crop yield 75 variation, and 2) how well the anthropogenic indicators explain geographical differences in crop yield anomalies in 76 responses to heat and drought shocks. We utilized XGBoost algorithm to create regression models where the response 77 variable was observed crop yield data disaggregated to grid-level, and the explanatory variables were mostly 78 subnational or higher resolution anthropogenic indicators; a considerable enhancement from using national scale data 79 as done in existing studies. We used these global gridded datasets to study the relationship between anthropogenic 80 indicators and the yield variation of four key crops: wheat, maize, soybeans and rice. The wheat, maize, soybean and 81 rice are globally major staple crops covering 65% of global calorie intake (Tilman et al., 2011), with soybeans used 82 also extensively as feed for livestock (Hartman et al., 2011). In addition, these crops cover slightly more than 25% of 83 global food trade in terms of monetary values (MacDonald et al., 2015), thus having impact also on food security 84 through global trade networks and for providing income for farmers.

85

86 **2 Data and methods**

manuscript submitted to Earth's Future of AGU journal

87 In this study, we focus on six key societal and crop production related indicators: i) Human Development Index, ii)

- 88 governance effectiveness, iii) fertilizer use (nitrogen, phosphorous and potassium), iv) water stress, v) irrigation and
- vi) agricultural suitability for growing crops (see Table 1). Here we refer to these socio-economic and food production
- 90 indicators as "anthropogenic indicators" as they represent the human dimension controlling crop production. Unlike
- 91 e.g. climatic factors, these can potentially be influenced and controlled by human actions and policies.
- 92

93 To study the differences among distinct climatic systems, we split the data into six geographical areas using Holdridge 94 Life Zones that are based on three key climatological factors controlling crop production (precipitation, 95 biotemperature, and aridity) (Holdridge, 1947; Holdridge, 1967; Kummu et al., 2021). We combined the original 38 Holdridge Life Zones into six zones with similar climatic characteristics: "Cool", "Temperate", "Steppe", "Arid", 96 97 "Sub tropical", and "Humid tropical" (see Fig. S1). We then analysed the association between crop yield anomalies 98 and the six indicators on 0.5 degree (~60 km at the equator) grid cell resolution with a gradient boosting regression 99 algorithm XGBoost (T. Chen & Guestrin, 2016). This was used for three cases: *yield loss risk* for years 1981-2009 100 and shock factor-cases for "hot" and "dry" years. Data and methods are described in more detail below.

101

102 2.1 Data

103 2.1.1 Crop yield data

For the crop yield and harvested area data, we used rasterised (0.5 degree resolution) maize, rice, soybean and wheat annual yield and harvested area data (Ray et al., 2019) for years 1981-2009. The crop data from Ray *et al* (2019) is

procured from census observations from around 20'000 political units and gaps within reported data is filled with 5-

- 107 year averages. The crop yield dataset has been widely used in crop yield variation studies (e.g., Ray *et al* 2012, 2015,
- 108 2019, Vogel *et al* 2019).

Data name	Abbreviation	Description	Source
Holdridge Life Zones	HLZ	Produced by monthly climate data averaged over 1970-2000 (WorldClim v.2.1)	Kummu <i>et al</i> (2021)
Crop yield data			
Crop-specific annual yield and harvested area		Gridded data at 0.5 degree resolution. Data for years 1981-2009	Ray et al (2019)
Anthropogenic indicators			
Human Development Index	HDI	Subnational level HDI. 5 arc-minute raster; years 1995-2005	Smits and Permanyer (2019), data gaps filled using method from Kummu, Taka and Guillaume, (2018)
Governance effectiveness	GOV	5 arc-minute raster, national scale; years 1995-2005	WGI (2018)
Water stress	WS	Baseline water stress index 0-1; vector data with HydroBASINS6 resolution (Lehner & Grill, 2013)	Hofste et al (2019)
Irrigation infrastructure	WINF	Historical Irrigation Dataset of area equipped for irrigation: 5 arc-min raster, 1995-2005 in 5-year timesteps.	Siebert <i>et al</i> (2015)
Fertilizer use	FER	Crop-specific application rates of nitrogen, phosphorus, potassium; 5 arcmin raster, around year 2000	Mueller <i>et al</i> (2012, West <i>et al</i> (2014)
Suitability index	SI	Crop specific agro-climatic potential yields combined with soil/terrain data (GAEZ v3); 30 arc-min raster	Fischer et al (2012)
Temperature and soil moisture data			
Air temperature (°C)		Daily minimum and maximum temperature for years 1981-2009; re- gridded from 0.25 to 0.5 degree	AgMERRA reanalysis dataset by Ruane <i>et al</i> (2015)
Daily soil moisture (m ³ /m ³)		Soil moisture attained at 12:00 as the daily estimate for soil moisture for years 1981-2009; re-gridded from 0.28 to 0.5 degree	ERA5 re-analysis dataset by Hersbach <i>et</i> <i>al</i> (2020)

111 Table 1 Description of the data used in the study and their sources.

112

113

114 2.1.2 Anthropogenic indicators

115 For the socio-economic data we used two indicators: Human Development Index (HDI) at subnational level (Smits &

116 Permanyer, 2019) and national-level governance effectiveness (GOV; WGI 2018, Varis et al 2019). The gaps in HDI

117 data were filled by using a method from (Kummu et al., 2018). Both indicators were rasterised to 5 arc-minute 118 resolution spanning over 1990-2015.

119

120 To assess the use of water resources we used baseline water stress (WS; Hofste et al., 2019) and area equipped for 121 irrigation (WINF; Siebert et al 2015). Baseline water stress, i.e., average water withdrawals per available renewable 122 surface and ground water supplies for the time period 1960-2014, was used as the indicator for local pressure on water 123 use on hydrological subbasin level (HydroBASINS6). For fertilizer use (FER) we included a linear combination of 124 crop-specific gridded application rates for three main fertilizer components: nitrogen, phosphorous and potassium 125 (Mueller et al., 2012; West et al., 2014). These fertilizer fractions were combined using principal component analysis 126 (PCA) with rasterPCA-function from RStoolbox – package (Leutner et al., 2019) in RStudio (RStudio Team, 2019), 127 and the first component (highest variance explained) was used as an explanatory variable in the model. The reference 128 year is mostly year 2000 whereas some data are collected between 1994-2001. Although the dataset provides only a 129 snapshot for fertilizer application rates, to our knowledge there are no globally comprehensive timeseries on gridded 130 fertilizer application rates. Furthermore, while changes in fertilizer application rates for some countries have changed 131 substantially (especially in Southern Asia), the overall trend seems to be less drastic (Lu & Tian, 2017).

132

Suitability Index (SI) was extracted from FAO Global Agro-Ecological Zones (GAEZ) (Fischer et al., 2012). It aims to capture how suitable areas are to crop-specific cultivation based on different management practices and a set of environmental indicators, such as soil and terrain-slope conditions. Here, we utilized the crop specific global SI-raster with intermediate-level of inputs.

137

138 All the indicator datasets were rasterised and aggregated to 0.5 degree resolution (Fig. 1). Due to the lack of 139 comprehensive timeseries data for several of the indicators, we used a raster cell specific average between 1995-2005 (where applicable, see Table 1) as a representative value for the whole time period. This may skew our results as some 140 141 countries have experienced major economic growth and societal changes within our study period. However, globally 142 the change for several indicators have been relatively modest (see e.g., Fig. S2 for subnational HDI). The selected time period of 1995-2005 represents roughly the middle point of crop yield data (1981-2009). To diminish the impact 143 144 of outliers, all data were normalized between 2.5 and 97.5% of the respective ranges. The distributions and variable 145 correlations are presented in Fig. S3.

146

147 2.1.3 Temperature and soil moisture data

148 Abiotic stresses caused by extreme climatic events such as prolonged periods of high temperatures (here used as "hot"

shocks) or low soil moisture ("dry" shocks) can cause worsening conditions for crop growth through interference of

150 multiple factors such as nutrient and water balance, photosynthesis or assimilate partitioning (Fahad et al., 2017).

151 Here, we utilize air temperature (Ruane et al., 2015) and soil moisture (Hersbach et al., 2020) anomalies to study the

- 152 links between crop yields and anthropogenic indicators during so called "shock years", as defined below.
- 153

manuscript submitted to Earth's Future of AGU journal

154 To account for the intraday variation in temperature data, the daily temperatures were assumed to follow sine-function

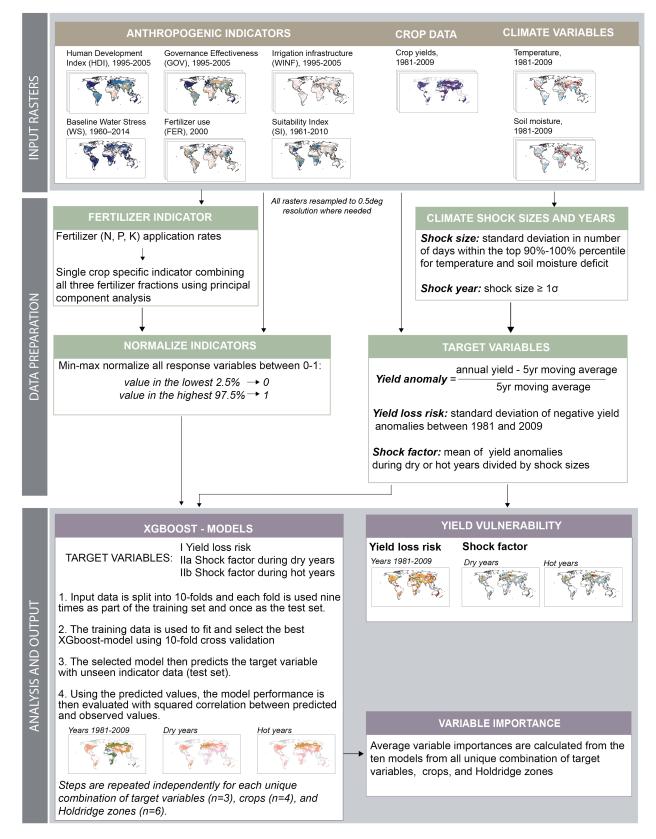
- so that daily minimum and maximum temperature was the lowest and highest daily value, respectively. The amplitude
- 156 of the variation was half of the difference between the daily low and high temperatures. For the daily soil moisture,
- the hourly soil moisture attained at 12:00 in the ERA5 data set was used as the daily estimate for soil moisture. To
- account for the different soil conditions globally, we standardized and transformed the data to relative soil moisture
- deficit. This transformation was done for each raster cell by subtracting daily values from the cell specific maximum
- 160 reported daily soil moisture value for the whole time period and then dividing by the difference between minimum
- 161 and maximum reported daily soil moistures.
- 162

Both temperature (0.25 degrees) and soil moisture (0.28) datasets were re-gridded to 0.5 degree resolution: temperature data were resampled using bilinear interpolation and the soil moisture data with piecewise linear interpolation. We used data from years 1981-2009 for both datasets. More detailed description of the method for temperature and soil moisture data manipulation is shown in Heino *et al.* (2021).

- 167
- 168
- 169 2.2 Methods

170 The general methodological framework is presented in Fig. 1, while more detailed description of the methods is

171 given below.



173 Figure 1 Conceptual methodological framework. More detailed descriptions of the data sources and methods can be found in

174 Sections 2.1 Data and 2.2 Methods.

175

176 2.2.1 Yield loss risk

For studying the interannual variation in the yield anomalies, the annual absolute yields for each grid cell were first detrended by subtracting the running 5-year mean from the annual yields. Then these detrended yields were divided by the running 5-year mean of the annual yields to obtain comparable yield anomalies for each grid cell. The prevalence of the yield data is relatively stationary across the whole time-period as most of the grid cells have yield data for almost the whole study period.

182

The yield loss risk portrays the variation in loss events and is defined here as the standard deviation of negative yield anomalies within each grid cell across years 1981-2009. Higher yield loss risk in a given grid cell depicts larger extent of negative yield anomalies, i.e., higher losses in terms of annual yield. To obtain more representative yield loss risk, we removed all grid cells with less than 15 crop specific observations to limit the potential outliers in areas where extent of crop cultivation varies substantially from year to year. The sample sizes used for each Holdridge zone and crop combination as well as the distribution of the yield loss risk values are shown in Fig. S4.

189

190 2.2.2 Shock factor

To study the effect of extreme temperature and soil moisture anomalies on yields, we used two distinct cases: "hot years" denotes years with high temperatures and "dry years" those with very low soil moisture (Fig. 1). The extent of the anomalies was measured within each grid cell that fall above 90th percentile threshold for temperature and soil moisture deficit. Only years when the number of days was over one standard deviation higher compared to the cell specific mean ("hot" or "dry" years) were included in the shock models. Both cases were considered separately, thus a single year can belong into "hot", "dry" or both categories. For more detailed description of calculating the "hot" or "dry" conditions, see Heino *et al* (2021).

198

Both the temperature and soil moisture conditions have substantial interannual variation. To make the yield effects of the anomalies comparable for each grid cell-year pair, the absolute crop yield anomalies were scaled using the shock size, i.e., standard deviation in the number dry or hot days for a given year. Thus, a grid cell (0.5 degree) with similar crop yield anomalies, a year with higher *temperature or soil moisture* anomaly would receive a lower (closer to zero) value compared to year with lower anomaly. The sample sizes used for each Holdridge zone and crop combination as well as the distribution of the outcome values for "hot" and "dry" cases are shown in Fig. S5 and the unadjusted mean yield anomalies during shock years are presented in Fig. S6.

206

207 2.2.3 Modelling setup

208 We used predictive regression models to study the explanatory power of the anthropogenic indicators on crop yield

anomalies. The models were built using gradient boosting algorithm XGBoost (T. Chen & Guestrin, 2016) which

210 implements a non-parametric ensemble machine learning method utilizing weak learners, e.g., decision trees for

various regression and classification tasks (Friedman, 2001). Decision tree models are generally well suited to detect

non-linear relationships such as crop yields (Leng & Hall, 2020), as well as handle multicollinear variables, and they

213 do not require assumptions on the distributions (e.g., assumption of normality) of the input data. This enables us to

- 214 use data with non-normally distributed data (see Figs. S3-S5). In this study, the model implementation including model
- 215 tuning and predictions was done using *xgboost* and *caret*-packages (T. Chen et al., 2021; Kuhn, 2020) in R software
- 216 (R Core Team, 2020).
- 217

We did three separate analyses looking at the association between crop yield variability and anthropogenic indicators with different outcome variables: yield loss risk and shock factors for "hot" and "dry" years (see Sections 2.2.1 and 2.2.2). For all outcome variables, the regressions were run separately for each Holdridge zone and crops to estimate the importance of the different variables in areas with similar climatic conditions. Holdridge zones with less than 250 observations (i.e., grid cells with data for all indicators) were excluded from the analysis. The performance of the models was assessed using the squared Pearson correlation coefficient (sign preserved) between the observed and predicted outcomes.

225

226 Similarity in observation caused by spatial autocorrelation can cause training and test sets to become similar if assigned 227 randomly. This can lead to overly optimistic performance estimates, when in reality the good performance comes from 228 overfitting (Meyer et al., 2019). To combat this issue in the training and test sets, we first split the grid points into 229 small batches using global 100 x 100 hexagon grid with majority of hexagons covering 40-50 adjacent grid cells. All 230 the grid cells within a single hexagon are assigned to the same training or test sets. We then used a nested cross-231 validation (CV) where first the outer CV splits the data into 10 folds with no overlapping grid points and uses each 232 fold once for evaluating the model chosen in the inner CV loop. The outer cross-validation loop feeds nine folds to 233 the inner CV that performs also 10-fold cross-validation to tune the hyperparameters using grid search with default settings in *caret*-package. The hyperparameter combination with the lowest root mean squared error was chosen. 234 235 Accordingly, for each Holdridge zone, the outcome variable in a given grid cell was predicted using one of the 10 236 chosen models that did not use said grid point in the training phase.

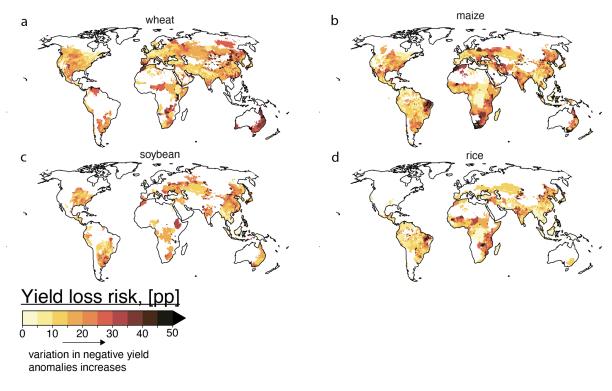
237

238 To analyse the importance of the variables, we used xgb.importance-function from xgboost-package (T. Chen et al., 239 2021). The importance was measured as Gain-values, which indicates how the inclusion of a variable within a certain 240 split of the boosted tree model improves the accuracy of the prediction. Higher Gain-value indicate that the variable 241 was more important for the prediction. Using the variable importance, however, comes with a few caveats. Firstly, the 242 importance does not reveal the actual direction of the relationship between a variable and the outcome variable. 243 Secondly, collinear variables might not have accurate Gain-values as the models can "prefer" one of the collinear variables by putting more weight on the same variable at each split while disregarding the other collinear variables (T. 244 245 Chen et al., 2018). To supplement the variable importance and to measure the direction of the relationships, we utilize 246 accumulated local effects -visualization (ALE) that provides a method to assess the marginal effects different 247 indicators have on the outcome variables (Apley & Zhu, 2020).

248 **3 Results**

249 3.1 Yield loss risk

250 We found substantial geographical distinctiveness when assessing the yield loss risk on each grid cell (Fig. 2). For 251 wheat, the strongest negative anomalies occur in a major wheat producer country Australia, as well as North-eastern 252 China and various parts of Africa (Fig. 2a). For maize and rice, the spatial pattern is somewhat similar, as largest risks occur in North-eastern Brazil, Southern Africa, Morocco, Middle East and parts of Central Asia (Fig. 2b, d). When 253 254 comparing the values with the mean yield loss risks of respective Holdridge zones, especially Africa shows several 255 hotspots for wheat, maize, and rice with over 20 percentage points higher risk for yield loss compared to the respective 256 zone's mean value (Fig. S7). For soybean, while having lower yield loss risks, the most vulnerable areas were found 257 in North-eastern China, eastern Europe and central Asia, Ethiopia as well as Uruguay and Northern Argentina (Fig. 258 2c).



260 Figure 2 Yield loss risk, i.e., standard deviation of negative yield anomalies measured for a. wheat, b. maize, c. soybean, and d.

- *rice.* Increasing yield loss risk indicates that a grid cell has larger negative yield anomalies (i.e., yields lower than 5-year
- average) during the study period. In other words, areas with higher yield loss risk experience worse negative yield anomalies
- than areas with lower yield loss risk. White areas indicate no production of the crop in question.
- 264

259

265 3.2 Shock factor

When considering only the climatic shock, i.e. dry and hot years (see Methods), our findings highlight those areas with highest crop yield anomaly during shock years (Fig. 3; scaled so that comparable between grid cells; see Methods)

- are mainly same as those where the yield loss risk is the highest (Fig. 2). For example, the strongest negative yield
- anomaly for wheat during dry years (Fig. 3a) are found in Australia, similar to the yield loss risk (Fig. 3a). Also,
- 270 Eastern Europe and Central Asia as well as parts of Midwestern Northern America shows high negative shock factor
- 271 for wheat (Fig. 3a, b) and maize (Fig. 3c, d). Eastern United States and Southern parts of Latin America have the
- highest negative impacts in soybean cultivation from both hot and dry shocks. For rice, (Fig. 3g, h) there seems to be
- 273 much less geographical variation and generally lower negative shock factors than the other crops, in line with previous
- studies where climatic conditions have been found to have lower effects for rice compared to other crops (e.g., Ray et
- al 2015). When comparing the shock factors to the mean of respective Holdridge zones (Fig. S8), all the studied crops
- show similar geographical patterns as in absolute shock factor values (Fig. 3) indicating that the mean effect across
- each of the climatic zones is rather minor (Fig. S9).

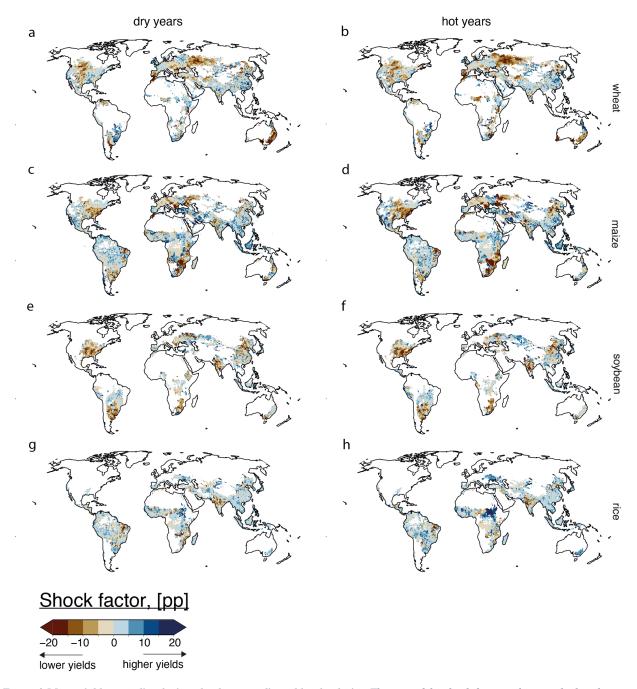


Figure 3 Mean yield anomalies during shock years adjusted by shock size. The sign of the shock factor indicates whether the mean yields for shock years are higher (positive values; blue) or lower (negative values; brown) than the running 5-year mean yield. The size of the shock factor indicates how large the shock size adjusted yield anomaly is during shock years. Dry years are those when number of days with soil moisture deficit in the >90th percentile is more than 1 standard deviation from the long-term mean. Hot years indicate that the number of days when number of days with air temperature in the >90th percentile is more than

284 *1 standard deviation from the long-term mean.*

286 3.3 Explanatory power of anthropogenic indicators

287 Anthropogenic indicators had substantially higher explanatory power in *yield loss risk* -case compared to when only 288 shock years, either "dry" or "hot", were examined (Fig. 4). This applies to all the studied crops and Holdridge climate 289 zones. For the yield loss risk-case, the explanatory power of the models across both the crops and Holdridge zones 290 seem to be quite clustered, whereas for the shock cases, especially hot years have somewhat larger range of values 291 with regards to the explanatory power of the models (e.g., Cool, Temperate, Steppe and Subtropical zones: Fig. 4a, b, 292 c, e). The mean explanatory power for yield loss risk varied generally between 40-60%, depending on climate zone 293 (Fig. 4) and crop (Fig. 5), whereas the mean explained variation in shock years was substantially lower, around 5 to 294 20%.

296

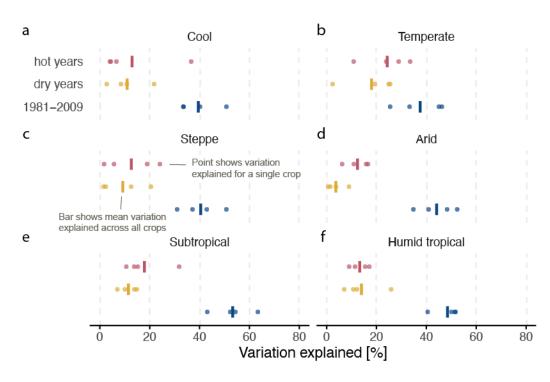


Figure 4 Variation explained within different Holdridge zones. Blue colour represents yield loss risk -case for years 1981-2009,
and yellow and red colours represent shock factor -cases for dry and hot years, respectively (see Methods). Each point represents
variation explained by models for single crop and horizontal bars represent the mean explanatory power across all crops.
Explained variation is measured as the squared Pearson's correlation coefficient between the observed and predicted outcome.

301 The explanatory power for yield loss risk in years 1981-2009 was rather similar (in average around 40-50%) across

302 all crops (Fig. 4). The best model performance in explaining the yield loss risk was observed in Subtropical and Humid

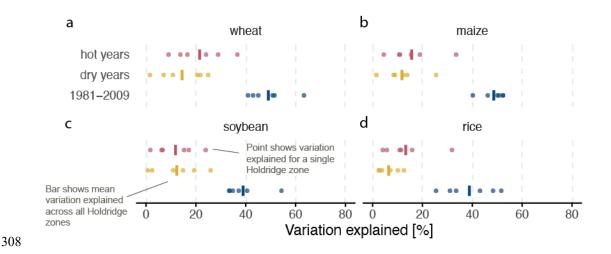
tropical climate zones (ca 50-55% on average), and lowest in Cool and Temperate zones (around 40%) (Fig. 4). In

304 terms of hot/dry shock years only, the mean shock factors were usually better explained in hot years, the difference to

dry years being in average 5-10 percentage points. For the crops, wheat models (Fig. 5a) had the largest mean

306 explanatory power for hot years (around 20%) while the mean value for dry years was around 10% for wheat, maize

307 and soybean and lower for rice (Fig. 5).



309 Figure 5 Variation explained for different crops. Blue colour represents yield loss risk -case for years 1981-2009, and yellow and 310 red colours represent shock factor -cases for dry and hot years, respectively (see Methods). Each point represents variation 311 explained by models for single Holdridge zone and horizontal bars represent the mean explanatory power across all Holdridge 312 zones. Explained variation is measured as the squared Pearson's correlation coefficient between the observed and predicted 313 outcome.

Measuring the explained variation for intersections of Holdridge zones and continents shows substantial geographical variation for all the crops in the *yield loss risk* -case (Fig. 6). In majority of Africa, for example, the explained variation was above 50% for all the crops. For the temperate regions in Europe and United States the fitted models explained

317 over 40% of the variation for wheat (Fig. 6a) and maize (Fig. 6d). By contrast, for the majority of the areas, the models

318 captured less than 30% of the variation in mean yield anomalies during shock years. Only wheat (Fig. 6c) and maize

319 (Fig. 6f) models in the Temperate Holdridge zones during hot years performed better, having explanatory power over

320 40%. The explanatory power was particularly low, for both dry and hot years, for areas in Latin America and East

321 Asia.

323

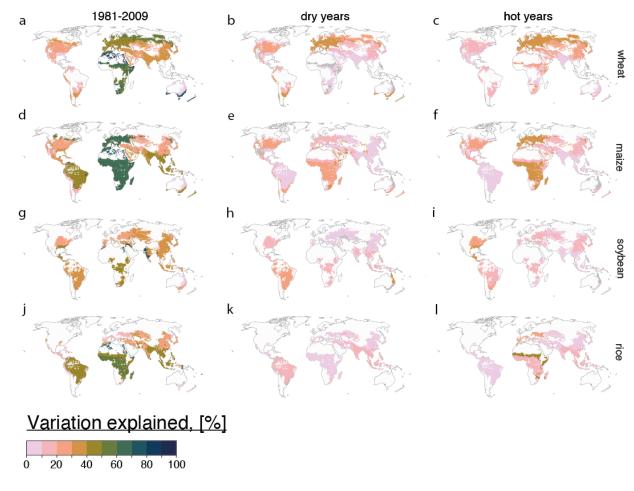


Figure 6 Explanatory power of the models within intersection of each Holdridge zone and continents for each crop (n = 37-42).
 Explained variation is measured as the squared Pearson's correlation coefficient between the observed and predicted outcome.

326 3.4 Importance of anthropogenic indicators

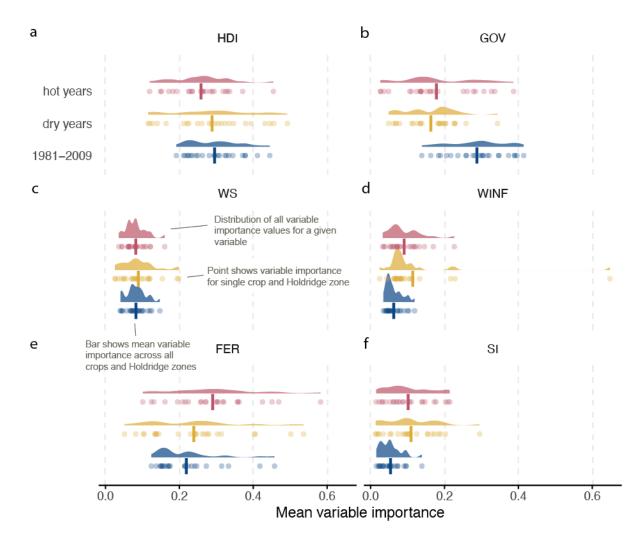
327 On global average, the most important predicting indicators were Human Development Index (HDI), governance 328 (GOV) and fertilizer use (FER) (Fig. 7). However, these indicators, especially FER, also had the highest range in 329 importance values across different crops and climate zones (Fig. 7e). When comparing the shock years to the general 330 yield loss case, some interesting differences were observed: the socio-economic indicators (HDI, GOV) had higher 331 importance in yield loss case than shock years, while for all other indicators, except for WS with no difference, the relationship is the opposite (Fig. 7). The difference is particularly strong in case of GOV, which is much more 332 333 important in yield loss case than in shock case. This indicates that the importance of different anthropogenic indicators 334 is different in 'normal' conditions than shock conditions. 335

When assessing the direction of the association between the indicators and the yield loss risk, indicators such as HDI

337 or FER had quite varying impacts within different Holdridge zones (Fig. S10). Quite unsurprisingly, higher fertilizer

use seems to contribute to lower yield variability for all the Holdridge zones with the exception for a few areas such as steppe for maize and soybean and subtropical for wheat. For HDI, the relationships between the indicator value and modelled variation were often nonlinear. Increasing of HDI over the 0.5 normalized HDI (i.e., half of the maximum

- HDI value) seems to yield substantially less variation in yield loss risk (Fig. S10).
- 342



343

344 Figure 7 Mean variable importance for each indicator. The indicators included are a. Human Development Index (HDI), b. 345 Governance efficiency (GOV), c. water stress (WS), d. irrigation infrastructure (WINF), e. fertilizer use (FER) and f. 346 Suitability index (SI). Variable importance is measured as mean Gain-values of models (n=10) for a given crop (n=4) and 347 Holdridge zone combination (n = 24). Higher Gain-value indicates that the variable is more important making the prediction. 348 Blue colour represents yield loss risk -case for years 1981-2009, and yellow and red colours represent shock factor -cases for 349 dry and hot years, respectively (see Methods). Each point represents variable importance for single model for a given crop and 350 Holdridge zone, the distribution shows how tightly clustered the variable importance values are, and horizontal bars represent 351 the mean explanatory power across all crops and Holdridge zones.

353 4 Discussion and conclusions

354 4.1 Key findings

355 We studied crop yield vulnerabilities and their relationship to global socioeconomic indicators with three specific 356 cases. First, we focused on yield variation measured as standard deviation of the negative yield anomalies (yield loss 357 risk -case). In the other cases, we considered mean yield anomalies during shock years only (hot years for high 358 temperature and dry years for high soil moisture deficit). Our results suggest that the long-term mean of the selected 359 anthropogenic indicators has substantial explanatory power over the variation of negative yield anomalies within 360 different climatological contexts (Fig 4. and Fig. 6). While the indicators used here are not necessarily directly linked 361 to different adaptation capabilities, they seem to have clear association with the yield variation for most of the studied 362 crops and Holdridge climatic zones.

363

364 When using mean yield anomalies during shock years as the target variable, the explanatory power is noticeably lower than in yield loss risk -case (Fig. 3 and Fig. 4). One potential reason for the difference is that the indicators with only 365 366 a single long-term average for a given indicator cannot capture the potential for adaption measures that are employed 367 on farm level during the shock years. The farm-level management decisions together with sufficient regional diversity 368 in farm characteristics can reduce the regional impacts of climate related shocks (Reidsma et al., 2010). In addition, 369 decision to employ adaptation measures can depend on many factors, such as cultivated crop type (grain or cash crop), 370 education level, access to electricity for irrigation, or access to credit (Alauddin & Sarker, 2014; Bryan et al., 2009; 371 H. Chen et al., 2014). With generic indicators such as HDI we cannot differentiate the actual locations where 372 adaptation methods are utilized.

373

374 The most important indicators support the fact that areas with increasing HDI and fertilizer use values have lower 375 negative yield variation which supports also findings of existing studies (Antwi-Agyei et al., 2012; Kamali et al., 376 2019; Simelton et al., 2012). However, the relationship between different indicators and yield variability is not 377 straightforward in many areas. For example, HDI and yield variation had a convex relationship as areas with low and 378 high HDI have considerably lower yield loss risk compared the "middle-ground" areas (Fig. S10). Studies such as 379 Reidsma et al. (2010) and Bharwani et al. (2005) suggest that poorer farmers might be better at adapting to climate 380 variability compared to richer farmers who respond more actively to market signals rather than climate signals. 381 Simelton et al. (2012), who also observed similar results, hypothesized that farmers in poorer countries relied on more 382 traditional farming and adaptation methods which are no longer utilized when country moves from poor to middle-

incoming country, thus increasing drought vulnerability.

384

385 Surprisingly, irrigation infrastructure (WINF) was relatively unimportant indicator for the predictions (Fig. 7) even

- though it has been previously identified as major factor reducing crop yield variation as well as buffer against extreme
- 387 warm days (Butler & Huybers, 2013; Troy et al., 2015; Vogel et al., 2019). The dataset used here (Siebert et al., 2015)
- is not crop specific, thus detecting effects of irrigation for a certain crop may be challenging. While we used same

irrigation infrastructure extent for all the crops, there are major differences where irrigation is used with a given crop (Portmann et al., 2010), creating noise in the model.

391

392 4.2 Limitations and way forward

393 Assessing the relationship of crop yield anomalies and anthropogenic indicators on a global scale has several 394 challenges. Firstly, comprehensive global timeseries on farm-management practices that span sufficient long time 395 period are non-existent. Using long term mean values for indicators might not be representative for countries that have 396 experienced drastic changes during the study time period. Secondly, we employ a set of rather generic indicators which 397 might not correlate directly with the management practices and decision done in the farms. While generic indicators 398 such as gross domestic product or human development index are generally used as proxies for location specific 399 adaptive capacity, more specific political and socio-economic contexts are needed to measure the impacts of specific 400 interventions (Challinor et al., 2010). However, to our knowledge, comparable data on a global scale at subnational 401 or higher resolution does not exist. Further, crop responses may be highly non-linear compared to each other, (Jackson 402 et al., 2021), thus selecting an arbitrary shock threshold may have very different adaptation implications depending 403 on the crop in question. Also, additional environmental factors such as soil type may have substantial impacts on the 404 results (Folberth et al., 2016) further complicating the relationships.

405

406 4.3 Concluding remarks

407 The global food systems are facing increasing risks as the hot and dry conditions are getting more common (Sarhadi 408 et al., 2018). Further, the increasing shocks can affect multiple crops or crops within different "breadbaskets" 409 simultaneously (Gaupp et al., 2020; Tigchelaar et al., 2018) causing major challenges especially from food security 410 perspective if the lack of production cannot be compensated by trade. From a longer time perspective, climate change 411 is also pushing substantial size of the food production outside of the current. climatic conditions (Kummu et al., 2021). These changes amplify the need for understanding local vulnerabilities across the globe. The results from our high-412 resolution study indicate the most vulnerable crop production areas to negative crop yield variability, where 413 414 prioritizing the mitigation efforts could increase the local food security. While the variation in yields cannot be entirely 415 prevented, agricultural policies which support increasing local nutrient availability through nutrient recycling and 416 effective fertilizer use promote resilience towards shocks. In addition, proper social and institutional support as well 417 as understanding local contexts when developing the areas suffering from low education and poverty have important 418 contribution for supporting local food security.

419

421 Acknowledgments, Samples, and Data

- 422 The authors declare no conflicts of interest relevant to this study.
- 423 The study was funded by Maa- ja vesitekniikan tuki ry, Academy of Finland funded project WATVUL (grant no.
- 424 317320), Academy of Finland funded project TREFORM (grant no. 339834), and European Research Council (ERC)
- under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 819202). We
- also thank Ilkka Mellin for his valuable comments on the methodology. DKR was supported by the Institute on the
- 427 Environment, University of Minnesota.
- 428

429 Author contributions

- 430 PK, MT, MK created initial study design. PK and MH were responsible for the analyses. DKR supplied crop yield
- data. PK wrote the manuscript with contributions from, MH, MT, VS and MK.
- 432

433 Code availability

- All the codes for creating the results in this paper are available at https://github.com/pskinnun/shock_vulnerability
- 435

436 Data availability

- 437 All raw data sources are open sourced and available online.
- 438

439 **References**

- 440 Alauddin, M., & Sarker, M. A. R. (2014). Climate change and farm-level adaptation decisions and strategies in
- 441 drought-prone and groundwater-depleted areas of Bangladesh: an empirical investigation. *Ecological Economics*,
- 442 106, 204–213. <u>https://doi.org/10.1016/j.ecolecon.2014.07.025</u>
- 443
- Antwi-Agyei, P., Fraser, E. D. G., Dougill, A. J., Stringer, L. C., & Simelton, E. (2012). Mapping the vulnerability
- of crop production to drought in Ghana using rainfall, yield and socioeconomic data. *Applied Geography*, 32(2),
- 446 324–334. <u>https://doi.org/10.1016/j.apgeog.2011.06.010</u>
- 447
- 448 Apley, D. W., & Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised learning
- 449 models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 82(4), 1059–1086.
- 450 https://doi.org/10.1111/rssb.12377
- 451
- 452 Bharwani, S., Bithell, M., Downing, T. E., New, M., Washington, R., & Ziervogel, G. (2005). Multi-agent
- 453 modelling of climate outlooks and food security on a community garden scheme in Limpopo, South Africa.
- 454 *Philosophical Transactions of the Royal Society B: Biological Sciences*, *360*(1463), 2183–2194.
- 455 https://doi.org/10.1098/rstb.2005.1742

456	
457	Bryan, E., Deressa, T. T., Gbetibouo, G. A., & Ringler, C. (2009). Adaptation to climate change in Ethiopia and
458	South Africa: options and constraints. Environmental Science & Policy, 12(4), 413-426.
459	https://doi.org/10.1016/j.envsci.2008.11.002
460	
461	Butler, E. E., & Huybers, P. (2013). Adaptation of US maize to temperature variations. Nature Climate Change,
462	3(1), 68–72. https://doi.org/10.1038/nclimate1585
463	
464	Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D., & Collins, M. (2010). Increased crop failure due to
465	climate change: assessing adaptation options using models and socio-economic data for wheat in China.
466	Environmental Research Letters, 5(3), 034012. https://doi.org/10.1088/1748-9326/5/3/034012
467	
468	Chatzopoulos, T., Pérez Domínguez, I., Zampieri, M., & Toreti, A. (2020). Climate extremes and agricultural
469	commodity markets: A global economic analysis of regionally simulated events. Weather and Climate Extremes, 27,
470	100193. https://doi.org/10.1016/j.wace.2019.100193
471	
472	Chen, H., Wang, J., & Huang, J. (2014). Policy support, social capital, and farmers' adaptation to drought in China.
473	Global Environmental Change, 24, 193–202. https://doi.org/10.1016/j.gloenvcha.2013.11.010
474	
475	Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
476	SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY,
477	USA: ACM. https://doi.org/10.1145/2939672.2939785
478	
479	Chen, T., Benesty, M., & He, T. (2018). Understand Your Dataset with Xgboost. Retrieved July 6, 2021, from
480	https://cran.r-project.org/web/packages/xgboost/vignettes/discoverYourData.html#numeric-v.scategorical-
481	variables
482	
483	Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al. (2021). xgboost: Extreme Gradient
484	Boosting. Retrieved from https://CRAN.R-project.org/package=xgboost
485	
486	Cohn, A. S., Newton, P., Gil, J. D. B., Kuhl, L., Samberg, L., Ricciardi, V., et al. (2017). Smallholder Agriculture
487	and Climate Change. Annual Review of Environment and Resources, 42(1), 347–375.
488	https://doi.org/10.1146/annurev-environ-102016-060946
489	
490	Cottrell, R. S., Nash, K. L., Halpern, B. S., Remenyi, T. A., Corney, S. P., Fleming, A., et al. (2019). Food
491	production shocks across land and sea. Nature Sustainability, 2(2), 130-137. https://doi.org/10.1038/s41893-018-
492	<u>0210-1</u>

493	
494	Distefano, T., Laio, F., Ridolfi, L., & Schiavo, S. (2018). Shock transmission in the International Food Trade
495	Network. PLOS ONE, 13(8), e0200639. https://doi.org/10.1371/journal.pone.0200639
496	
497	Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., et al. (2017). Crop Production under
498	Drought and Heat Stress: Plant Responses and Management Options. Frontiers in Plant Science, 8, 1147.
499	https://doi.org/10.3389/fpls.2017.01147
500	
501	FAO (Ed.). (2019). Safeguarding against economic slowdowns and downturns. Rome: FAO.
502	
503	Fischer, G., Nachtergaele, F. O., Prieler, S., Teixeira, E., Toth, G., Velthuizen, H. van, et al. (2012). Global Agro-
504	ecological Zones (GAEZ v3.0)- Model Documentation. Laxenburg, Austria; Rome, Italy: IIASA, Laxenburg,
505	Austria and FAO, Rome, Italy. Retrieved from http://pure.iiasa.ac.at/id/eprint/13290/
506	
507	Folberth, C., Skalský, R., Moltchanova, E., Balkovič, J., Azevedo, L. B., Obersteiner, M., & van der Velde, M.
508	(2016). Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nature
509	Communications, 7(1), 11872. https://doi.org/10.1038/ncomms11872
510	
511	Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189-
512	1232. https://doi.org/10.1214/aos/1013203451
513	
514	Fuss, S., Havlík, P., Szolgayová, J., Schmid, E., Reuter, W. H., Khabarov, N., et al. (2015). Global food security &
515	adaptation under crop yield volatility. Technological Forecasting and Social Change, 98, 223-233.
516	https://doi.org/10.1016/j.techfore.2015.03.019
517	
518	Gaupp, F., Hall, J., Hochrainer-Stigler, S., & Dadson, S. (2020). Changing risks of simultaneous global breadbasket
519	failure. Nature Climate Change, 10(1), 54-57. https://doi.org/10.1038/s41558-019-0600-z
520	
521	Gbetibouo, G. A., Ringler, C., & Hassan, R. (2010). Vulnerability of the South African farming sector to climate
522	change and variability: An indicator approach. Natural Resources Forum, 34(3), 175-187.
523	https://doi.org/10.1111/j.1477-8947.2010.01302.x
524	
525	Hartman, G. L., West, E. D., & Herman, T. K. (2011). Crops that feed the World 2. Soybean-worldwide
526	production, use, and constraints caused by pathogens and pests. Food Security, 3(1), 5-17.
527	https://doi.org/10.1007/s12571-010-0108-x
528	

- 529 Heino, M., Kinnunen, P., Anderson, W., Ray, D., Puma, M. J., Varis, O., & Kummu, M. (2021). Increased
- 530 probability of crop yield reducing hot and dry weather extremes. Manuscript under preparation.
- 531
- 532 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The ERA5 global
- reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), g. https://doi.org/10.1002/qj.3803
- 534
- 535 Hofste, R. W., Kuzma, S., Walker, S., Sutanudjaja, E. H., Bierkens, M. F., Kuijper, M., et al. (2019). Aqueduct 3.0:
- 536 Updated decision-relevant global water risk indicators. *World Resources Institute: Washington, DC, USA*.
- 537
- Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. *Science*, 105(2727),
 367–368. https://doi.org/10.1126/science.105.2727.367
- 540
- 541 Holdridge, L. R. (1967). In Life zone ecology. *Tropical Science Center*.
- 542
- Jackson, N. D., Konar, M., Debaere, P., & Sheffield, J. (2021). Crop-specific exposure to extreme temperature and
- moisture for the globe for the last half century. *Environ. Res. Lett.*, 20. <u>https://doi.org/10.1088/1748-9326/abf8e0</u> 545
- 546 Kamali, B., Abbaspour, K. C., Wehrli, B., & Yang, H. (2019). A Quantitative Analysis of Socio-Economic
- 547 Determinants Influencing Crop Drought Vulnerability in Sub-Saharan Africa. Sustainability, 11(21).
- 548 <u>https://doi.org/10.3390/su11216135</u>
- 549

550 Kuhn, M. (2020). caret: Classification and Regression Training. Retrieved from https://CRAN.R-

- 551 project.org/package=caret
- 552
- 553 Kummu, M., Taka, M., & Guillaume, J. H. A. (2018). Gridded global datasets for Gross Domestic Product and
- Human Development Index over 1990–2015. *Scientific Data*, 5(1), 180004. <u>https://doi.org/10.1038/sdata.2018.4</u>
- 556 Kummu, M., Heino, M., Taka, M., Varis, O., & Viviroli, D. (2021). Climate change risks pushing one-third of
- 557 global food production outside the safe climatic space. *One Earth*, 4(5), 720–729.
- 558 <u>https://doi.org/10.1016/j.oneear.2021.04.017</u>
- 559
- 560 Lehner, B., & Grill, G. (2013). Global river hydrography and network routing: baseline data and new approaches to
- study the world's large river systems. *Hydrological Processes*, 27(15), 2171–2186. <u>https://doi.org/10.1002/hyp.9740</u>
 562
- 563 Leng, G., & Hall, J. W. (2020). Predicting spatial and temporal variability in crop yields: an inter-comparison of
- 564 machine learning, regression and process-based models. *Environmental Research Letters*, 15(4), 044027.
- 565 <u>https://doi.org/10.1088/1748-9326/ab7b24</u>

566	
567	Leutner, B., Horning, N., & Schwalb-Willmann, J. (2019). RStoolbox: Tools for Remote Sensing Data Analysis.
568	Retrieved from https://CRAN.R-project.org/package=RStoolbox
569	
570	Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half
571	century: shifted hot spots and nutrient imbalance. Earth System Science Data, 9(1), 181-192.
572	https://doi.org/10.5194/essd-9-181-2017
573	
574	MacDonald, G. K., Brauman, K. A., Sun, S., Carlson, K. M., Cassidy, E. S., Gerber, J. S., & West, P. C. (2015).
575	Rethinking Agricultural Trade Relationships in an Era of Globalization. BioScience, 65(3), 275-289.
576	https://doi.org/10.1093/biosci/biu225
577	
578	Meyer, H., Reudenbach, C., Wöllauer, S., & Nauss, T. (2019). Importance of spatial predictor variable selection in
579	machine learning applications - Moving from data reproduction to spatial prediction. Ecological Modelling, 411,
580	108815. https://doi.org/10.1016/j.ecolmodel.2019.108815
581	
582	Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps
583	through nutrient and water management. Nature, 490(7419), 254-257. https://doi.org/10.1038/nature11420
584	
585	Müller, C., Elliott, J., Pugh, T. A. M., Ruane, A. C., Ciais, P., Balkovic, J., et al. (2018). Global patterns of crop
586	yield stability under additional nutrient and water inputs. PLOS ONE, 13(6), e0198748.
587	https://doi.org/10.1371/journal.pone.0198748
588	
589	Portmann, F. T., Siebert, S., & Döll, P. (2010). MIRCA2000-Global monthly irrigated and rainfed crop areas
590	around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global
591	Biogeochemical Cycles, 24(1). https://doi.org/10.1029/2008GB003435
592	
593	R Core Team. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation
594	for Statistical Computing. Retrieved from https://www.R-project.org/
595	
596	Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C., & Foley, J. A. (2012). Recent patterns of crop yield growth
597	and stagnation. Nature Communications, 3(1), 1293. https://doi.org/10.1038/ncomms2296
598	
599	Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop
600	yield variability. Nature Communications, 6(1), 5989. https://doi.org/10.1038/ncomms6989
601	

- 602 Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019). Climate change has
- 603 likely already affected global food production. *PLOS ONE*, *14*(5), 1–18.
- 604 <u>https://doi.org/10.1371/journal.pone.0217148</u>
- 605
- 606 Reidsma, P., Ewert, F., Lansink, A. O., & Leemans, R. (2010). Adaptation to climate change and climate variability
- 607 in European agriculture: The importance of farm level responses. *European Journal of Agronomy*, 32(1), 91-102.
- 608 <u>https://doi.org/10.1016/j.eja.2009.06.003</u>
- 609
- 610 Ricciardi, V., Ramankutty, N., Mehrabi, Z., Jarvis, L., & Chookolingo, B. (2018). How much of the world's food do
- 611 smallholders produce? *Global Food Security*, 17, 64–72. <u>https://doi.org/10.1016/j.gfs.2018.05.002</u>
- 612
- RStudio Team. (2019). *RStudio: Integrated Development Environment for R*. Boston, MA: RStudio, Inc. Retrieved
 from <u>http://www.rstudio.com/</u>
- 615
- 616 Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling:
- 617 Merged products for gap-filling and historical climate series estimation. *Agric. Forest Meteorol.*, 200, 233–248.
- 618 <u>https://doi.org/10.1016/j.agrformet.2014.09.016</u>
- 619
- 620 Sarhadi, A., Ausín, M. C., Wiper, M. P., Touma, D., & Diffenbaugh, N. S. (2018). Multidimensional risk in a
- 621 nonstationary climate: Joint probability of increasingly severe warm and dry conditions. *Science Advances*, 4(11),
- 622 eaau3487. <u>https://doi.org/10.1126/sciadv.aau3487</u>
- 623
- 624 Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., & Scanlon, B. R. (2015). A global data set of the
- extent of irrigated land from 1900 to 2005. *Hydrology and Earth System Sciences*, 19(3), 1521–1545.
- 626 <u>https://doi.org/10.5194/hess-19-1521-2015</u>
- 627
- 628 Simelton, E., Fraser, E. D. G., Termansen, M., Forster, P. M., & Dougill, A. J. (2009). Typologies of crop-drought
- 629 vulnerability: an empirical analysis of the socio-economic factors that influence the sensitivity and resilience to
- drought of three major food crops in China (1961–2001). *Environmental Science & Policy*, 12(4), 438–452.
- 631 <u>https://doi.org/10.1016/j.envsci.2008.11.005</u>
- 632
- 633 Simelton, E., Fraser, E. D. G., Termansen, M., Benton, T. G., Gosling, S. N., South, A., et al. (2012). The
- 634 socioeconomics of food crop production and climate change vulnerability: a global scale quantitative analysis of
- 635 how grain crops are sensitive to drought. *Food Security*, 4(2), 163–179. <u>https://doi.org/10.1007/s12571-012-0173-4</u>
- 636

637 Smits, J., & Permanyer, I. (2019). The Subnational Human Development Database. *Scientific Data*, 6(1), 190038.

638 <u>https://doi.org/10.1038/sdata.2019.38</u>

639	
039	

- Tigchelaar, M., Battisti, D. S., Naylor, R. L., & Ray, D. K. (2018). Future warming increases probability of globally
- 641 synchronized maize production shocks. *Proceedings of the National Academy of Sciences*, *115*(26), 6644–6649.
- 642 <u>https://doi.org/10.1073/pnas.1718031115</u>
- 643
- Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of
- agriculture. *Proceedings of the National Academy of Sciences*, *108*(50), 20260.
- 646 <u>https://doi.org/10.1073/pnas.1116437108</u>
- 647
- Troy, T. J., Kipgen, C., & Pal, I. (2015). The impact of climate extremes and irrigation on US crop yields.
- 649 Environmental Research Letters, 10(5), 054013. https://doi.org/10.1088/1748-9326/10/5/054013
- 650
- Varis, O., Taka, M., & Kummu, M. (2019). The Planet's Stressed River Basins: Too Much Pressure or Too Little
- 652 Adaptive Capacity? *Earth's Future*, 7(10), 1118–1135. <u>https://doi.org/10.1029/2019EF001239</u>
- 653
- Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., et al. (2019). The effects of
- climate extremes on global agricultural yields. *Environmental Research Letters*, 14(5), 054010.
- 656 <u>https://doi.org/10.1088/1748-9326/ab154b</u>
- 657
- West, P. C., Gerber, J. S., Engstrom, P. M., Mueller, N. D., Brauman, K. A., Carlson, K. M., et al. (2014). Leverage
- points for improving global food security and the environment. *Science*, *345*(6194), 325.
- 660 <u>https://doi.org/10.1126/science.1246067</u>
- 661
- 662 WGI. (2018). The worldwide governance indicators. Retrieved from Retrieved from Washington D.C.:
- 663 <u>http://info.worldbank.org/governance/wgi/#home</u>

@AGUPUBLICATIONS

Earth's Future

Supporting Information for

Over Half of the Negative Crop Yield Variability Explained by Anthropogenic Indicators

P. Kinnunen*1, M. Heino¹, V. Sandström¹, M. Taka¹, D. K. Ray², M. Kummu*¹

¹ Water and Development Research Group, Aalto University, Espoo, Finland

² Institute on the Environment, University of Minnesota, Twin Cities, USA

*Corresponding author: Pekka Kinnunen (<u>pekka.kinnunen@aalto.fi</u>), Matti Kummu (matti.kummu@aalto.fi)

Contents of this file

Figures S1 to S10

Introduction

This supporting information provides additional figures to support the findings of the main text.

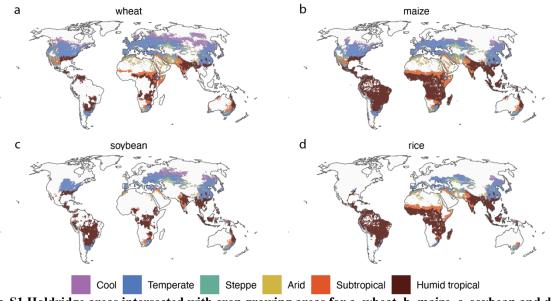


Fig. S1 Holdridge areas intersected with crop growing areas for a. wheat, b. maize, c. soybean and d. rice.

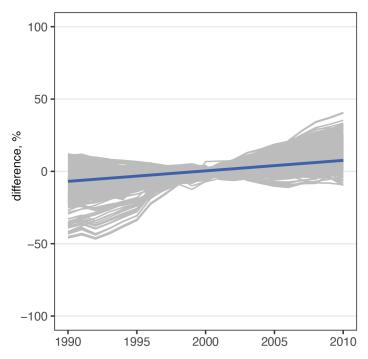


Fig. S2 Difference of subnational Human Development Index (HDI) values (1990-2010) compared to the mean of 1995-2005. We sampled 5000 grid cells from the subnational HDI raster and plotted the timeseries for HDI values for each grid point. Grey lines portray values for the grid cells and blue line depicts linear trend for all the sampled grid cells.

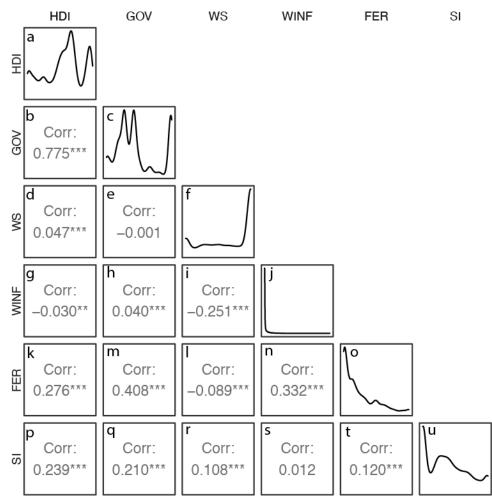


Fig. S3 Distributions (diagonal) and variable correlations for the anthropogenic indicators.

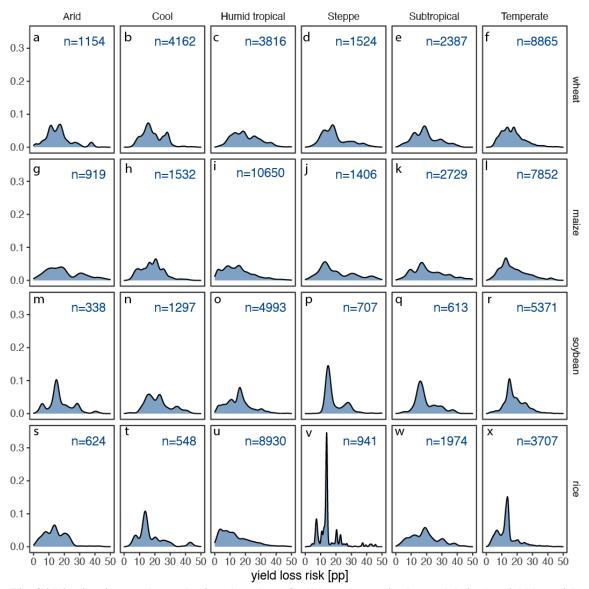


Fig. S4 Distributions and sample sizes (number of cells) used to train the models in the yield loss risk - case. Higher yield loss risk indicates that a grid cell has larger spread in negative yield anomalies (yields lower than running 5-year average) during the study period.

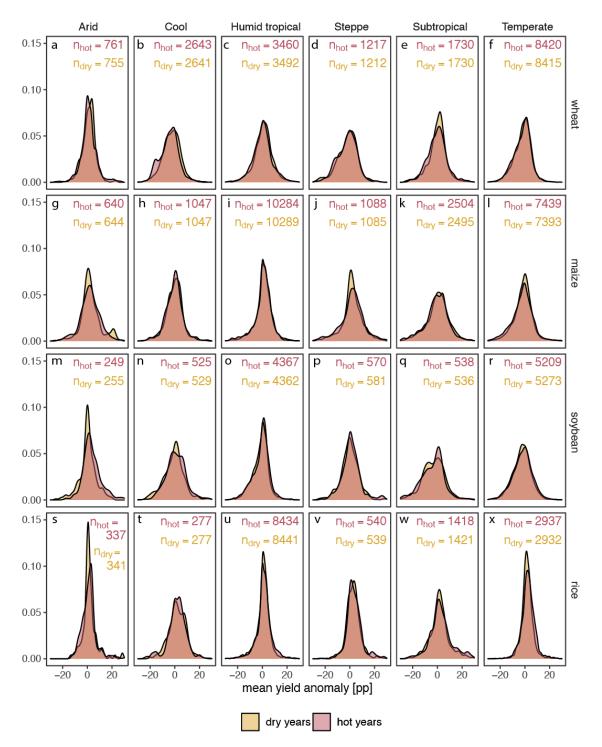


Fig. S5 Distributions and sample sizes (number of cells) used to train the models in the shock factor - cases. Dry years are those when soil moisture deficit is in the >90th percentile is more than 1 standard deviation from the long-term mean (as the number of days). Hot years indicate that the number of days when air temperature is in the 90-100% percentile is more than 1 standard deviation from the long-term mean.

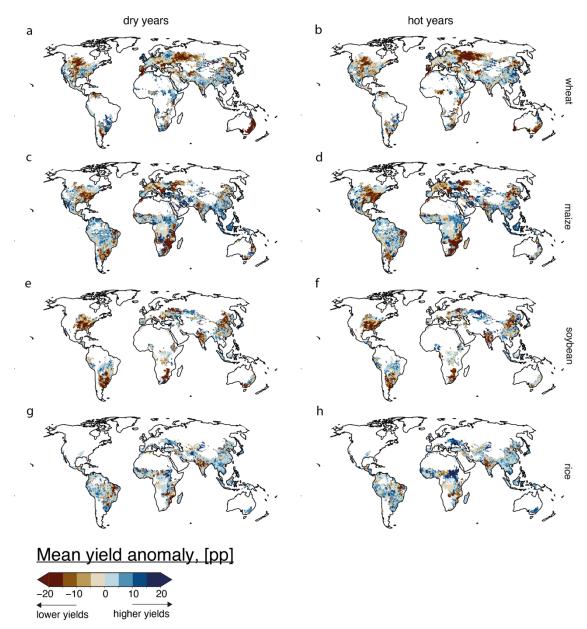


Fig. S6 Mean yield anomalies during shock years. The sign of the yield anomaly indicates whether the mean yields for shock years are higher (positive values; blue) or lower (negative values; brown) than the running 5-year mean yield. Dry years are those when number of days with soil moisture deficit in the $>90^{\text{th}}$ percentile is more than 1 standard deviations from the long-term mean. Hot years indicate that the number of days when number of days with air temperature in the $>90^{\text{th}}$ percentile is more than 1 standard deviation from the long-term mean.

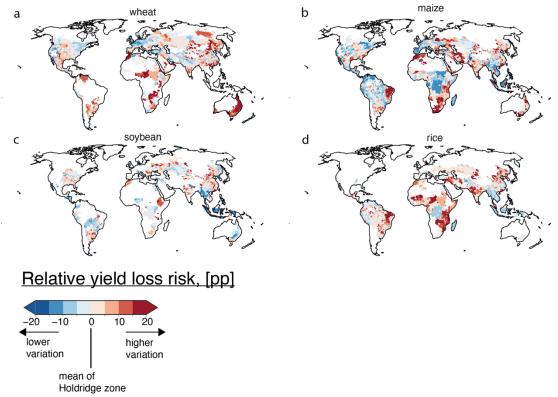


Fig. S7 Difference (as percentage points) between yield loss risk (standard deviation of negative yield anomalies) compared to the mean yield loss risk weighted by mean harvested area for a Holdridge zone for a. wheat, b. maize, c. soybean, and d. rice. Increasing yield loss risk (in red) indicates that a grid cell has larger spread in negative yield anomalies (yields lower than running 5-year average) during the study period compared to the mean yield loss risk of the respective Holdridge zone. Decreasing yield loss risk in (blue) indicates smaller variation in negative yield anomalies compared to the weighted mean of the respective Holdridge zone. Values close to zero indicate that the yields align the Holdridge zone's mean yields over 1981-2009, and white areas indicate no production of the crop in question.

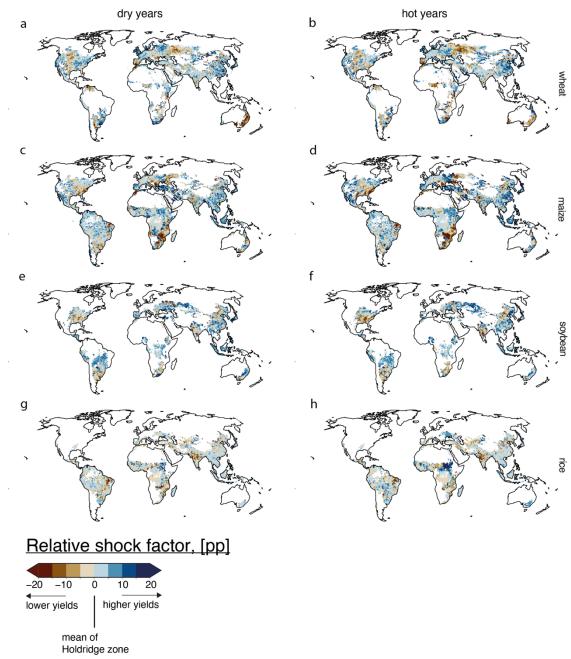


Fig. S8 Difference (as percentage points) in shock factors across shock years. Dry years are those when soil moisture deficit is in the >90th percentile is more than 1 standard deviation from the long-term mean (as the number of days). Hot years indicate that the number of days when air temperature is in the 90-100% percentile is more than 1 standard deviations from the long-term mean. For each grid cell, the mean shock factors are compared to the mean of the whole Holdridge zone. Negative value indicates that the detrended yields normalized by shock sizes are lower than the mean value for a given Holdridge zone. Positive value (blue) indicates that yields during shock years are higher than the mean value for a given Holdridge zone.

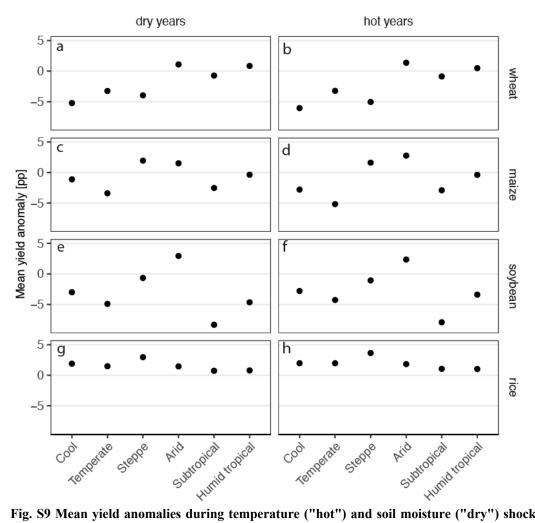


Fig. S9 Mean yield anomalies during temperature ("hot") and soil moisture ("dry") shock years in Holdridge zones. Dry years are those when soil moisture deficit is in the >90th percentile is more than 1 standard deviation from the long-term mean (as the number of days). Hot years indicate that the number of days when air temperature is in the 90-100% percentile is more than 1 standard deviation from the long-term mean.

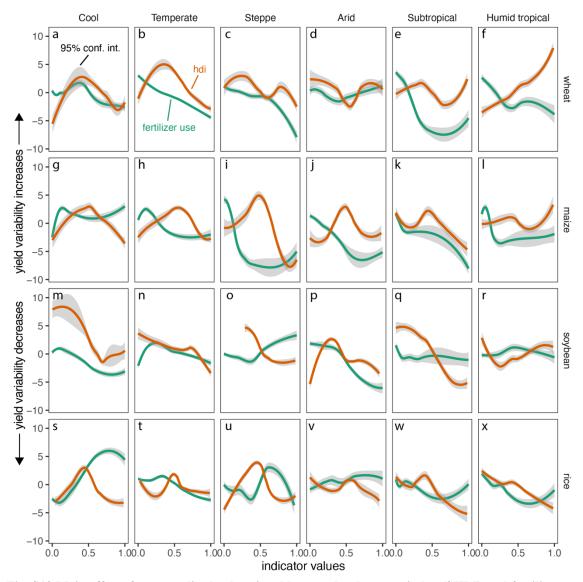


Fig. S10 Main effects for normalized subnational human development index (SHDI) and fertilizer use for assessing the negative crop yield variation at each Holdridge zone from Cool to Humid tropical. The effects are estimated using accumulated local effects -plot (ALE-plot) (Apley & Zhu, 2020) from the 10 models fitted for each crop and Holdridge zone combination aggregated using loess-smoothing. The ALE-plot shows the average marginal effect that the indicator has on the model's outcome variable. The figure shows the magnitude of the effect on yield loss risk (y-axis) with given indicator values (x-axis). The shaded areas indicate 95% confidence intervals.

References

Apley, D. W., & Zhu, J. (2020). Visualizing the effects of predictor variables in black box supervised learning models. *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*), 82(4), 1059–1086. https://doi.org/10.1111/rssb.12377