4D-Var inversion of European NH3 emissions using CrIS NH3 measurements and GEOS-Chem adjoint with bi-directional and uni-directional flux schemes

Hansen Cao¹, Daven K. Henze¹, Liye Zhu², Mark W Shephard³, Karen Cady-Pereira⁴, Enrico Dammers⁵, Michael Sitwell⁵, Nicholas Heath⁶, Chantelle Lonsdale⁷, Jesse Owen Bash⁸, Kazuyuki Miyazaki⁹, Chris Flechard¹⁰, Yannick Fauvel¹¹, Roy J. Wichink Kruit¹², Stefan Feigenspan¹³, Christian Brümmer¹⁴, Frederik Schrader¹⁴, Marsailidh Twigg¹⁵, sarah Leeson¹⁶, Yuk Sim Tang¹⁷, Amy C.M. Stephens¹⁷, Christine Braban¹⁸, Keith Vincent¹⁹, Mario Meier²⁰, Eva Seitler²⁰, Camilla Geels²¹, Thomas Ellermann²¹, Agnieszka Sanocka¹⁹, and Shannon L Capps²²

¹University of Colorado Boulder ²Sun Yat-sen University ³Environment Canada ⁴Atmospheric and Environmental Research, Inc. ⁵Environment and Climate Change Canada ⁶Atmospheric and Environmental Research Inc., USA ⁷Department of Civil, Structural and Environmental Engineering, University at Buffalo ⁸U.S. EPA ⁹Jet Propulsion Laboratory ¹⁰INRAE (National Research Institute for Agriculture, Food and Environment), UMR SAS, Agrocampus Quest ¹¹INRAE ¹²National Institute for Public Health and the Environment ¹³German Environment Agency ¹⁴Thünen Institute of Climate-Smart Agriculture ¹⁵UK Centre for Ecology & Hydrology, Bush Estate, Penicuik ¹⁶Centre of Ecology and Hydrology (CEH) ¹⁷Centre for Ecology and Hydrology ¹⁸Center for Ecology and Hydrology ¹⁹Ricardo Energy & Environment ²⁰Forschungsstelle für Umweltbeobachtung ²¹Aarhus University ²²Georgia Institute of Technology

November 22, 2022

Abstract

We conduct the first 4D-Var inversion of NH3 accounting for NH3 bidirectional flux, using CrIS satellite NH3 observations

over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close(<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10-20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NHx wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-downNH3emission estimates associated with treatment of NH3surface exchange.

4D-Var inversion of European NH_3 emissions using CrIS NH_3 measurements and GEOS-Chem adjoint with bi-directional and uni-directional flux schemes

1

2

3

Hansen Cao¹, Daven K. Henze¹, Liye Zhu², Mark W. Shephard³, Karen
Cady-Pereira⁴, Enrico Dammers⁵, Michael Sitwell³, Nicholas Heath⁴,
Chantelle Lonsdale⁶, Jesse O. Bash⁷, Kazuyuki Miyazaki ⁸, Christophe
Flechard⁹, Yannick Fauvel⁹, Roy Wichink Kruit¹⁰, Stefan Feigenspan¹¹,
Christian Brümmer¹², Frederik Schrader¹², Marsailidh M. Twigg¹³, Sarah
Leeson¹³, Yuk S. Tang¹³, Amy C.M. Stephens¹³, Christine Braban¹³, Keith
Vincent¹⁴, Mario Meier¹⁵, Eva Seitler¹⁵, Camilla Geels¹⁶, Thomas Ellermann¹⁶,
Agnieszka Sanocka¹⁴, Shannon L. Capps¹⁷

 ²Sun Yat-sen University, China ³Environment and Climate Change Canada, Toronto, Ontario, Canada ⁴Atmospheric and Environmental Research Inc., USA ⁵Netherlands Organisation for Applied Scientific Research (TNO), Climate Air and Sustainability (Utrecht, The Netherlands ⁶Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, N ⁷U.S. Environmental Protection Agency, USA ⁸Jet Propulsion Laboratory, California Institute of Technology, USA ⁹INRAE (National Research Institute for Agriculture, Food and Environment), UMR SAS, Agroca 	
 ⁴Atmospheric and Environmental Research Inc., USA ⁵Netherlands Organisation for Applied Scientific Research (TNO), Climate Air and Sustainability (Utrecht, The Netherlands ⁶Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, N ⁷U.S. Environmental Protection Agency, USA ⁸Jet Propulsion Laboratory, California Institute of Technology, USA 	
 ⁵Netherlands Organisation for Applied Scientific Research (TNO), Climate Air and Sustainability (Utrecht, The Netherlands ⁶Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, N ⁷U.S. Environmental Protection Agency, USA ⁸Jet Propulsion Laboratory, California Institute of Technology, USA 	
17 Utrecht, The Netherlands 18 ⁶ Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, N 19 ⁷ U.S. Environmental Protection Agency, USA 20 ⁸ Jet Propulsion Laboratory, California Institute of Technology, USA	
 ⁶Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, N³ ⁷U.S. Environmental Protection Agency, USA ⁸Jet Propulsion Laboratory, California Institute of Technology, USA 	CAS),
19 ⁷ U.S. Environmental Protection Agency, USA 20 ⁸ Jet Propulsion Laboratory, California Institute of Technology, USA	
⁸ Jet Propulsion Laboratory, California Institute of Technology, USA	Y USA
²¹ ⁹ INRAE (National Research Institute for Agriculture, Food and Environment), UMR SAS, Agroca	
	mpus
22 Ouest, 65 rue de Saint-Brieuc, 35042 Rennes, France	
²³ ¹⁰ National Institute for Public Health and the Environment, The Netherlands	
²⁴ ¹¹ German Environment Agency, Germany	
²⁵ ¹² Thünen Institute of Climate-Smart Agriculture, Germany	
²⁶ ¹³ UK Centre for Ecology & Hydrology, UK	
²⁷ ¹⁴ Ricardo Energy & Environment, Wantage, England, UK	
²⁸ ¹⁵ Forschungsstelle für Umweltbeobachtung, Switzerland	
²⁹ ¹⁶ Department of Environmental Science, Aarhus University, Denmark	
³⁰ ¹⁷ Civil, Architectural, and Environmental Engineering Department, Drexel University, Philadelphia	ı, PA,
31 USA	

Corresponding author: Daven K. Henze, daven.henze@colorado.edu

32 Key Points:

33	•	First 4D-Var inversion to include bi-directional flux of $\rm NH_3,$ based on CrIS $\rm NH_3$
34		and cross-validated with surface observations.
35	•	Bi-directional flux reduces posterior regional $\rm NH_3$ emissions by 10-20% annually
36		(monthly up to 34%), compared to uni-directional emissions.
37	•	Posterior NH_3 emissions generally improve simulated seasonality and magnitude
38		of NH_3 and NH_x wet deposition.

39 Abstract

We conduct the first 4D-Var inversion of NH₃ accounting for NH₃ bidirectional flux, 40 using CrIS satellite NH_3 observations over Europe in 2016. We find posterior NH_3 emis-41 sions peak more in springtime than prior emissions at continental to national scales, and 42 annually they are generally smaller than the prior emissions over central Europe, but larger 43 over most of the rest of Europe. Annual posterior anthropogenic NH_3 emissions for 25 44 European Union members (EU25) are 25% higher than the prior emissions and very close 45 (< 2% difference) to other inventories. Our posterior annual anthropogenic emissions 46 for EU25, the UK, the Netherlands, and Switzerland are generally 10-20% smaller than 47 when treating NH_3 fluxes as uni-directional emissions, while the monthly regional dif-48 ference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ ob-49 servations, our posterior NH₃ emissions from both schemes generally improve the mag-50 nitude and seasonality of simulated surface NH_3 and bulk NH_x wet deposition through-51 out most of Europe, whereas evaluation against hourly measurements at a background 52 site shows the bi-directional scheme better captures observed diurnal variability of sur-53 face NH₃. This contrast highlights the need for accurately simulating diurnal variabil-54 ity of NH_3 in assimilation of sun-synchronous observations and also the potential value 55 of future geostationary satellite observations. Overall, our top-down ammonia emissions 56 can help to examine the effectiveness of air pollution control policies to facilitate future 57 air pollution management, as well as helping us understand the uncertainty in top-down 58 NH₃ emission estimates associated with treatment of NH₃ surface exchange. 59

60

Plain Language Summary

Atmospheric ammonia contributes to air pollutants and excessive deposition of re-61 active nitrogen that is detrimental to sensitive ecosystems. Ammonia is emitted mainly 62 by agricultural livestock and fertilizer use. While surface measurements of NH_3 are sparse, 63 satellite observations can provide near daily global coverage. Here we calculate monthly 64 NH_3 emissions over Europe, the only region adopting NH_3 control policies, using an air 65 quality model coupled with a process-based bi-directional NH_3 flux scheme and NH_3 mea-66 surements observed by the CrIS satellite instrument. Our CrIS-derived annual regional 67 total anthropogenic NH₃ emissions are close (< 2% difference) to statistic-based bottom-68 up estimates and are 10-20% lower than when treating NH₃ exchange between the at-69 mosphere and biosphere as one-way emissions. Our top-down NH₃ emission estimates 70

 n_1 may help to assess the efficacy of NH₃ abatement policies and provide quantitative sup-

⁷² port for future policy making.

73 **1** Introduction

Atmospheric ammonia (NH_3) has adverse effects on human health, ecosystem sta-74 bility and climate change via formation of fine particulate matter $(PM_{2.5})$ and excessive 75 deposition of reactive nitrogen (Nr) to bodies of water (Krupa, 2003; Myhre et al., 2009; 76 Behera et al., 2013; J. W. Erisman et al., 2013; Nah et al., 2018; Sutton et al., 2020). 77 Ammonia and ammonium (collectively, NH_x) also modulate soil pH through deposition 78 to surface soil (Galloway et al., 2003; Krupa, 2003). Ammonia is emitted mainly from 79 agricultural activities (> 80%) at national and global scales (EEA, 2017; U.S. EPA, 2018; 80 Huang et al., 2012; McDuffie et al., 2020; Crippa et al., 2020) but can be dominated by 81 non-agricultural emissions at local scales (Chang et al., 2016; Fenn et al., 2018; Berner 82 & Felix, 2020). NH_3 emissions have been reported to pose severe air pollution problems 83 and contribute to premature death across the world (Lelieveld et al., 2015). Surface mea-84 surements of ambient and precipitation concentrations across Europe and the US also 85 show that NH_x is becoming the dominant contributor to Nr pollution given the substan-86 tial reduction of SO_x and NO_x emissions over the past decades (Tang et al., 2021; Du 87 et al., 2014; Ellis et al., 2013; Li et al., 2016; Sutton et al., 2020; Elguindi et al., 2020). 88 With sustained decreasing trends in SO_x and NO_x emissions projected alongside increas-89 ing trends in NH_3 emissions, NH_x pollution is expected to become worse during the next 90 few years. On top of that, it has been shown that there is a climate penalty on ammo-91 nia, resulting in increased emissions in a warmer future climate (Skjøth & Geels, 2013). 92 Some studies have shown that reducing ammonia emissions is a cost-effective way to mit-93 igate $PM_{2.5}$ pollution and nitrogen deposition (J. Erisman & Schaap, 2004; Paulot et 94 al., 2014; X. Zhang et al., 2020). More specifically, recent studies show that reducing agri-95 cultural NH₃ emissions through changing livestock diets and improving animal housing 96 as well as covering manure storage and fertilizer application are feasible and cost-effective 97 ways to mitigate NH_x air pollution in Europe, the US and China (Giannakis, Kushta, 98 Giannadaki, et al., 2019; Goodkind et al., 2019; X. Zhang et al., 2020). Wetland restora-99 tion may also be a cost-effective way to reduce nitrogen pollution through biogeochem-100 ical process-based nutrient removal (Cheng et al., 2020). Reducing NH_x pollution there-101

-4-

fore has become an urgent need and an achievable goal for many countries, especially 102 for some European countries facing the threat of a severe "nitrogen crisis" (Stokstad, 2019). 103

Since 1991, Europe has implemented a series of NH_3 abatement policies and achieved 104 a 25% decrease in NH₃ emissions from 1990 to 2010 (EEA, 2017; Giannakis, Kushta, Brugge-105 man, & Lelieveld, 2019; UNECE, 1999), primarily due to reductions in livestock emis-106 sions. However, more than 93% of NH_3 emissions over Europe in 2013 are still from agri-107 cultural sources (EEA, 2017). Therefore, additional efforts have been made to reduce 108 NH₃ emissions over Europe during the past decade. For instance, a recent version of Gothen-109 burg Protocol amended in 2012 has set a decreasing emission ceiling for European coun-110 tries for 2005 to 2020, that aims to reduce NH_3 emissions to 3.624 Tg y⁻¹ in 2020 (EEA, 111 2020); however, bottom-up emission estimates still show a slight increase $(0.6\% \text{ y}^{-1})$ from 112 2010 to 2018 (EEA, 2020; McDuffie et al., 2020), mostly due to increasing agricultural 113 activities. 114

To better understand and mitigate the environmental effects of NH₃ and to exam-115 ine the efficacy of NH_3 abatement policies as well as to facilitate future policy-making, 116 long-term and up-to-date ammonia emission monitoring with high accuracy and fine res-117 olution as well as great spatial coverage is required. Although bottom-up inventories are 118 able to capture the general spatial pattern and trends in activity data to some degree, 119 they typically have large uncertainties due to uncertain emission factors and missing po-120 tential sources over areas with limited statistics. Furthermore, they are unlikely to ac-121 count for the climate-driven or meteorology-driven change (e.g., temperature and wind 122 speed) in emission factors and activity increases in small-scale sources (McDuffie et al., 123 2020; Hoesly et al., 2018; Sommer et al., 2019; Sutton et al., 2013; Bash et al., 2013). 124 Meanwhile, direct ammonia emission monitoring is usually expensive and thus is not fea-125 sible to be carried out at large scales. Instead, monitoring NH_3 concentrations and its 126 downstream products (e.g., NH_4^+ and NH_x wet deposition) at relatively lower cost can 127 be used to investigate NH_3 emissions from local to national scales and to help assess the 128 effectiveness of emission control policies (Sutton et al., 2003; Nair & Yu, 2020). 129

130

Previous studies have used ground-based measurements of NH_x concentrations and NH_x wet deposition to explore and constrain the seasonal cycle, interannual variability, 131 and magnitude of ammonia emissions at local to regional scales around the world (Sutton 132 et al., 2003; Gilliland et al., 2003; Pinder et al., 2006; Henze et al., 2009; L. Zhang et al., 133

-5-

2012; Paulot et al., 2014; Tang, Braban, et al., 2018; Lonati & Cernuschi, 2020; Kong
et al., 2019). The limitations of these surface measurement-based approaches lie in the
scarcity of surface monitoring sites and uncertainty and biases in the instruments (von
Bobrutzki et al., 2010).

Alternatively, satellite NH₃ observations can be used to monitor NH₃ emissions. 138 In terms of spatial coverage and long-term trends, satellite observations of NH_3 offer dis-139 tinct advantages over surface NH_x observations. Space-based observations of NH_3 have 140 thus been leveraged to study and constrain the spatiotemporal variation and magnitude 141 of NH_3 emissions and model simulations of NH_x during the past decade (Zhu et al., 2013; 142 Schiferl et al., 2016; Warner et al., 2016, 2017; L. Zhang et al., 2018; Van Damme et al., 143 2018; Dammers et al., 2019; Clarisse, Van Damme, Clerbaux, & Coheur, 2019; Clarisse, 144 Van Damme, Gardner, et al., 2019; Cao et al., 2020; Chen et al., 2021; Van Damme et 145 al., 2020; R. Wang et al., 2021; Evangeliou et al., 2021; Marais et al., 2021). Atmospheric 146 NH₃ concentrations can be retrieved from measured infrared radiance by remote sens-147 ing instruments onboard multiple satellites, such as Atmospheric Infrared Sounder (AIRS) 148 onboard NASA's Aqua satellite (Warner et al., 2016), Tropospheric Emission Spectrom-149 eter (TES) onboard NASA's Aura satellite (Beer et al., 2008; Shephard et al., 2011), In-150 frared Atmospheric Sounding Interferometer (IASI) onboard European Space Agency's 151 MetOp satellites (Clarisse et al., 2009; Van Damme et al., 2014), and Cross-track Infrared 152 Sounder (CrIS) onboard NOAA's Suomi-NPP satellite (Shephard & Cady-Pereira, 2015; 153 Shephard et al., 2020) and NOAA-20 satellite (Glumb et al., 2018). Schiferl et al. (2016) 154 used summertime morning IASI NH₃ column observations along with the GEOS-Chem 155 model simulations and AMoN surface NH₃ measurements to explore the drivers of an-156 nual variability of NH_3 concentrations. Van Damme et al. (2018), Clarisse et al. (2019) 157 and Dammers et al. (2019) used IASI-observed and CrIS-observed NH₃ column concen-158 trations to quantify NH_3 emissions from large point sources through an oversampling ap-159 proach. Warner et al. (2016) and Wang et al. (2021) analyzed spatial and intra-annual 160 variability in AIRS and IASI observations at regional and global scales to identify ma-161 jor sources of NH_3 in different regions during different seasons. Warner et al. (2017) and 162 van Damme et al. (2020) explored the interannual variability in long-term global NH₃ 163 observations from AIRS and IASI instruments and found a general increasing trend in 164 atmospheric NH_3 over China, Europe and the US from 2002 to 2018. Along with chem-165 ical transport models and their adjoint models, Zhu et al. (2013), L. Zhang et al. (2018), 166

-6-

Cao et al. (2020) and Chen et al. (2021) applied TES and CrIS NH_3 profiles and IASI 167 NH₃ column concentrations for inverse modeling of NH₃ emissions and generally found 168 significant heterogeneous biases in anthropogenic NH_3 inventories across the US and China. 169 Most recently, Marais et al. (2021) used the GEOS-Chem forward model and multiyear 170 (2013-2018) NH₃ column concentrations from IASI and CrIS to constrain spatiotempo-171 ral variation and magnitude of NH_3 emissions in the UK, and they found that bottom-172 up inventories were biased low by 27-49% and miss the summer emissions peak compared 173 to satellite-derived NH₃ emissions. 174

Most previous inverse modeling studies (Henze et al., 2009; Zhu et al., 2013; Paulot 175 et al., 2014; L. Zhang et al., 2018; Cao et al., 2020; Chen et al., 2021) using either satel-176 lite observations or surface observations have only used uni-directional (uni-di) dry de-177 position scheme (Wesely, 1989), which treats surface exchange of NH_3 between the at-178 mosphere and biosphere in a one-way manner (from air to surface) and ignores the im-179 pacts of change in environmental conditions (e.g., soil temperature, soil wetness, soil pH, 180 fertilized condition and vegetation type) on NH_3 emissions from fertilized soil and crops, 181 which likely lead to high biases in top-down NH_3 emission estimates. However, early stud-182 ies have found that a process-based bi-directional (bi-di) NH₃ flux scheme (Sutton et al., 183 1998) involving environmental conditions more realistically captures the dynamics in mea-184 sured net NH₃ fluxes in Europe and North America (Sutton et al., 1998; Nemitz et al., 185 2001; Neirynck & Ceulemans, 2008; Pleim et al., 2013). Later, application of bi-di NH_3 186 flux schemes in regional and global chemical transport models generally enabled better 187 model performance in representing ground-based and space-based measurements of NH_3 188 surface and column concentrations and NH_x wet depositions over Europe and North Amer-189 ica as well as East Asia (Wichink Kruit et al., 2012; Bash et al., 2013; Zhu, Henze, Bash, 190 Jeong, et al., 2015; Pleim et al., 2019). 191

Therefore, to derive NH₃ emissions from satellite observations while accounting for 192 spatial and temporal changes in environmental conditions, use of a chemical transport 193 model with a process-based bi-di NH_3 flux scheme is preferable (Sutton et al., 2013). In 194 addition, since Sun-synchronous satellites measure atmospheric NH₃ concentrations only 195 at certain time (e.g., the daytime and nighttime overpass of CrIS is around 13:30 LT and 196 01:30 LT, respectively), accurately simulating the diurnal variability of NH_3 can increase 197 the accuracy of top-down emission estimates (Zhu, Henze, Bash, Cady-Pereira, et al., 198 2015). Recently, van der Graaf et al. (2021) included a bi-di NH₃ flux scheme when as-199

-7-

similating CrIS-NH3 observations to improve the spatiotemporal NH_3 distribution in Europe. Here we aim to conduct the first side-by-side comparison of an NH_3 inversion using both uni-directional and bi-di NH_3 flux schemes.

Based on a more complex bi-di NH_3 flux scheme in the CMAQ model (Bash et al., 204 2013), Zhu, Henze, Bash, Jeong, et al. (2015) implemented a simplified bi-di NH_3 flux 205 scheme in the GEOS-Chem model involving soil temperature, soil pH, soil wetness, soil 206 NH_4^+ concentrations and vegetation type and first developed the corresponding adjoint 207 processes for this bi-di NH_3 flux scheme. With this updated GEOS-Chem forward and 208 adjoint model, they first investigated the spatial and temporal sensitivity of simulated 209 NH_3 concentration to fertilizer application rate and to soil pH at the global scale.

Here we incorporate the bi-di forward and bi-di adjoint processes developed by Zhu, 210 Henze, Bash, Jeong, et al. (2015) into a more recent GEOS-Chem adjoint model version 211 (v35m) coupled with the CrIS NH₃ observation operator (Cao et al., 2020) and apply 212 this updated GEOS-Chem adjoint model to constraining NH_3 emissions using CrIS day-213 time NH₃ profile observations in 2016 using the four dimensional variational (4D-Var) 214 approach. To more completely understand the implications of neglecting the bi-di ex-215 change of NH₃ (as all previous top-down studies have done), we also conduct a 4D-Var 216 inversion using uni-di NH₃ emissions and compare our posterior NH₃ emissions from these 217 two inversions, presenting the first side-by-side study to explore the uncertainty in top-218 down NH_3 emission estimates arising from the NH_3 flux scheme. We use CrIS NH_3 be-219 cause 1) it provides vertical profiles and averaging kernels (essential for data assimila-220 tion), both which are absent from IASI retrievals, and 2) it combines extensive spatial 221 coverage, low noise and fine spatial resolution (Shephard & Cady-Pereira, 2015), and 3) 222 it has greater spatial coverage than TES, with global coverage similar to IASI and AIRS, 223 and lower signal noise compared to other sensors (Zavyalov et al., 2013), which improves 224 sensitivity in the boundary layer. We further evaluate our CrIS-derived NH_3 emission 225 estimates using independent measurements of surface NH_3 and bulk wet NH_x deposi-226 tion from domain-wide monitoring sites over Europe in 2016. 227

228 **2 Data**

229

2.1 CrIS NH₃ observations

CrIS is an infrared sounder on board the sun-synchronous satellite Suomi National 230 Polar-orbiting Partnership (SNPP, used here) (Tobin, 2012) launched in October 2011 231 and the NOAA-20 (JPSS-1) launched in November 2017 (Glumb et al., 2018). CrIS has 232 a cross-track scanning swath width of 2200 km and a nadir spatial resolution of 14 km, 233 which enable CrIS to achieve global coverage twice a day with daytime and nighttime 234 overpasses at 13:30 local time (LT) and 01:30 LT, respectively. NH_3 profile and column 235 observations are retrieved through the CrIS Fast Physical Retrieval algorithm (CFPR), 236 which minimizes the difference between measured and simulated spectral radiance in the 237 NH₃ spectral feature around 967 cm⁻¹ (Shephard & Cady-Pereira, 2015). Pixel-specific 238 a priori profiles and averaging kernels comprise the observation operator (H), which is 239 essential for comparison between satellite retrievals and model simulations. The CFPR 240 algorithm uses three a priori NH₃ profiles, representative of polluted, moderately pol-241 luted, and clear conditions. For each NH₃ retrieval, one a priori profile is selected based 242 on an estimated NH₃ signal (Shephard & Cady-Pereira, 2015). We used high-quality day-243 time CrIS v1.5 NH₃ observations (QF \geq 3) (Shephard et al., 2020) over the Europe do-244 main $[15^{\circ}W-40^{\circ}E, 32^{\circ}-62^{\circ}N]$ in 2016. Daytime CrIS NH₃ observations have been val-245 idated by and generally show good agreement with ground-based and aircraft observa-246 tions in select regions (Shephard & Cady-Pereira, 2015; Dammers et al., 2017). 247

We derived linearized averaging kernels $\left(\frac{\partial(\boldsymbol{x_{retrieval}})}{\partial(\boldsymbol{x_{true}})}\right)$ from the original logarithmic averaging kernels $\left(\frac{\partial(ln(\boldsymbol{x_{retrieval}}))}{\partial(ln(\boldsymbol{x_{true}}))}\right)$ following L. Zhang et al. (2010) and Cao et al. (2020) to avoid 1) and the second 248 249 al. (2020) to avoid 1) unrealistic small model column concentrations with the applica-250 tion of logarithmic averaging kernels and 2) numerically large gradient of the cost func-251 tion with respect to simulated NH_3 concentrations in our 4D-Var inversion. $x_{retrieval}$ 252 and x_{true} are CrIS NH₃ profile retrieval and the true state of atmospheric NH₃ profile, 253 respectively. During the linearization of the averaging kernels (L. Zhang et al., 2010), we 254 also limited the ratio of $\frac{x_a(i)}{x_a(j)}$ to be in the range of 0 to 3 in order to avoid unrealisti-255 cally large values of averaging kernels at higher levels. $\boldsymbol{x_a}(i)$ and $\boldsymbol{x_a}(j)$ are CrIS NH₃ 256 a priori at level i and j, respectively. 257

258

259

Figures 1 (a)-(d) show the spatial and seasonal variability of CrIS NH_3 mixing ratios at surface level over Europe for March, June, September and December 2016. Higher

NH₃ concentrations are generally found during warm months over northern Germany, 260 the Netherlands, western France, Northern Italy, South UK and Ireland as well as south-261 ern and northeastern Spain, where there are intense agricultural activities. Unlike the 262 US (Cao et al., 2020), Europe saw higher CrIS NH_3 concentrations in September than 263 in June, which is consistent with the September/June contrast in independent surface 264 measurements of NH₃ averaged across the European domain (Fig. 10 (a)). This Septem-265 ber/June contrast in both space-based and ground-based surface NH₃ observations is most 266 likely caused by larger NH_x wet deposition in June than in September (Fig. 11 (a)), but 267 this might not represent the typical condition of a normal year since 2016 was exception-268 ally warm across Europe (https://www.knmi.nl/nederland-nu/klimatologie/maand 269 -en-seizoensoverzichten/2016/jaar). 270

271

2.2 Surface observations

We evaluate CrIS-derived NH₃ emissions using extensive independent measurements 272 of surface NH_3 and bulk NH_x wet deposition in 2016 collected from the European Mon-273 itoring and Evaluation Programme (EMEP) (Tørseth et al., 2012), the UK Eutrophy-274 ing and Acidifying Atmospheric Pollutants (UKEAP) networks: National Ammonia Mon-275 itoring Network (NAMN, https://uk-air.defra.gov.uk/interactive-map?network= 276 namn) (Tang, Stephens, et al., 2018), the Measuring Ammonia in Nature (MAN) network 277 (Lolkema et al., 2015) and the Dutch Monitoring Air Quality Network (LML; Landelijk 278 Meetnet Luchtkwaliteit) (van Zanten et al., 2017) in the Netherlands, a nation-wide am-279 monia monitoring network in Switzerland (Seitler & Meier, 2021), the German Länder 280 networks and the German Environment Agency (https://www.umweltbundesamt.de), 281 the Danish Background Air Quality Monitoring Program (Ellermann et al., 2018; Geels 282 et al., 2012), as well as some short-term field campaign sites and long-term monitoring 283 sites distributed in France (Flechard et al., 2011), Germany (Wintjen et al., 2020; Zöll 284 et al., 2016, 2019), and UK (Twigg et al., 2015; H. L. Walker et al., 2019). 285

286 3 Methods

287

3.1 Uni-di and bi-di NH₃ flux schemes

Both uni-di and bi-di NH_3 flux schemes are treated like an electrical resistance model, wherein the flux between the atmosphere and biosphere is analogous to electrical cur-

-10-

rent and the difference between the air and surface concentrations is analogous to elec-290 trical voltage (Wesely, 1989). While the uni-di scheme assumes the surface concentra-291 tion to be zero and thus the air-surface exchange is only downward deposition from the 292 atmosphere to the biosphere (Wesely, 1989), the bi-di scheme more realistically accounts 293 for both air-to-surface deposition and surface-to-air diffusion by introducing a canopy 294 compensation point. This approach, while recognized for some time, has been increas-295 ingly implemented in regional and global CTMs in recent years (Sutton et al., 1998; Ne-296 mitz et al., 2001; Wichink Kruit et al., 2012; Bash et al., 2013; Pleim et al., 2013; J. T. Walker 297 et al., 2013; Zhu, Henze, Bash, Jeong, et al., 2015; Pleim et al., 2019). A key aspect of 298 the bi-di scheme is the calculation of the canopy compensation point (C_c) , which involves 299 the resistances in the quasi-laminar boundary layers of leaf surface and ground surface, 300 resistances in the leaf stomatal and cuticle and soil, and NH_3 emission potential in the 301 soil and stomatal, as well as soil temperature and leaf surface temperature (Zhu, Henze, 302 Bash, Jeong, et al., 2015). The direction of bi-di NH_3 flux is determined by the sign of 303 the difference between the canopy compensation point and ambient NH_3 concentration 304 $(C_c - C_a)$. NH₃ emission potential in the soil is calculated as the ratio of soil NH₄⁺ con-305 centration to soil H^+ concentration. The sources of soil NH_4^+ include fertilizer applica-306 tion and wet and dry deposition. Only 60% of the deposited NH_4^+ is assumed to enter 307 the soil, while the rest is assumed to being lost due to run-off into waterways (Hudman 308 et al., 2012). The major sink of soil NH_4^+ is nitrification with a lifetime of 15 days (Zhu, 309 Henze, Bash, Jeong, et al., 2015). 310

311

3.2 GEOS-Chem and its adjoint model

We use GEOS-Chem v9-02 with a bi-di NH₃ flux scheme (Zhu, Henze, Bash, Jeong, 312 et al., 2015) to relate NH_3 emissions to NH_3 concentrations in the atmosphere. The cor-313 responding adjoint model (v35m) is used to derive the gradient of the cost function with 314 respect to NH₃ emissions and fertilizer rates in our 4D-Var inversion. Our GEOS-Chem 315 nested simulations were driven by Goddard Earth Observing System (GEOS-FP) assim-316 ilated meteorological fields with a horizontal resolution of 0.25° latitude $\times 0.3125^{\circ}$ lon-317 gitude and 47 vertical levels up to 0.01 hPa over the Europe domain ($[15^{\circ}W-40^{\circ}E, 32^{\circ}-$ 318 62° N]). The boundary conditions from global simulations with a horizontal resolution 319 of 2° latitude $\times 2.5^{\circ}$ longitude were supplied to our nested simulations every 3 hours. 320

In order to reduce computation cost, we use an offline NH_x simulation in our 4D-321 Var inversion following previous studies (Paulot et al., 2014; L. Zhang et al., 2018; Cao 322 et al., 2020). We only simulate NH_3 emissions, wet and dry deposition (H. Liu et al., 2001; 323 Q. Wang et al., 2011; Amos et al., 2012; Wesely, 1989; Y. Wang et al., 1998; L. Zhang 324 et al., 2001), transport of NH_x , and NH_x partitioning (Binkowski & Roselle, 2003; Park 325 et al., 2004) in our offline simulations. The NH_x partitioning is driven by archived hourly 326 SO_4^{2-} , HNO₃, and NO₃⁻ concentrations from the standard O₃-NO_x-VOC-aerosol simu-327 lation (Park et al., 2004; Mao et al., 2010). The high-biased GEOS-Chem-simulated HNO₃ 328 (L. Zhang et al., 2012; Heald et al., 2012) was reduced by 15% at each time step (10 min-329 utes) before the $NH_3-NH_4^+$ partitioning in the aerosol thermodynamics following Heald 330 et al. (2012). 331

³³² Changes in emissions of SO_x and NO_x can modulate the lifetime of NH_3 in the at-³³³ mosphere (M. Liu et al., 2018; Yu et al., 2018). Here we drive our standard simulations, ³³⁴ which were used to output hourly SO_4^{2-} , NO_3^{-} and HNO_3 at 0.3125^o longitude $\times 0.25^o$ ³³⁵ latitude for the year 2016, using rescaled SO_x and NO_x emissions from HTAP v2 (orig-³³⁶ inally for 2010) by emission reduction ratio taken from satellite-derived SO_2 and NO_x ³³⁷ emissions (Miyazaki et al., 2019, 2020).

Our prior NH₃ emissions consist of livestock emissions from HTAP v2 (Janssens-338 Maenhout et al., 2015), emissions originating from fertilizer application (Lu & Tian, 2017) 339 and biomass burning emissions from GFED3 (van der Werf et al., 2010). We scaled the 340 original total anthropogenic NH₃ emissions from HTAP v2 using the MASAGE monthly 341 livestock/agriculture emission ratio (Figure S1, originally for the year 2005-2008 with 342 a resolution at $2.5^{\circ} \times 2.0^{\circ}$ (Paulot et al., 2014) as our prior livestock NH₃ emissions, 343 with diurnal variability calculated following Zhu, Henze, Bash, Jeong, et al. (2015). For 344 the initial guess of fertilizer application rate, we used an annual fertilizer application rate 345 for 2013 from Lu et al. (2017), which is the most up-to-date gridded data. Only a neg-346 ligible increase (< 3.4%) was found in N-fertilizer consumption over EU27 from 2013 to 347 2016 (https://ec.europa.eu/eurostat/databrowser/view/aei_fm_usefert/default/ 348 table?lang=en). This annual fertilizer application rate was further scaled to daily val-349 ues using day-to-day variation derived from MODIS EVI product (Zhu, Henze, Bash, 350 Jeong, et al., 2015). To compare with those from uni-di, NH₃ emissions (F_{emis}) and de-351 position (F_{dep}) from bi-di were calculated using Eq.(1) and Eq.(2), respectively, follow-352 ing Zhu, Henze, Bash, Jeong, et al. (2015) and Bash et al. (2013): 353

-12-

$$F_{emis} = \left. \frac{C_c}{R_a + 0.5 R_{inc}} \right|_{C_a = 0},$$
 Eq.(1)

$$F_{dep} = \frac{C_c - C_a}{R_a + 0.5 R_{inc}} \bigg|_{C_{st} = 0, C_a = 0},$$
 Eq.(2)

where C_a , C_{st} , C_g are the NH₃ concentrations in the air, soil and leaf stomata, respec-354 tively. C_c is the canopy compensation point. R_a and R_{inc} are the aerodynamic resistance 355 and the in-canopy aerodynamic resistance, respectively. F_{emis} represents surface-to-air 356 flux in the bi-di scheme when the air concentration is assumed to be zero; F_{dep} is the air-357 to-surface flux when the surface concentration is assumed to zero. $F_{emis} + F_{dep}$ is the 358 net flux from bi-di. By splitting the net flux into F_{emis} and F_{dep} , we can compare bi-359 di emissions and deposition with those from uni-di in a comparable manner. To drive 360 uni-di simulations with the same prior emissions from bi-di, we first ran bi-di simulations 361 without optimization, saved the NH_3 emissions, and then used these NH_3 emissions as 362 the prior NH_3 emissions for uni-di simulations. 363

The bi-di NH_3 flux scheme (Zhu, Henze, Bash, Jeong, et al., 2015) is explicitly ap-364 plied to fertilizer application. We calculated the NH_3 emission potential in fertilized soil 365 using soil pH and soil NH_4^+ concentration. We updated the soil pH from an older ver-366 sion of the World Soil Information dataset used in Zhu, Henze, Bash, Jeong, et al. (2015) 367 to a more recent dataset (Hengl et al., 2017), which has been constrained using long-term 368 soil profile measurements (Batjes et al., 2020). In contrast, livestock NH_3 emissions are 369 implicitly involved in the bi-di process via their impact on simulated surface NH_3 con-370 centrations and deposition to soil, with the latter serving as a NH_4^+ reservoir for bi-di 371 NH₃ flux (Zhu, Henze, Bash, Jeong, et al., 2015). Previous studies (Denmead & Freney, 372 1992; Liss & Galloway, 1993; Quinn et al., 1996; Larsen et al., 2001) have shown sim-373 ilar bi-di NH_3 exchange between the atmosphere and surface water. Although the air-374 water exchange of NH_3 is based on Henry's Law, it is also determined by the difference 375 between the atmospheric concentration and the "effective" concentration in the surface 376 water, whereby the NH_3 flux can be upward emission and downward deposition and thus 377 is similar to our bi-di scheme here. Therefore, we also apply the compensation point-based 378 bi-di scheme to water grid cells in our model following a previous study (Wichink Kruit 379 et al., 2012). In general, the resulting NH_3 emissions from water grid cells are negligi-380 ble except some coastal grid cells (Figures 4 and 6) and the spatial distribution of NH_3 381

-13-

emissions from coastal grids to remote ocean grids is also consistent with those of simulated and observed NH₃ emission potential (Γ) in the water in Wichink Kruit et al. (2012). Overall, this bi-di NH₃ flux scheme generally increases the effective lifetime of atmospheric NH₃ and early afternoon concentrations (Figure 3 (i)-(1)), and thus it is expected to lead to lower top-down NH₃ emission estimates compared to those derived using uni-di NH₃ emissions.

Figure 2 shows that the application of bi-di (red solid line) in GEOS-Chem improved 388 the simulated diurnal cycle during most of the year (especially from April to Septem-389 ber) compared to uni-di (red dotted line) when evaluated against surface NH_3 measure-390 ments at a background site [48°56' N, 13°25' E, 807 m a.s.l.] in Germany. The corre-391 lation coefficient (R) between monthly mean hourly NH₃ measurements and our prior 392 bi-di simulation ranges from 0.59 to 0.96 from February to November, compared to our 393 prior uni-di R ranging from -0.29 to 0.95. The improved simulated diurnal variation of 394 NH₃ is very important for the assimilation of sun-synchronous satellite measurements 395 as satellite data is used only once or twice per day; hence, the model's native diurnal vari-396 ability has to be assumed to be correct. The prior bi-di simulation also shows a better 397 performance in reproducing domain and nation average monthly means of surface NH_3 398 measurements and of NH_x wet deposition measurements for most of Europe in 2016 with 399 reduced normalized mean error and similar correlation coefficient compared to the prior 400 uni-di simulation (see Figures 10 and 11). 401

We correspondingly updated the GEOS-Chem adjoint model for the bi-di scheme. 402 Additionally, we constructed the adjoint of run-off into waterways of deposited NH_4^+ be-403 fore it entered the soil as well as the deposition-associated source and the nutrification-404 associated sink of NH_4^+ in the soil. We propagated these adjoint gradients back to the 405 wet and dry deposition adjoint modules, all of which were absent from the original bi-406 di adjoint code (Zhu, Henze, Bash, Jeong, et al., 2015). We calculated the gradients of 407 simulated NH₃ to fertilizer application rates and soil pH in addition to the gradients with 408 respect to anthropogenic emissions (excluding fertilizer application), biomass burning 409 emissions, and natural emissions. We validated our bi-di adjoint gradients with respect 410 to fertilizer application rate and pH scale factors as well as to livestock emission scale 411 factor for the Europe domain at $0.3125^{\circ} \times 0.25^{\circ}$ using finite difference gradients (Fig-412 ure S2), which were found to be in adequate agreement ($R^2 \ge 0.99$, slope $\simeq 1.00$). 413

-14-

414

3.3 Design of inversion experiments

We applied the updated GEOS-Chem model and its adjoint to conduct a 4D-Var 415 inversion using $CrIS NH_3$ profile measurements in 2016 following Cao et al. (2020). In 416 our 4D-Var inversion, we optimized scale factors of NH_3 emissions and fertilizer appli-417 cation rate but not soil pH, as the latter has already been directly constrained using soil 418 pH measurements (Hengl et al., 2017). The regularization parameter γ , which is intro-419 duced to balance the observation and penalty terms in our 4D-Var inversion, was cal-420 culated via multiplying the γ in Cao et al. (2020) by the cost function ratio at the first 421 iteration $(\frac{J_{this\ study}^1}{J_{Cao\ et\ al.\ 2020}^1})$. We used the sum of smoothing and measurement error from the CrIS v1.5 retrieval product as the observation error covariance matrix (S_o) . Due to 422 423 lack of quantitative knowledge of our prior emission uncertainties, the diagonal elements 424 of our prior emission error covariance matrix (S_a) are assumed to be 100% and the cor-425 relation length is assumed to be 100 km in latitudinal and longitudinal directions. For 426 more details about the 4D-Var inversion, please refer to Cao et al. (2020). 427

To explore the impacts of different dry deposition schemes on posterior NH₃ emissions, we conducted two inversion experiments as shown in Table 1. IE_uni utilized unidi, while IE_bi deployed bi-di. For both inversions, the same input parameters (including prior emissions, γ , S_a and S_o) were used.

432

4 Results and discussion

433

4.1 Prior and posterior NH₃ simulations compared to CrIS observations

We start the analysis of our results by comparing the prior NH₃ simulations to CrIS 434 observations. Figures 1 (e)-(l) show prior uni-di and bi-di simulations of monthly mean 435 surface NH_3 concentrations averaged from 13:00-14:00 local time during March, June, 436 September and December 2016, respectively. Both of our prior simulations using the uni-437 di scheme (hereafter H(Prior_uni)) and the bi-di scheme (hereafter H(Prior_bi)) gener-438 ally capture CrIS-observed seasonality and spatial variability (R ranging from 0.85 to 439 0.90 during warm months), with higher NH₃ concentrations found during warm months 440 (especially in September) over agricultural areas. However, Figs. 3 (a)-(h) show that our 441 prior simulations failed to reproduce CrIS surface NH₃ concentration magnitudes, with 442 substantial overestimation over central Europe year round and underestimation over North-443 ern and Southern Europe during warm months. H(Prior_bi) is generally higher than H(Prior_uni) 444

-15-

over most of Europe throughout the year (Fig. 3 (i)-(l)) due to the increased NH₃ lifetime in the bi-di simulation, with better agreement (NME ranging from 0.14 to 0.26) with CrIS NH₃ during warm months compared to H(Prior_uni) (NME ranging from 0.16 to 0.32).

The discrepancies between simulated NH_3 and CrIS observations as mentioned above 449 were generally reduced after emission optimization. Figures 1 (m)-(t) show monthly mean 450 surface NH₃ simulations driven by posterior NH₃ emissions derived from CrIS NH₃ pro-451 files from inversion experiments IE_uni and IE_bi. The posterior uni-di NH₃ simulation 452 (H(Posterior_uni)) was simulated using the uni-di scheme and was driven by posterior 453 NH₃ emissions derived using the uni-di scheme. Correspondingly, our posterior bi-di NH₃ 454 simulation (H(Posterior_bi)) was simulated using the bi-di scheme and was driven by pos-455 terior NH₃ emissions derived using the bi-di scheme. Compared to H(Prior_uni) and H(Prior_bi), 456 H(Posterior_uni) and H(Posterior_bi) better reproduced CrIS-observed NH₃ with slightly 457 increased R (0.88 to 0.96 during warm months) and significantly decreased NME (rang-458 ing from 0.11 to 0.15) throughout the year with the exception of December. Figures 3 459 (m)-(t) show improvement in posterior NH_3 simulations across most of the European do-460 main during most of the year, especially over areas with intense agricultural practices 461 during warm months. Significant differences remained on the eastern edge of the domain 462 for the posterior simulations (Figure 3), which is a consequence of the boundary condi-463 tion from the coarse simulation $(2^{\circ} \times 2.5^{\circ})$ being held constant. 464

465

4.2 Posterior NH₃ emissions

In this section we discuss the similarity and difference between the posterior and the prior anthropogenic NH₃ emissions, and those between the posterior emissions derived using uni-di and bi-di schemes, in terms of spatial distribution, seasonal variation and emission magnitude.

Figures 4 (a)-(l) compare the posterior monthly anthropogenic NH₃ emissions from our inversion experiments (IE_uni and IE_bi) to the prior emissions during March, June, September and December 2016. Posterior NH₃ emissions derived using both uni-di (Posterior_uni) and bi-di (Posterior_bi) schemes have similar spatial distribution as the prior emissions throughout the year, with generally larger emissions (> 2 kg N ha⁻¹ month⁻¹) over Germany, western France, North Italy, the Netherlands, Ireland and the UK. However, Fig. 4 (m)-(t) shows that heterogeneous emission adjustments occurred across the European domain year round in both the Posterior_uni and Posterior_bi emissions, with decreases of -10% to -50% found over central Europe and increases of 10% to 400% found over most of the rest of Europe during warm months. In December, much of Europe witnessed a decrease between -10% to -50%.

Also shown in Figure 4, is the difference between monthly Posterior_bi and Pos-481 terior_uni anthropogenic NH₃ emissions over Europe for March, June, September and 482 December 2016. The Posterior_bi emissions are generally smaller than the Posterior_uni 483 emissions by a factor of 1.1 to 2.0 over most of the domain throughout the year owing 484 to increased lifetime of NH_3 in the bi-di simulations, while some exceptions (higher by 485 a factor of 1.1 to 1.3) occurred at small scales (e.g. Ireland and Denmark) during March 486 and September likely because the global convergence was reached earlier than local con-487 vergence during the course of our 4D-Var inversion, which means that the sum of the 488 error-weighted residuals across the European domain significantly reduced while some 489 local residuals may have not been completely reduced yet. 490

Europe not only incurred spatially-varying adjustments in emissions but also temporally-491 varying adjustments. Figure 5 compares the posterior monthly anthropogenic NH_3 emis-492 sions from inversion experiments IE_uni and IE_bi to the prior monthly estimates for EU25, 493 UK, the Netherlands, and Switzerland at regional and national scales in 2016. EU25 con-494 sists of 25 European Union member countries (see caption of Fig. 5 for details). Both 495 the Posterior_uni and Posterior_bi emissions generally have similar seasonality as the prior 496 monthly emissions, with larger emissions found in warm months and smaller emissions 497 found in cold months, except that the posterior emissions identified an enhanced spring-498 time peak, which is most likely related to substantial fertilizer use and manure applica-499 tion during the crop-growing season. The general seasonal patterns of our posterior emis-500 sions are more consistent with those of agricultural NH_3 emissions over some European 501 countries in TNO, CAMS-TEMPO and UK NAEI inventories (Denier van der Gon et 502 al., 2011; Guevara et al., 2021; Marais et al., 2021) and those constrained by satellite NH_3 503 observations (Marais et al., 2021), and are less consistent with that from Backes et al. (2016) 504 which shows a second sharp peak in September with similar magnitude as that in the 505 spring. However, their evaluation against surface NH_3 concentrations at five sites sug-506 gests that Backes et al. (2016) tends to significantly overestimate NH₃ emissions in the 507 peaks, whereas our evaluation against domain-averaged measurements shows that our 508

-17-

monthly posterior NH_3 emissions generally enable the model to capture the seasonal cy-509 cle and magnitude of observed surface NH_3 and NH_x wet deposition (Fig. 10 (a) and (b) 510 and Fig. 11 (a) and (b)). In this study the posterior emissions are generally larger than 511 the prior emissions by a factor of 1.1 to 2.4 over EU25, the UK, and the Netherlands dur-512 ing most of the year, especially in spring and summer, while they are consistently lower 513 than the prior emissions by 15% to 49% over Switzerland year round except Posterior_uni 514 in July. The Posterior_bi emissions for EU25, UK, the Netherlands, and Switzerland are 515 generally smaller than the Posterior uni emissions by a factor of 1.01 to 1.52 through-516 out the year except those for the UK in March and October and those for the Nether-517 lands in January, which was likely caused by the difference in global and local conver-518 gence in our emission optimization as mentioned above. 519

Finally, a comparison between the posterior and the prior anthropogenic emissions 520 at an annual scale is displayed in Figure 6. The Posterior_uni and Posterior_bi anthro-521 pogenic NH_3 emissions have similar spatial patterns as the prior emissions, but are gen-522 erally lower by 10% to 50% over central Europe (e.g. North Italy) and higher by a fac-523 tor of 1.1 to 3.0 over most of the rest of Europe, especially over Ireland, Britain, Den-524 mark, North Germany, and western France. The Posterior bi annual emissions are gen-525 erally smaller than the Posterior_uni emissions across most of the domain by 10% to 40%526 except some coastal grids due to bi-di emissions from water body near high-emission land 527 cells. These high bi-di emissions over coastal grids are similar to those reported at the 528 Chesapeake Bay (the largest estuary in the United States) (Larsen et al., 2001) and are 529 also consistent with the higher simulated NH_3 concentrations with bi-di compared to those 530 without bi-di in the coastal area of the North Sea (Wichink Kruit et al., 2012). 531

Overall, these emission adjustments led to smaller gaps between simulated NH_3 and 532 CrIS observations for both uni-di and bi-di models and thus better consistency (Figure 533 3 (u)-(x) between early afternoon NH₃ simulations using uni-di and bi-di. Figures 1 (e)-534 (t) and 3 (a)-(x) show that H(Posterior_uni) and H(Posterior_bi) had similar agreement 535 with CrIS NH₃ observations after assimilation of CrIS NH₃ despite H(Prior_uni) and H(Prior_bi) 536 having significantly different mismatches with CrIS NH₃ during warm months, especially 537 during September (Fig. 3 (c) and (g)). Meanwhile, significant differences were found be-538 tween the Posterior_uni and Posterior_bi monthly emissions (Fig. 4) and between the sim-539 ulated hourly surface NH₃ concentrations driven by Posterior_uni and Posterior_bi emis-540 sions (Fig. 2). This contrast demonstrates the extent to which data assimilation can cor-541

rect model simulated concentrations while also revealing how it may compensate for mech-542 anistic biases in the model, such as the omission of NH_3 bi-di exchange. The amount by 543 which the posterior monthly emissions at regional and national scales (Figure 5) differ 544 in this case provides a means of quantifying the uncertainty in previous top-down stud-545 ies that did not include bi-di, which we find to be [+22%, +26%] for EU25, [+4%, +22%]546 for the UK, [+18%, +27%] for the Netherlands, [+1%, +34%] for Switzerland during warm 547 months (from April to September) when the bi-di scheme is expected to averagely have 548 larger and more frequent upward flux due to higher temperature and more fertilizer and 549 manure application across most of the Europe. Also, these differences in posterior emis-550 sions between bi-di and uni-di can be interpreted as the differences between the effec-551 tive lifetimes of NH_3 in uni-di and bi-di schemes since the posterior NH_3 columns con-552 centrations from these two simulations are generally close to each other across most of 553 the domain throughout the year (Fig. 3 (u)-(x)). 554

555

4.3 Comparison with previous anthropogenic NH₃ emission estimates

Figure 7 compares the posterior annual total anthropogenic emission estimates from 556 the inversion experiments IE_uni and IE_bi with previous emission estimates for EU25, 557 UK, the Netherlands, and Switzerland. The Posterior_uni estimates of annual total an-558 thropogenic emissions from EU25, the UK, and the Netherlands are $3534 \text{ Gg N} \text{ a}^{-1}$, 332559 $Gg N a^{-1}$, and 119 $Gg N a^{-1}$, respectively, generally larger than our prior estimates and 560 the HTAP v2 and CEIP estimates by a factor of 1.1 to 2.0, while the Posterior_uni es-561 timate for Switzerland is significantly smaller than these bottom-up estimates by a fac-562 tor of 1.2 to 1.8. In contrast, the Posterior_bi estimates of EU25 and the Netherlands 563 are 2850 Gg N a^{-1} and 100 Gg N a^{-1} , respectively, much closer (< 2% difference for EU25, 564 10% difference for the Netherlands) to the HTAP v2 and CEIP estimates and a recent 565 improved dynamic agricultural emission estimate (95 Gg N a^{-1} for the Netherlands) from 566 Ge et al. (2020). While the Posterior_bi emission estimate for the UK is significantly larger 567 than these bottom-up estimates by a factor of 1.3 to 1.8, the Posterior_bi emission es-568 timate for Switzerland is consistently smaller than these bottom-up estimates by a fac-569 tor of 1.4 to 2.1. The Posterior_bi annual total anthropogenic emissions are smaller than 570 571 the Posterior_uni estimates over EU25, the UK, the Netherlands, and Switzerland by 10%-20%. 572

-19-

Our Posterior_uni (332 Gg N a⁻¹) and Posterior_bi (298 Gg N a⁻¹) estimates for 573 the UK are at the lower end of the recent satellite-derived anthropogenic NH_3 emission 574 estimate range between 315 (IASI) and 516 (CrIS v1.6) Gg N a^{-1} by Marais et al. (2021). 575 The large difference between our CrIS-derived estimates and the CrIS-based estimate 576 from Marais et al. (2021) is most likely caused by the different methods to calculate the 577 top-down emissions: we used a Bayesian inversion in which the prior information imposes 578 a penalty term on the emission optimization, whereas Marais et al. (2021) directly rescale 579 emissions using the column ratio between CrIS NH₃ and GC NH₃. 580

581 582

4.4 Cross-validation using surface NH_3 and NH_x wet deposition measurements

We evaluate the posterior NH_3 emissions by comparing the prior and posterior sim-583 ulations against measurements of surface NH_3 and NH_x wet deposition in 2016 from sites 584 across Europe including the EMEP monitoring network, the LML and MAN networks 585 in the Netherlands, the NAMN network in the UK, the Switzerland national monitor-586 ing network, the Danish Background Air Quality Monitoring Program and some short-587 term campaign sites and long-term monitoring sites in France, the UK, and Germany. 588 We first filtered out sites with monthly mean values beyond the monthly domain aver-589 age by three times the standard deviation in order to reduce impacts from outliers. Then 590 we averaged multiple sites within one model grid before comparing between simulations 591 and measurements. In the comparison against NH_x wet deposition measurements, sim-592 ulated NH_x wet deposition consists of wet deposition of aerosol-phase NH_4^+ and gas-phase 593 NH₃. To remove the bias caused by the difference between measured and simulated pre-594 cipitation, we scaled the measured NH_x wet deposition by the ratio of modeled to mea-595 sured precipitation, $\left(\frac{P_{model}}{P_{measurement}}\right)^{0.6}$, following Paulot et al. (2014). We compared sim-596 ulated NH_x wet deposition to measurements with $\frac{P_{model}}{P_{measurement}}$ between 0.25 and 4.0 597 (Paulot et al., 2014) for EMEP sites. 598

In general, the posterior NH_3 emissions improve the model's ability to present observed seasonality in surface NH_3 concentrations and NH_x wet deposition throughout the European domain. Figure 8 shows the correlation coefficient between monthly mean simulations and measurements of surface NH_3 and NH_x wet deposition for each site. The first two columns of Figure 8 show that our prior uni-di simulation and prior bi-di simulation well reproduce the seasonal variability of NH_x wet deposition measurements across

-20-

Europe, but poorly capture the seasonality of surface NH_3 observations across Europe, 605 especially in the Netherlands, where none of the 70+ sites have a correlation coefficient 606 (R) exceeding 0.5. The third and fourth columns of Figure 8 show that the emission op-607 timization in our inversion experiments enables both our uni-di model and bi-di model 608 to better reproduce the observed monthly variability of surface NH_3 for most sites across 609 the domain, especially those located in the Netherlands and the UK. The number of sites 610 with R for surface NH_3 measurements exceeding 0.5 increased from about 10 to approx-611 imately 30 over Europe (Figure 8) (a)-(d)), from 0 to 21-40 over the Netherlands (Fig-612 ure 8) (e)-(h)), from 13-15 to 40-42 over the UK (Figure 8) (i)-(l)), and from 5 to 12-613 18 over Switzerland (Figure 8) (m)-(p)). In comparison, the improvement in simulating 614 the seasonality of NH_x wet deposition (Figure 8) (q)-(t)) is moderate, with the number 615 of sites with R exceeding 0.5 increased by less than 10 for Europe. This is likely due to 616 the prior simulations capturing the seasonality of NH_x wet deposition well. 617

Figure 9 show normalized mean bias (NMB) of the annual mean of the prior and 618 posterior monthly simulations relative to the annual mean of the monthly measurements 619 of surface NH_3 and NH_x wet deposition, respectively, for each site across Europe. The 620 first two columns of Figure 9 show that our prior uni-di and bi-di simulations generally 621 have variable bias compared to the annual mean surface NH_3 measurements across most 622 of Europe, except that a nation-wide negative bias is identified in the Netherlands. Our 623 prior uni-di and bi-di NH_x wet deposition is generally lower than NH_x wet deposition 624 measurements at most of the European sites. The third and fourth columns of Figure 625 9 show that slight to significant improvements are found in posterior uni-di and bi-di sim-626 ulations of surface NH_3 and NH_x wet deposition across most of the domain, especially 627 in the Netherlands, although Switzerland witnessed a slightly worse performance in pos-628 terior surface NH_3 likely due to the difficulty in both the model and remote sensing data 629 presented by complex topography. The number of sites with absolute NMB exceeding 630 0.5 is reduced by a factor of 1.1 to 3.2 in the posterior surface NH₃ simulations over the 631 Netherlands and the UK and in posterior NH_x wet deposition simulations across the whole 632 Europe. The negative biases at most of the densely-distributed national monitoring sites 633 across the Switzerland and the Netherlands in the posterior NH_3 simulations (Fig. 9 (g)-634 (h) and (o)-(p) are also potentially partly owing to the fact that some of those national 635 sites are located near animal housing or farm land (Sutton et al., 2015) and our model 636 resolution of about 25 km^2 is unable to capture the local sharp gradients of NH_3 con-637

-21-

centrations. On the other hand, the high bias across most of the UK sites and EMEP 638 sites in the posterior NH_3 simulations (Fig. 9 (k)-(l) and (c)-(d)) is likely caused by the 639 fact that the CrIS v1.5 retrieval used in this study did not include non-detect pixels and 640 is thus biased high over background areas and cloudy areas (good-weather bias), such 641 as the UK. An updated CrIS v1.6 retrieval including the non-detects has been used to 642 constrain the UK emissions in a recent study (Marais et al., 2021) and was found to re-643 duce the high bias to some extent. While we do recommend using CrIS v1.6 for future 644 studies, we were not able to use the v1.6 product for this study as it was not publicly 645 available at the time our calculations were conducted. The inclusion of non-detects will 646 unlikely significantly impact the uncertainty associated with the NH_3 flux scheme in our 647 top-down emissions as we use the same satellite data for both uni-di and bi-di inversions. 648

Further comparison between the prior and posterior simulations of surface NH_3 and 649 monthly mean measurements at regional and national scales is shown in Figure 10. Fig. 10 650 (a) and (b) show that monthly mean domain average of surface NH_3 measurements over 651 the EU are generally larger in warm months and lower in cold months, which is consis-652 tent with CrIS surface NH_3 observations (Fig. 1 (a)-(d)) and suggests larger NH_3 emis-653 sions in warm months and smaller emissions in cold months in a general sense. More-654 over, the unusual September/June contrast in surface NH_3 observations (Fig. 10 (a) and 655 (b)) is also consistent with that in CrIS surface NH_3 observations (Fig. 1 (b) and (c)), 656 which, however, cannot be explained by the September/June contrast in posterior emis-657 sions (Fig. 5) but is most likely caused by the significantly larger NH_x wet deposition 658 in June than in September (Fig. 11 (a) and (b)) in 2016. Both our prior uni-di and bi-659 di models show poor to fair skill in reproducing the monthly variation of surface NH_3 660 measurements at regional and national scales, with R between 0.42 to 0.48 for EU and 661 Switzerland and R below zero over the Netherlands and the UK. Prior uni-di and bi-di 662 monthly simulations are significantly lower than monthly mean regional and national av-663 erages throughout most of the year except cold months, resulting in annual regional and 664 national NMB values ranging from -0.13 to -0.52 in uni-di simulations and from 0.01 to 665 -0.43 in bi-di simulations. Generally, the emission optimization enabled better uni-di and 666 bi-di simulations of surface NH₃ with a substantially increased correlation coefficient be-667 tween monthly simulations and monthly mean spatial averages of surface NH_3 measure-668 ments and significantly reduced normalized mean error over most of the European coun-669 tries except Switzerland, which experienced a slight increase in the annual NME. 670

Improvements in the posterior simulations are found in comparison with spatially 671 averaged monthly mean NH_x wet deposition measurements over Europe as shown in Fig-672 ure 11, similar to ambient NH_3 results. Domain average monthly mean NH_x wet depo-673 sition measurements over Europe is higher in warm months and shows a larger peak in 674 the spring and a smaller peak in late autumn, likely due to the combined impacts of the 675 seasonality of agricultural emissions and precipitation. Both our prior uni-di and bi-di 676 monthly simulations can capture the observed seasonal variation of NH_x wet deposition 677 measurements at regional and national scales with R ranging between 0.87 and 0.90 but 678 are significantly lower than the measurements during most of the year (especially in warm 679 months) with annual NMB ranging between -0.40 and -0.50. Our posterior NH₃ emis-680 sions improve the overall ability of the model to reproduce NH_x wet deposition measure-681 ments at regional and national scales with significantly reduced NMB (-0.27 to -0.29)682 and similar high R (0.90 to 0.91) as that of prior simulations, although our posterior sim-683 ulations still show low bias compared to the NH_x wet deposition measurements. 684

Finally, another evaluation using hourly measurements of surface NH₃ at a back-685 ground site (Bavarian Forest National Park) in Germany (Wintjen et al., 2020) is dis-686 played in Figure 2. As mentioned in section 4.1, the prior bi-di model better reproduces 687 the observed diurnal variability of surface NH_3 throughout most of the year, especially 688 during warm months, compared to the prior uni-di model. Both the prior uni-di and bi-689 di models overestimate the monthly mean hourly surface NH₃ measurements year round 690 by a factor of 1.02 to 10.99. While generally having a similar diurnal cycle as the prior 691 simulations, the posterior bi-di simulation better reproduces the magnitude of monthly-692 averaged hourly surface NH_3 measurements in most of the year, reducing the monthly 693 NMB to between 0.28 to 4.36. In contrast, the Posterior_uni emissions generally degrade 694 the uni-di model's performance in reproducing the magnitude of surface NH_3 observa-695 tions at a monthly scale, increasing the monthly NMB by a factor of 1.3 to 29.5 during 696 most of the year except September, November and December. Although our optimiza-697 tions reduced the monthly NMB in December by more than a factor of 2 for both inver-698 sions, large NMB values were still found in the posterior simulations, which is likely ow-699 ing to 1) the poor temporal coverage of in-situ measurements during December and 2) 700 the high bias in CrIS v1.5 over background (low-concentration) areas (especially in win-701 ter months) due to exclusion of non-detects as mentioned above. 702

-23-

703 5 Conclusions

This study presents the first 4D-Var inversion of NH₃ sources using a bi-di NH₃ 704 flux scheme and CrIS NH_3 measurements. The posterior annual anthropogenic NH_3 emis-705 sions have a similar spatial distribution as the prior emissions, but are generally smaller 706 over central Europe and larger over most of the rest of Europe compared to the prior 707 emissions. The posterior monthly emissions generally have a more pronounced spring-708 time peak than the prior. The Posterior bi regional and national total anthropogenic NH_3 709 emissions are generally less than the Posterior_uni emissions by 10% to 20% for EU25, 710 the UK, the Netherlands, and Switzerland at an annual scale, while up to -34% differ-711 ence is found at a monthly scale. These differences can provide a rough estimate of the 712 uncertainty associated with NH₃ flux estimates in previous inverse modeling studies us-713 ing uni-di only. 714

The Posterior bi annual regional total anthropogenic NH₃ emissions are generally 715 within the bottom-up estimate ranges over EU25 (2275 to 2895 Gg N a^{-1}) and the Nether-716 lands (90 to 110 Gg N a^{-1}), while the Posterior-uni estimates are greater than the up-717 per range by 8% over the Netherlands and by 22% over the EU25. Our posterior esti-718 mates of national total anthropogenic NH_3 emissions are greater than the upper range 719 of bottom-up estimates (169 to 237 Gg N a^{-1}) by 26% to 40% in the UK. On the other 720 hand, our posterior estimates of national total anthropogenic NH₃ emissions are less than 721 the lower end of bottom-up estimates (42 to 62 Gg N a^{-1}) by 17% to 31% in Switzer-722 land, which likely has large uncertainty due to the difficulty in both the model and re-723 mote sensing data presented by the complex topography there. 724

Cross-validation by measurements of surface NH_3 and NH_x wet deposition from extensive sites across Europe show that our posterior emissions from inversions enable our uni-di model and bi-di model to better reproduce monthly mean measurements of NH_3 and NH_x wet deposition increasing the *R* between simulated and observed monthly mean regional and national averages from between -0.15 and 0.90 to between 0.47 and 0.91 and reducing the NME by a factor of 1.2 to 2.9 (except Switzerland).

While evaluation against monthly mean surface measurements of NH_3 and NH_x wet deposition show similar improvements in both bi-di and uni-di simulations after data assimilation, another evaluation (Figure 2) against hourly measurements of surface NH_3 at a background site in Germany suggests bi-di better reproduces the observed diurnal

-24-

variability of surface NH_3 . The coexistence of this difference in hourly simulations of sur-735 face NH₃ (Figure 2) using bi-di and uni-di and the difference between Posterior_bi and 736 Posterior_uni monthly emissions (Figures 4 and 5) and the consistency in early afternoon 737 NH_3 simulations using these two schemes (Figures 3 (u)-(x)) demonstrate the importance 738 of accurately simulating diurnal cycle of NH_3 in the assimilation of the Sun-synchronous 739 satellite observations, and calls for highly temporally resolved constraints from geosta-740 tionary satellites.

741

While the bi-di scheme seems to better capture the diurnal variability at the back-742 ground site in Germany, such improvements may not be ubiquitous. For comparison, dif-743 ferent diurnal cycles were identified at urban and suburban sites at Beijing in Lan et al. (2021), 744 where generally higher concentrations of ammonia during the daytime and low concen-745 trations during the nighttime were observed at a suburban site during most of the year 746 except autumn, while the opposite condition was found at an urban site during non-spring 747 seasons. As discussed therein, the complexity and variability of NH_3 diurnal cycles is ow-748 ing to multiple competing factors including sources, chemical sinks, vertical mixing, hor-749 izontal transport, temperature, relative humidity and other meteorological impacts; im-750 provements made owing to bidi alone may not lead to improved simulated diurnal vari-751 ability in all conditions. 752

It may be hard to disentangle this multitude of effects due to the sparsity of hourly 753 in-situ measurements of NH₃. In addition, some urban sources (e.g., vehicular emissions) 754 lead to more variable diurnal cycles in NH_3 concentrations (Whitehead et al., 2007) and 755 the underestimate of such vehicular sources in current bottom-up inventories (Sun et al., 756 2017) could introduce additional uncertainty in simulating NH₃ diurnal cycles in urban 757 area. Overall, estimating and constraining NH_3 emissions would greatly benefit from ad-758 ditional widespread hourly measurements that could be provided by geostationary satel-759 lite observations (Clarisse et al., 2021). 760

Given the critical role of NH_3 in $PM_{2.5}$ formation and excessive deposition of Nr 761 and the severe nitrogen crisis some European countries are facing (Stokstad, 2019) as 762 well as the current and projected decrease of SO_x and NO_x emission trends and increas-763 ing NH_3 emission trend in Europe, measures to be taken to reduce NH_3 emissions in Eu-764 rope such as the amended National Emission Ceiling Directive (NEC) Directive (EC, 2016) 765 targeting reducing NH_3 emissions between 2020 and 2030 are increasingly valuable. In 766

-25-

the meantime, spatially and temporally resolved monitoring of NH₃ emissions at a large 767 scale is needed for assessing the effectiveness of NH_3 abatement policies across Europe. 768 Our 4D-Var inversion system implemented with bi-di and uni-di NH₃ flux schemes and 769 coupled with CrIS NH₃ observations can provide comprehensive and up-to-date spatially 770 resolved evaluation of NH₃ emissions. Moreover, up-to-date posterior NH₃ emissions can 771 improve air quality forecasts and thus have the potential to help guide strategies for re-772 ducing $PM_{2.5}$ exposure. Operational near-real-time observations of NH_3 using satellite 773 instruments could also be used to explore regional and global NH₃ emission trends (Shephard 774 & Cady-Pereira, 2015; Shephard et al., 2020; Glumb et al., 2018), which may support 775 broader adoption of environmental policy regarding Nr. 776

777 Acknowledgments

This study is supported by NASA 80NSSC18K0689. We acknowledge the European Mon-778 itoring and Evaluation Programme (EMEP, data available at http://ebas.nilu.no/ 779 Default.aspx), France National Research Institute for Agriculture, Food and Environ-780 ment (INRAE), UK National Ammonia Monitoring Network (NAMN, data available at 781 https://uk-air.defra.gov.uk/), German Länder networks and the German Environ-782 ment Agency, Thünen Institute of Climate-Smart Agriculture (data available at https:// 783 zenodo.org/record/4513855#.YRt41edBphE) in Germany, Netherlands National Insti-784 tute for Public Health and the Environment (RIVM, LML data available at https:// 785 gitl01-int-p.rivm.nl/mooibrod/lml-repository/tree/master/RIVM, MAN data avail-786 able at https://man.rivm.nl/data_alle_jaar), Federal Office for the Environment (FOEN), 787 cantonal networks and Forschungsstelle für Umweltbeobachtung (FUB) in Switzerland 788 (data available at https://www.bafu.admin.ch/bafu/en/home/topics/air/publications 789 -studies/studies.html), and the Danish Background Air Quality Monitoring Program 790 (data available at http://ebas.nilu.no/Default.aspx) for providing surface measure-791 ments of NH_3 concentrations and NH_x wet depositions over Europe. We thank Dr. Matthew 792 Alvarado (Atmospheric and Environmental Research Inc., USA) for useful discussion. 793 SLC was supported by NASA 80NSSC18K1302. The CrIS CPFR Version 1.5 ammonia 794 data is publicly available (https://hpfx.collab.science.gc.ca/aq/2016/). GEOS-795 Chem adjoint v35m source code is available online (http://wiki.seas.harvard.edu/ 796 geos-chem/index.php/GEOS-Chem_Adjoint). The views expressed in this document are 797 solely those of the authors and do not necessarily reflect those of the U.S. EPA. 798

-26-

799 **References**

- Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., 800 ... Sunderland, E. M. (2012). Gas-particle partitioning of atmospheric Hg(II) 801 and its effect on global mercury deposition. Atmos. Chem. Phys., 12(1), 591-802 603. doi: 10.5194/acp-12-591-2012 803 Backes, A., Aulinger, A., Bieser, J., Matthias, V., & Quante, M. (2016).Am-804 monia emissions in europe, part i: Development of a dynamical ammo-805 doi: nia emission inventory. Atmospheric Environment, 131, 55-66. 806 https://doi.org/10.1016/j.atmosenv.2016.01.041 807 Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T., & Pleim, J. E. (2013).808 Evaluation of a regional air-quality model with bidirectional nh₃ exchange 809 *Biogeosciences*, 10(3), 1635–1645. coupled to an agroecosystem model. doi: 810 10.5194/bg-10-1635-2013 811 Batjes, N. H., Ribeiro, E., & van Oostrum, A. (2020). Standardised soil profile data 812 to support global mapping and modelling (WoSIS snapshot 2019). Earth Sys-813 tem Science Data, 12(1), 299-320. Retrieved from https://essd.copernicus 814 .org/articles/12/299/2020/ doi: 10.5194/essd-12-299-2020 815 Beer, R., Shephard, M. W., Kulawik, S. S., Clough, S. A., Eldering, A., Bowman, 816 K. W., ... Worden, J. R. (2008).First satellite observations of lower tropo-817 spheric ammonia and methanol. Geophysical Research Letters, 35(9). doi: 818 https://doi.org/10.1029/2008GL033642 819 Behera, S. N., Sharma, M., Aneja, V. P., & Balasubramanian, R. (2013, Nov 01). 820 Ammonia in the atmosphere: a review on emission sources, atmospheric chem-821 istry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res., 20(11), 822 8092-8131. doi: 10.1007/s11356-013-2051-9 823 Berner, A. H., & Felix, J. D. (2020). Investigating ammonia emissions in a coastal 824 urban airshed using stable isotope techniques. Science of The Total Environ-825 ment, 707, 134952. doi: https://doi.org/10.1016/j.scitotenv.2019.134952 826 Binkowski, F. S., & Roselle, S. J. (2003). Models-3 Community Multiscale Air Qual-827 ity (CMAQ) model aerosol component 1. Model description. J. Geophys. Res., 828
- 108(D6). doi: 10.1029/2001JD001409
- ⁸³⁰ Cao, H., Henze, D. K., Shephard, M. W., Dammers, E., Cady-Pereira, K., Al-
- varado, M., ... Edgerton, E. S. (2020). Inverse modeling of nh3 sources

832	using cris remote sensing measurements. Environmental Research Letters. doi:
833	10.1088/1748-9326/abb5cc
834	Chang, Y., Zou, Z., Deng, C., Huang, K., Collett, J. L., Lin, J., & Zhuang, G.
835	(2016). The importance of vehicle emissions as a source of atmospheric ammo-
836	nia in the megacity of shanghai. Atmospheric Chemistry and Physics, $16(5)$,
837	3577–3594. doi: 10.5194/acp-16-3577-2016
838	Chen, Y., Shen, H., Kaiser, J., Hu, Y., Capps, S. L., Zhao, S., \dots others (2021).
839	High-resolution hybrid inversion of iasi ammonia columns to constrain us am-
840	monia emissions using the cmaq adjoint model. Atmospheric Chemistry and
841	<i>Physics</i> , $21(3)$, 2067–2082. doi: 10.5194/acp-21-2067-2021
842	Cheng, F., Van Meter, K., Byrnes, D., & Basu, N. (2020). Maximizing us nitrate re-
843	moval through wetland protection and restoration. Nature, 1–6. doi: $10.1038/$
844	s41586-020-03042-5
845	Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., & Coheur, PF. (2009).
846	Global ammonia distribution derived from infrared satellite observations. Na -
847	ture Geoscience, 2(7), 479–483. doi: doi.org/10.1038/ngeo551
848	Clarisse, L., Van Damme, M., Clerbaux, C., & Coheur, PF. (2019). Tracking down
849	global NH_3 point sources with wind-adjusted superresolution. Atmos. Meas.
850	Tech., $12(10)$, 5457–5473. doi: 10.5194/amt-12-5457-2019
851	Clarisse, L., Van Damme, M., Gardner, W., Coheur, P., Clerbaux, C., Whitburn, S.,
852	\ldots Hurtmans, D. (2019). Atmospheric ammonia (nh3) emanations from lake
853	natron's saline mudflats. Sci $Rep,\ 9.$ doi: 10.1038/s 41598-019-39935-3
854	Clarisse, L., Van Damme, M., Hurtmans, D., Franco, B., Clerbaux, C., & Coheur,
855	PF. (2021). The diel cycle of NH3 observed from the FY-4A Geostationary
856	Interferometric Infrared Sounder (GIIRS). Geophysical Research Letters, 48,
857	e2021GL093010. doi: https://doi.org/10.1029/2021GL093010
858	Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M.,
859	Janssens-Maenhout, G. (2020). High resolution temporal profiles in the
860	emissions database for global atmospheric research. Scientific data, $7(1)$, 1–17.
861	doi: $10.6084/m9.figshare.12052887$
862	Dammers, E., McLinden, C. A., Griffin, D., Shephard, M. W., Van Der Graaf, S.,
863	Lutsch, E., Erisman, J. W. (2019). NH_3 emissions from large point sources
864	derived from CrIS and IASI satellite observations. <i>Atmos. Chem. Phys.</i> ,

865	19(19), 12261-12293.doi: 10.5194/acp-19-12261-2019
866	Dammers, E., Shephard, M. W., Palm, M., Cady-Pereira, K., Capps, S., Lutsch,
867	E., Erisman, J. W. (2017). Validation of the CrIS fast physical NH_3 re-
868	trieval with ground-based FTIR. Atmos. Meas. Tech., $10(7)$, 2645–2667. doi:
869	10.5194/amt-10-2645-2017
870	Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A., & Visschedijk, A.
871	(2011). Description of current temporal emission patterns and sensitivity of
872	predicted aq for temporal emission patterns. $EU\ FP7\ MACC\ deliverable\ report$
873	$D_D-EMIS_1, 3, 2019-07.$
874	Denmead, O. T., & Freney, J. R. (1992). Transfer coefficients for water-air exchange
875	of ammonia, carbon dioxide and methane. $Ecological Bulletins, 31-41.$ Re-
876	trieved from https://www.jstor.org/stable/20113103
877	Du, E., de Vries, W., Galloway, J. N., Hu, X., & Fang, J. (2014). Changes in wet
878	nitrogen deposition in the United States between 1985 and 2012. Environ. Res.
879	Lett., $9(9)$, 095004. doi: 10.1088/1748-9326/9/9/095004
880	EC. (2016) . Directive 2016/2284 of the European Parliament and of the Council
881	of 14 December 2016 on the reduction of national emissions of certain atmo-
882	spheric pollutants, amending Directive $2003/35/EC$ and repealing Directive
883	2001/81/EC.
884	EEA. (2017). European Union emission inventory report 1990-2015 under the UN- $$
885	ECE Convention on Long-range Transboundary Air Pollution (LRTAP).
886	EEA. (2020). European Union emission inventory report 1990-2018 under the UN- $$
887	ECE Convention on Long-range Transboundary Air Pollution (LRTAP).
888	Elguindi, N., Granier, C., Stavrakou, T., Darras, S., Bauwens, M., Cao, H.,
889	Zheng, B. (2020). Intercomparison of Magnitudes and Trends in Anthro-
890	pogenic Surface Emissions From Bottom-Up Inventories, Top-Down Esti-
891	mates, and Emission Scenarios. Earth's Future, $\mathcal{S}(8)$, e2020EF001520. doi:
892	https://doi.org/10.1029/2020EF001520
893	Ellermann, T., Nygaard, J., Christensen, J. H., Løfstrøm, P., Geels, C., Nielsen,
894	I. E., Hertel, O. (2018). Nitrogen deposition on danish nature. Atmo-
895	sphere, $9(11)$. doi: 10.3390/atmos9110447
896	Ellis, R. A., Jacob, D. J., Sulprizio, M. P., Zhang, L., Holmes, C. D., Schichtel,
897	B. A., Lynch, J. A. (2013). Present and future nitrogen deposition to

-29-

898	national parks in the United States: Critical load exceedances. Atmos. Chem.
899	<i>Phys.</i> , $13(17)$, 9083–9095. doi: 10.5194/acp-13-9083-2013
900	Erisman, J., & Schaap, M. (2004). The need for ammonia abatement with respect to
901	secondary pm reductions in europe. Environmental Pollution, $129(1)$, 159-163.
902	doi: https://doi.org/10.1016/j.envpol.2003.08.042
903	Erisman, J. W., Galloway, J. N., Seitzinger, S., Bleeker, A., Dise, N. B., Petrescu,
904	A. M. R., de Vries, W. (2013). Consequences of human modification of
905	the global nitrogen cycle. Philos Trans R Soc Lond B Biol Sci, $368(20130116)$,
906	1–9. doi: 10.1098/rstb.2013.0116
907	Evangeliou, N., Balkanski, Y., Eckhardt, S., Cozic, A., Van Damme, M., Coheur,
908	PF., Hauglustaine, D. (2021). 10-year satellite-constrained fluxes of
909	ammonia improve performance of chemistry transport models. Atmospheric
910	Chemistry and Physics, $21(6)$, 4431–4451. doi: 10.5194/acp-21-4431-2021
911	Fenn, M. E., Bytnerowicz, A., Schilling, S. L., Vallano, D. M., Zavaleta, E. S., Weiss,
912	S. B., Hanks, K. (2018). On-road emissions of ammonia: An underappreci-
913	ated source of atmospheric nitrogen deposition. Science of The Total Environ-
914	$ment,\ 625,\ 909\ \ 919.\ \text{doi:}\ \text{https://doi.org/10.1016/j.scitotenv.2017.12.313}$
915	Flechard, C. R., Nemitz, E., Smith, R. I., Fowler, D., Vermeulen, A. T., Bleeker,
916	A., Sutton, M. A. (2011). Dry deposition of reactive nitrogen to eu-
917	ropean ecosystems: a comparison of inferential models across the nitroeu-
918	rope network. Atmospheric Chemistry and Physics, 11(6), 2703–2728. doi:
919	10.5194/acp-11-2703-2011
920	Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W.,
921	Cowling, E. B., & Cosby, B. J. (2003, 04). The Nitrogen Cascade. BioScience,
922	53(4), 341-356. doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
923	Ge, X., Schaap, M., Kranenburg, R., Segers, A., Reinds, G. J., Kros, H., & de Vries,
924	W. (2020). Modeling atmospheric ammonia using agricultural emissions with
925	improved spatial variability and temporal dynamics. Atmospheric Chemistry
926	and Physics, $20(24)$, 16055–16087. doi: 10.5194/acp-20-16055-2020
927	Geels, C., Andersen, H. V., Ambelas Skjøth, C., Christensen, J. H., Ellermann, T.,
928	Løfstrøm, P., Hertel, O. (2012). Improved modelling of atmospheric ammo-
929	nia over denmark using the coupled modelling system damos. <i>Biogeosciences</i> ,
930	9(7), 2625–2647. doi: 10.5194/bg-9-2625-2012

931	Giannakis, E., Kushta, J., Bruggeman, A., & Lelieveld, J. (2019). Costs and ben-
932	efits of agricultural ammonia emission abatement options for compliance
933	with European air quality regulations. Environ Sci Eur, $31(1)$, 93. doi:
934	10.1186/s12302-019-0275-0
935	Giannakis, E., Kushta, J., Giannadaki, D., Georgiou, G. K., Bruggeman, A., &
936	Lelieveld, J. (2019). Exploring the economy-wide effects of agriculture on air
937	quality and health: evidence from europe. Science of The Total Environment,
938	663, 889–900. doi: 10.1016/j.scitotenv.2019.01.410
939	Gilliland, A. B., Dennis, R. L., Roselle, S. J., & Pierce, T. E. (2003). Seasonal $\rm NH_3$
940	emission estimates for the eastern United States based on ammonium wet con-
941	centrations and an inverse modeling method. J. Geophys. Res., $108(D15)$. doi:
942	10.1029/2002JD003063
943	Glumb, R., Suwinski, L., Wells, S., Glumb, A., Malloy, R., & Colton, M. (2018). The
944	JPSS CrIS Instrument and the Evolution of Space-Based Infrared Sounders.
945	Goodkind, A. L., Tessum, C. W., Coggins, J. S., Hill, J. D., & Marshall, J. D.
946	(2019). Fine-scale damage estimates of particulate matter air pollution
947	reveal opportunities for location-specific mitigation of emissions. Pro-
948	ceedings of the National Academy of Sciences, 116(18), 8775-8780. doi:
949	10.1073/pnas.1816102116
950	Guevara, M., Jorba, O., Tena, C., Denier van der Gon, H., Kuenen, J., Elguindi, N.,
951	\ldots Pérez García-Pando, C. (2021). Copernicus atmosphere monitoring service
952	temporal profiles (cams-tempo): global and european emission temporal profile
953	maps for atmospheric chemistry modelling. Earth System Science Data, $13(2)$,
954	367-404. doi: $10.5194/essd-13-367-2021$
955	Heald, C. L., Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y.,
956	\dots Pye, H. O. T. (2012). Atmospheric ammonia and particulate inorganic
957	nitrogen over the United States. Atmos. Chem. Phys., 12(21), 10295–10312.
958	doi: $10.5194/acp-12-10295-2012$
959	Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda,
960	M., Blagotić, A., others (2017). Soilgrids250m: Global gridded soil in-
961	formation based on machine learning. $PLoS \ one, \ 12(2), \ e0169748.$ doi:
962	
	10.1371/journal.pone.0169748

-31-

manuscript submitted to JGR-Atmospheres

964	mapping US air quality influences of inorganic $\mathrm{PM}_{2.5}$ precursor emissions us-
965	ing the adjoint of GEOS-Chem. Atmos. Chem. Phys., 9 , 5877–5903. doi:
966	10.5194/acp-9-5877-2009
967	Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen,
968	T., Zhang, Q. (2018). Historical (1750–2014) anthropogenic emissions
969	of reactive gases and aerosols from the Community Emissions Data System
970	(CEDS). Geosci. Model Dev., $11(1)$, 369–408. doi: 10.5194/gmd-11-369-2018
971	Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhang, H. (2012). A high-
972	resolution ammonia emission inventory in china. Global Biogeochemical Cycles,
973	26(1). doi: https://doi.org/10.1029/2011GB004161
974	Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R.,
975	Valin, L. C., & Cohen, R. C. (2012). Steps towards a mechanistic model
976	of global soil nitric oxide emissions: implementation and space based-
977	constraints. Atmospheric Chemistry and Physics, $12(16)$, 7779–7795. doi:
978	10.5194/acp-12-7779-2012
979	Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M.,
980	Pouliot, G., Li, M. (2015). HTAP_v2.2: a mosaic of regional and
981	global emission grid maps for 2008 and 2010 to study hemispheric trans-
982	port of air pollution. Atmos. Chem. Phys., $15(19)$, $11411-11432$. doi:
983	10.5194/acp-15-11411-2015
984	Kong, L., Tang, X., Zhu, J., Wang, Z., Pan, Y., Wu, H., Carmichael, G. (2019).
985	Improved inversion of monthly ammonia emissions in china based on the chi-
986	nese ammonia monitoring network and ensemble kalman filter. ${\it Environmental}$
987	Science & Technology, 53(21), 12529-12538. doi: 10.1021/acs.est.9b02701
988	Krupa, S. (2003). Effects of atmospheric ammonia $(\rm NH_3)$ on terrestrial vegetation: a
989	review. Environ. Pollut., 124(2), 179 - 221. doi: https://doi.org/10.1016/S0269
990	-7491(02)00434-7
991	Lan, Z., Lin, W., Pu, W., & Ma, Z. (2021). Measurement report: Exploring nh_3
992	behavior in urban and suburban beijing: comparison and implications. $Atmo-$
993	spheric Chemistry and Physics, 21(6), 4561–4573. doi: 10.5194/acp-21-4561
994	-2021
995	Larsen, R. K., Steinbacher, J. C., & Baker, J. E. (2001). Ammonia exchange
996	between the atmosphere and the surface waters at two locations in the chesa-

996

997	peake bay. Environmental Science & Technology, $35(24)$, $4731-4738$. doi:
998	10.1021/es0107551
999	Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The con-
1000	tribution of outdoor air pollution sources to premature mortality on a global
1001	scale. Nature, $525(7569)$, $367-371$. doi: $10.1038/nature15371$
1002	Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M.,
1003	\ldots Collett, J. L. (2016). Increasing importance of deposition of reduced nitro-
1004	gen in the United States. Proc. Natl. Acad. Sci. U.S.A., 113(21), 5874–5879.
1005	doi: $10.1073/\text{pnas}.1525736113$
1006	Liss, P. S., & Galloway, J. N. (1993). Air-sea exchange of sulphur and nitrogen
1007	and their interaction in the marine atmosphere. In $Interactions \ of \ c, \ n, \ p \ and \ s$
1008	biogeochemical cycles and global change (pp. 259–281). Springer.
1009	Liu, H., Jacob, D. J., Bey, I., & Yantosca, R. M. (2001). Constraints from 210Pb
1010	and 7Be on wet deposition and transport in a global three-dimensional chemi-
1011	cal tracer model driven by assimilated meteorological fields. J. Geophys. Res.,
1012	106(D11), 12109-12128.doi: 10.1029/2000JD900839
1013	Liu, M., Huang, X., Song, Y., Xu, T., Wang, S., Wu, Z., \dots Zhu, T. (2018). Rapid
1014	SO_2 emission reductions significantly increase tropospheric ammonia concen-
1015	trations over the North China Plain. Atmos. Chem. Phys., 18(24), 17933–
1016	17943. doi: 10.5194/acp-18-17933-2018
1017	Lolkema, D., Noordijk, H., Stolk, A., Hoogerbrugge, R., van Zanten, M., & van Pul,
1018	W. (2015). The measuring ammonia in nature (man) network in the nether-
1019	lands. Biogeosciences, $12(16)$, 5133–5142. doi: 10.5194/bg-12-5133-2015
1020	Lonati, G., & Cernuschi, S. (2020). Temporal and spatial variability of atmospheric
1021	ammonia in the lombardy region (northern italy). Atmospheric Pollution Re-
1022	$search,\ 11(12),\ 2154$ - 2163. (World Clean Air Congress 2019) doi: 10.1016/j
1023	.apr.2020.06.004
1024	Lu, C., & Tian, H. (2017). Global nitrogen and phosphorus fertilizer use
1025	for agriculture production in the past half century: shifted hot spots and
1026	nutrient imbalance. Earth System Science Data, $9(1)$, 181–192. doi:
1027	10.5194/essd-9-181-2017
1028	Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H.,
1029	Carouge, C. (2010). Chemistry of hydrogen oxide radicals (ho_x) in the Arc-

1030	tic troposphere in spring. Atmos. Chem. Phys., $10(13)$, 5823–5838. doi:
1031	10.5194/acp-10-5823-2010
1032	Marais, E. A., Pandey, A. K., Damme, M. V., Clarisse, L., Coheur, PF., Shephard,
1033	M. W., \dots Yu, F. (2021). UK ammonia emissions estimated with satellite
1034	observations and GEOS-chem. Under review, Journal of Geophysical Research:
1035	Atmospheres. doi: $10.1002/essoar.10507043.1$
1036	McDuffie, E. E., Smith, S. J., O'Rourke, P., Tibrewal, K., Venkataraman, C.,
1037	Marais, E. A., Martin, R. V. (2020). A global anthropogenic emis-
1038	sion inventory of atmospheric pollutants from sector- and fuel-specific
1039	sources (1970–2017): an application of the Community Emissions Data
1040	System (CEDS). Earth System Science Data, 12(4), 3413–3442. doi:
1041	10.5194/essd-12-3413-2020
1042	Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H.,
1043	Ogochi, K. (2019). Chemical reanalysis products. Jet Propulsion Laboratory.
1044	doi: 10.25966/9qgv-fe81
1045	Miyazaki, K., Bowman, K., Sekiya, T., Eskes, H., Boersma, F., Worden, H.,
1046	Ogochi, K. (2020). Updated tropospheric chemistry reanalysis and emission es-
1047	timates, TCR-2, for 2005–2018. Earth System Science Data, $12(3)$, 2223–2259.
1048	doi: 10.5194/essd-12-2223-2020
1049	Myhre, G., Berglen, T. F., Johnsrud, M., Hoyle, C. R., Berntsen, T. K., Christo-
1050	pher, S. A., Yttri, K. E. (2009). Modelled radiative forcing of the direct
1051	aerosol effect with multi-observation evaluation. Atmos. Chem. Phys., $9(4)$,
1052	1365–1392. doi: 10.5194/acp-9-1365-2009
1053	Nah, T., Guo, H., Sullivan, A. P., Chen, Y., Tanner, D. J., Nenes, A., We-
1054	ber, R. J. (2018). Characterization of aerosol composition, aerosol
1055	acidity, and organic acid partitioning at an agriculturally intensive rural
1056	southeastern US site. Atmos. Chem. Phys., $18(15)$, $11471-11491$. doi:
1057	10.5194/acp-18-11471-2018
1058	Nair, A. A., & Yu, F. (2020). Quantification of atmospheric ammonia concentra-
1059	tions: A review of its measurement and modeling. Atmosphere, $11(10)$. doi: 10
1060	.3390/atmos11101092
1061	Neirynck, J., & Ceulemans, R. (2008). Bidirectional ammonia exchange above a
1062	mixed coniferous forest. Environmental Pollution, 154(3), 424 - 438. (Reduced

1063	Nitrogen in Ecology and the Environment) doi: https://doi.org/10.1016/			
1064	j.envpol.2007.11.030			
1065	Nemitz, E., Milford, C., & Sutton, M. A. (2001). A two-layer canopy compensation			
1066	point model for describing bi-directional biosphere-atmosphere exchange of			
1067	ammonia. Quarterly Journal of the Royal Meteorological Society, 127(573),			
1068	815-833. doi: https://doi.org/10.1002/qj.49712757306			
1069	Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., & Chin, M. (2004). Natural			
1070	and transboundary pollution influences on sulfate-nitrate-ammonium aerosols			
1071	in the United States: Implications for policy. J. Geophys. Res., $109(D15)$. doi:			
1072	10.1029/2003JD004473			
1073	Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., & Henze, D. K.			
1074	(2014). Ammonia emissions in the United States, European Union, and China			
1075	derived by high-resolution inversion of ammonium wet deposition data: Inter-			
1076	pretation with a new agricultural emissions inventory (MASAGE_NH3). J .			
1077	Geophys. Res., 119(7), 4343-4364. doi: 10.1002/2013JD021130			
1078	Pinder, R. W., Adams, P. J., Pandis, S. N., & Gilliland, A. B. (2006). Tem-			
1079	porally resolved ammonia emission inventories: Current estimates, eval-			
1080	uation tools, and measurement needs. J. Geophys. Res., 111(D16). doi:			
1081	10.1029/2005 JD006603			
1082	Pleim, J. E., Bash, J. O., Walker, J. T., & Cooter, E. J. (2013). Development and			
1083	evaluation of an ammonia bidirectional flux parameterization for air quality			
1084	models. Journal of Geophysical Research: Atmospheres, 118(9), 3794-3806.			
1085	doi: https://doi.org/10.1002/jgrd.50262			
1086	Pleim, J. E., Ran, L., Appel, W., Shephard, M. W., & Cady-Pereira, K. (2019).			
1087	New bidirectional ammonia flux model in an air quality model coupled with			
1088	an agricultural model. Journal of Advances in Modeling Earth Systems, $11(9)$,			
1089	2934-2957. doi: https://doi.org/10.1029/2019 MS001728			
1090	Quinn, P., Barrett, K., Dentener, F., Lipschultz, F., & Six, K. (1996). Estimation			
1091	of the air/sea exchange of ammonia for the north atlantic basin. In $Nitrogen$			
1092	cycling in the north atlantic ocean and its watersheds (pp. 275–304). Springer.			
1093	Retrieved from https://www.jstor.org/stable/1469232			
1094	Schiferl, L. D., Heald, C. L., Van Damme, M., Clarisse, L., Clerbaux, C., Coheur,			
1095	PF., Eilerman, S. J. (2016). Interannual variability of ammonia con-			

-35-

1096	centrations over the United States: Sources and implications. Atmos. Chem.			
1097	Phys., $16(18)$, 12305–12328. doi: 10.5194/acp-16-12305-2016			
1098	Seitler, E., & Meier, M. (2021). Ammoniak-Immissionsmessungen in der Schweiz			
1099	2000 bis 2020. Retrieved from https://www.bafu.admin.ch/bafu/en/home/			
1100	topics/air/publications-studies/studies.html			
1101	Shephard, M. W., & Cady-Pereira, K. E. (2015). Cross-track Infrared Sounder			
1102	(CrIS) satellite observations of tropospheric ammonia. <i>Atmos. Meas. Tech.</i> ,			
1103	$\mathcal{S}(3), 1323-1336.$ doi: 10.5194/amt-8-1323-2015			
1104	Shephard, M. W., Cady-Pereira, K. E., Luo, M., Henze, D. K., Pinder, R. W.,			
1105	Walker, J. T., Clarisse, L. (2011). TES ammonia retrieval strategy and			
1106	global observations of the spatial and seasonal variability of ammonia. $Atmos$.			
1107	Chem. Phys., $11(20)$, 10743–10763. doi: 10.5194/acp-11-10743-2011			
1108	Shephard, M. W., Dammers, E., Cady-Pereira, K. E., Kharol, S. K., Thompson,			
1109	J., Gainariu-Matz, Y., Zheng, Q. (2020). Ammonia measurements			
1110	from space with the cross-track infrared sounder: characteristics and ap-			
1111	plications. Atmospheric Chemistry and Physics, 20(4), 2277–2302. Re-			
1112	trieved from https://acp.copernicus.org/articles/20/2277/2020/ doi:			
1113	10.5194/acp-20-2277-2020			
1114	Skjøth, C. A., & Geels, C. (2013). The effect of climate and climate change on am-			
1115	monia emissions in europe. Atmospheric Chemistry and Physics, 13(1), 117–			
1116	128. doi: $10.5194/acp-13-117-2013$			
1117	Sommer, S. G., Webb, J., & Hutchings, N. D. (2019). New emission factors			
1118	for calculation of ammonia volatilization from european livestock manure			
1119	management systems. Frontiers in Sustainable Food Systems, 3, 101. doi:			
1120	10.3389/fsufs.2019.00101			
1121	Stokstad, E. (2019). Nitrogen crisis threatens Dutch environment—and econ-			
1122	omy. American Association for the Advancement of Science. doi: $10.1126/$			
1123	science.366.6470.1180			
1124	Sun, K., Tao, L., Miller, D. J., Pan, D., Golston, L. M., Zondlo, M. A., Zhu,			
1125	T. (2017). Vehicle Emissions as an Important Urban Ammonia Source in			
1126	the United States and China. Environ. Sci. Technol., 51(4), 2472-2481. doi:			
1127	10.1021/acs.est.6b02805			
1128	Sutton, M. A., Asman, W. A., Ellermann, T., Van Jaarsveld, J., Acker, K., Aneja,			

-36-

1129	V., \ldots others (2003). Establishing the link between ammonia emission		
1130	control and measurements of reduced nitrogen concentrations and depo-		
1131	sition. Environmental Monitoring and Assessment, 82(2), 149–185. doi:		
1132	10.1023/A:1021834132138		
1133	Sutton, M. A., Burkhardt, J., Guerin, D., Nemitz, E., & Fowler, D. (1998). Develop-		
1134	ment of resistance models to describe measurements of bi-directional ammonia		
1135	surface-atmosphere exchange. $Atmospheric Environment, 32(3), 473 - 480.$		
1136	doi: https://doi.org/10.1016/S1352-2310(97)00164-7		
1137	Sutton, M. A., Dragosits, U., Geels, C., Gyldenkærne, S., Misselbrook, T. H., &		
1138	Bussink, W. (2015). Review on the scientific underpinning of calculation of		
1139	ammonia emission and deposition in the netherlands. Wageningen University		
1140	& Research.		
1141	Sutton, M. A., Reis, S., Riddick, S. N., Dragosits, U., Nemitz, E., Theobald, M. R.,		
1142	\ldots de Vries, W. (2013). Towards a climate-dependent paradigm of ammonia		
1143	emission and deposition. Philosophical Transactions of the Royal Society B:		
1144	Biological Sciences, 368(1621), 20130166. doi: 10.1098/rstb.2013.0166		
1145	Sutton, M. A., van Dijk, N., Levy, P. E., Jones, M. R., Leith, I. D., Sheppard, L. J.,		
1146	Wolseley, P. A. (2020). Alkaline air: changing perspectives on nitrogen		
1147	and air pollution in an ammonia-rich world. Philosophical Transactions of the		
1148	Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2183),		
1149	20190315. doi: $10.1098/rsta.2019.0315$		
1150	Tang, Y. S., Braban, C. F., Dragosits, U., Dore, A. J., Simmons, I., van Dijk, N.,		
1151	Sutton, M. A. (2018). Drivers for spatial, temporal and long-term trends in		
1152	atmospheric ammonia and ammonium in the uk. Atmospheric Chemistry and		
1153	<i>Physics</i> , $18(2)$, 705–733. doi: 10.5194/acp-18-705-2018		
1154	Tang, Y. S., Flechard, C. R., Dämmgen, U., Vidic, S., Djuricic, V., Mitosinkova,		
1155	M., Sutton, M. A. (2021). Pan-european rural monitoring network		
1156	shows dominance of nh_3 gas and nh_4no_3 aerosol in inorganic atmospheric		
1157	pollution load. Atmospheric Chemistry and Physics, 21(2), 875–914. doi:		
1158	10.5194/acp-21-875-2021		
1159	Tang, Y. S., Stephens, A., Poskitt, J., Nemitz, E., Bealey, W. J., Leaver, D.,		
1160	Braban, C. F. (2018). UK Eutrophying and Acidifying Atmospheric Pollu-		
1161	tant project's National Ammonia Monitoring Network (Data funded by Defra		

-37-

1162	and the Devolved Administrations and published under the Open Govern-
1163	ment Licence v3.0, NAMN, http://uk-air.defra.gov.uk/networks/network-
1164	info?view=ukeap).
1165	Tobin, D. (2012). Early Checkout of the Cross-track Infrared Sounder (CrIS) on
1166	Suomi-NPP, Through the Atmosphere, Summer 2012.
1167	Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G.,
1168	\ldots Yttri, K. E. (2012). Introduction to the european monitoring and evalua-
1169	tion programme (emep) and observed atmospheric composition change during
1170	1972ndash;2009. Atmospheric Chemistry and Physics, $12(12)$, $5447-5481$. doi:
1171	10.5194/acp-12-5447-2012
1172	Twigg, M. M., Di Marco, C. F., Leeson, S., van Dijk, N., Jones, M. R., Leith, I. D.,
1173	\ldots Cape, J. N. (2015). Water soluble aerosols and gases at a uk background
1174	site – part 1: Controls of $pm_{2.5}$ and pm_{10} aerosol composition. Atmospheric
1175	Chemistry and Physics, $15(14)$, 8131–8145. doi: 10.5194/acp-15-8131-2015
1176	UNECE. (1999). The 1999 Gothenburg Protocol to Abate Acidification, Eutrophi-
1177	cation and Ground-level Ozone. Retrieved from http://www.unece.org/env/
1178	lrtap/multi_h1.html
1179	U.S. EPA. (2018). Data from the 2014 National Emissions Inventory. , $Version \mathcal{2}.$
1180	van Zanten, M., Wichink Kruit, R., Hoogerbrugge, R., Van der Swaluw, E., &
1181	van Pul, W. (2017). Trends in ammonia measurements in the netherlands
1182	over the period 1993–2014. Atmospheric Environment, 148, 352-360. doi:
1183	https://doi.org/10.1016/j.atmosenv.2016.11.007
1184	Van Damme, M., Clarisse, L., Franco, B., Sutton, M. A., Erisman, J. W., Kruit,
1185	R. W., Coheur, PF. (2020). Global, regional and national trends of
1186	atmospheric ammonia derived from a decadal (2008-2018) satellite record. ${\it En-}$
1187	vironmental Research Letters. Retrieved from http://iopscience.iop.org/
1188	article/10.1088/1748-9326/abd5e0
1189	Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C.,
1190	Coheur, P. F. (2014). Global distributions, time series and error char-
1191	acterization of atmospheric ammonia (NH_3) from IASI satellite observations.
1192	Atmos. Chem. Phys., 14(6), 2905–2922. doi: 10.5194/acp-14-2905-2014
1193	Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Cler-
1194	baux, C., & Coheur, PF. (2018). Industrial and agricultural ammonia point

-38-

1195	sources exposed. Nature, $564(7734)$, 99. doi: 10.1038/s41586-018-0747-1			
1196	van der Graaf, S., Dammers, E., Segers, A., Kranenburg, R., Schaap, M., Shephard,			
1197	M., & Erisman, J. W. (2021). Data assimilation of CrIS-NH3 satellite obser-			
1198	vations for improving spatiotemporal NH_3 distributions in LOTOS-EUROS.			
1199	under review, Atmospheric Chemistry and Physics.			
1200	van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasib-			
1201	hatla, P. S., van Leeuwen, T. T. (2010). Global fire emissions and the			
1202	contribution of deforestation, savanna, forest, agricultural, and peat fires			
1203	(1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735.			
1204	doi: 10.5194/acp-10-11707-2010			
1205	von Bobrutzki, K., Braban, C. F., Famulari, D., Jones, S. K., Blackall, T., Smith,			
1206	T. E. L., Nemitz, E. (2010). Field inter-comparison of eleven atmospheric			
1207	ammonia measurement techniques. Atmospheric Measurement Techniques,			
1208	$\Im(1)$, 91–112. doi: 10.5194/amt-3-91-2010			
1209	Walker, H. L., Heal, M. R., Braban, C. F., Ritchie, S., Conolly, C., Sanocka, A.,			
1210	Twigg, M. M. (2019, may). Changing supersites: assessing the im-			
1211	pact of the southern UK EMEP supersite relocation on measured atmo-			
1212	spheric composition. $Environmental Research Communications, 1(4),$			
1213	041001. Retrieved from https://doi.org/10.1088/2515-7620/ab1a6f doi:			
1214	10.1088/2515-7620/ab1a6f			
1215	Walker, J. T., Jones, M. R., Bash, J. O., Myles, L., Meyers, T., Schwede, D.,			
1216	Robarge, W. (2013). Processes of ammonia air–surface exchange			
1217	in a fertilized zea mays canopy. $Biogeosciences, 10(2), 981-998.$ Re-			
1218	trieved from https://bg.copernicus.org/articles/10/981/2013/ doi:			
1219	10.5194/bg-10-981-2013			
1220	Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C.,			
1221	Doherty, S. J. (2011). Sources of carbonaceous aerosols and deposited			
1222	black carbon in the Arctic in winter-spring: Implications for radiative forcing.			
1223	Atmos. Chem. Phys., 11(23), 12453–12473. doi: 10.5194/acp-11-12453-2011			
1224	Wang, R., Guo, X., Pan, D., Kelly, J. T., Bash, J. O., Sun, K., Zondlo, M. A.			
1225	(2021). Monthly patterns of ammonia over the contiguous united states at			
1226	2-km resolution. Geophysical Research Letters, 48(5), e2020GL090579. doi:			
1227	https://doi.org/10.1029/2020GL090579			

- ¹²²⁸ Wang, Y., Jacob, D. J., & Logan, J. A. (1998). Global simulation of tropospheric ¹²²⁹ O_3 -NO_x-hydrocarbon chemistry: 1. Model formulation. J. Geophys. Res., ¹²³⁰ 103(D9), 10713-10725. doi: 10.1029/98JD00158
- ¹²³¹ Warner, J. X., Dickerson, R. R., Wei, Z., Strow, L. L., Wang, Y., & Liang, Q.
- (2017). Increased atmospheric ammonia over the world's major agricultural
 areas detected from space. *Geophysical Research Letters*, 44(6), 2875-2884.
 doi: 10.1002/2016GL072305
- Warner, J. X., Wei, Z., Strow, L. L., Dickerson, R. R., & Nowak, J. B. (2016).
 The global tropospheric ammonia distribution as seen in the 13-year AIRS
 measurement record. Atmos. Chem. Phys., 16(8), 5467–5479. doi: 10.5194/acp-16-5467-2016
- Wesely, M. (1989). Parameterization of surface resistances to gaseous dry deposition
 in regional-scale numerical models. *Atmos. Environ.*, 23(6), 1293 1304. doi:
 10.1016/0004-6981(89)90153-4
- Whitehead, J., Longley, I., & Gallagher, M. (2007). Seasonal and diurnal variation
 in atmospheric ammonia in an urban environment measured using a quantum
 cascade laser absorption spectrometer. Water, air, and soil pollution, 183(1),
 317–329. doi: 10.1007/s11270-007-9381-5
- ¹²⁴⁶ Wichink Kruit, R. J., Schaap, M., Sauter, F. J., van Zanten, M. C., & van Pul,
- W. A. J. (2012). Modeling the distribution of ammonia across europe in cluding bi-directional surface-atmosphere exchange. *Biogeosciences*, 9(12),
 5261–5277. doi: 10.5194/bg-9-5261-2012
- Wintjen, P., Schrader, F., Schaap, M., Beudert, B., & Brümmer, C. (2020). Forest atmosphere exchange of reactive nitrogen in a low polluted area temporal
 dynamics and annual budgets. *Biogeosciences Discussions*, 2020, 1–47. doi:
 10.5194/bg-2020-364
- Yu, F., Nair, A. A., & Luo, G. (2018). Long-term trend of gaseous ammonia over
 the United States: Modeling and comparison with observations. J. Geophys.
 Res., 123(15), 8315-8325. doi: 10.1029/2018JD028412
- Zavyalov, V., Esplin, M., Scott, D., Esplin, B., Bingham, G., Hoffman, E., ...
 Phillips, L. (2013). Noise performance of the CrIS instrument. J. Geophys.
 Res., 118(23), 13,108-13,120. doi: 10.1002/2013JD020457
- ¹²⁶⁰ Zhang, L., Chen, Y., Zhao, Y., Henze, D. K., Zhu, L., Song, Y., ... Huang, B.

-40-

1261	(2018). Agricultural ammonia emissions in China: Reconciling bottom-			
1262	up and top-down estimates. Atmos. Chem. Phys., $18(1)$, $339-355$. doi:			
1263	10.5194/acp-18-339-2018			
1264	Zhang, L., Gong, S., Padro, J., & Barrie, L. (2001). A size-segregated particle dry			
1265	deposition scheme for an atmospheric aerosol module. Atmos. Environ., $35(3)$,			
1266	549 - 560. doi: 10.1016/S1352-2310(00)00326-5			
1267	Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge,			
1268	C. C., Chen, D. (2012). Nitrogen deposition to the United States: Distri-			
1269	bution, sources, and processes. Atmos. Chem. Phys., 12(10), 4539–4554. doi:			
1270	10.5194/acp-12-4539-2012			
1271	Zhang, L., Jacob, D. J., Liu, X., Logan, J. A., Chance, K., Eldering, A., & Bo-			
1272	jkov, B. R. (2010). Intercomparison methods for satellite measurements			
1273	of atmospheric composition: application to tropospheric ozone from TES			
1274	and OMI. Atmospheric Chemistry and Physics, $10(10)$, $4725-4739$. Re-			
1275	trieved from https://acp.copernicus.org/articles/10/4725/2010/ doi:			
1276	10.5194/acp-10-4725-2010			
1277	Zhang, X., Gu, B., van Grinsven, H., Lam, S. K., Liang, X., Bai, M., & Chen, D.			
1278	(2020). Societal benefits of halving agricultural ammonia emissions in china			
1279	far exceed the abatement costs. Nature communications, $11(1)$, 1–10. doi:			
1280	10.1038/s41467-020-18196-z			
1281	Zhu, L., Henze, D., Bash, J., Jeong, GR., Cady-Pereira, K., Shephard, M.,			
1282	Capps, S. (2015). Global evaluation of ammonia bidirectional exchange and			
1283	livestock diurnal variation schemes. Atmospheric Chemistry and Physics,			
1284	15(22), 12823-12843. Retrieved from https://acp.copernicus.org/			
1285	articles/15/12823/2015/ doi: $10.5194/acp-15-12823-2015$			
1286	Zhu, L., Henze, D. K., Bash, J. O., Cady-Pereira, K. E., Shephard, M. W., Luo,			
1287	M., & Capps, S. L. (2015). Sources and impacts of atmospheric nh 3: cur-			
1288	rent understanding and frontiers for modeling, measurements, and remote			
1289	sensing in north america. Current Pollution Reports, $1(2)$, 95–116. doi:			
1290	10.1007/s40726-015-0010-4			
1291	Zhu, L., Henze, D. K., Cady-Pereira, K. E., Shephard, M. W., Luo, M., Pinder,			
1292	R. W., Jeong, GR. (2013). Constraining U.S. ammonia emissions us-			
1293	ing TES remote sensing observations and the GEOS-Chem adjoint model. J .			

-41-

1294	Geophys. Res., $118(8)$, 3355-3368. doi: 10.1002/jgrd.50166		
1295	Zöll, U., Brümmer, C., Schrader, F., Ammann, C., Ibrom, A., Flechard, C. R.,		
1296	\ldots Kutsch, W. L. (2016). Surface–atmosphere exchange of ammonia over		
1297	peatland using qcl-based eddy-covariance measurements and inferential		
1298	modeling. Atmospheric Chemistry and Physics, 16(17), 11283–11299. doi:		
1299	10.5194/acp-16-11283-2016		
1300	Zöll, U., Lucas-Moffat, A. M., Wintjen, P., Schrader, F., Beudert, B., & Brümmer,		
1301	C. (2019). Is the biosphere-atmosphere exchange of total reactive nitrogen		
1302	above forest driven by the same factors as carbon dioxide? an analysis using		
1303	artificial neural networks. Atmospheric Environment, 206, 108-118. doi:		
1304	https://doi.org/10.1016/j.atmosenv.2019.02.042		

Table 1: Setup for inversion experiments

Inversion	Dry deposition	Posterior
experiments	scheme	emissions
IE_bi	bi-directional	Posterior_bi
IE_uni	uni-directional	Posterior_uni

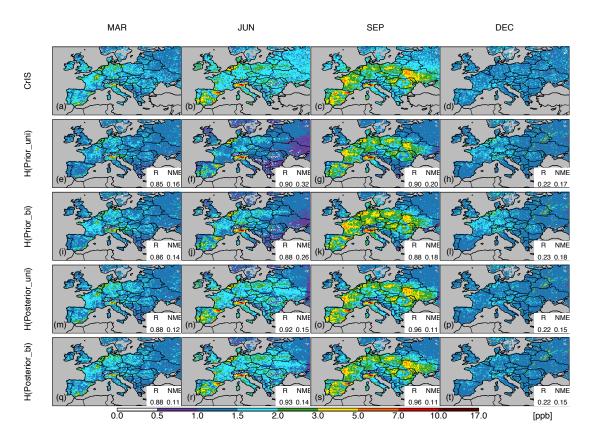


Figure 1: Monthly mean surface NH_3 concentrations from CrIS((a)-(d)), simulations driven by prior emissions with uni-di ((e)-(h)) and bi-di ((i)-(l)), simulations driven by posterior emissions derived through uni-di ((m)-(p)) and bi-di ((q)-(t)), respectively, in March, June, September and December in 2016. *R* is the spatial correlation coefficient between NH_3 simulation and CrIS surface NH_3 ; NME is the normalized mean error of NH_3 simulation relative to CrIS surface NH_3 .

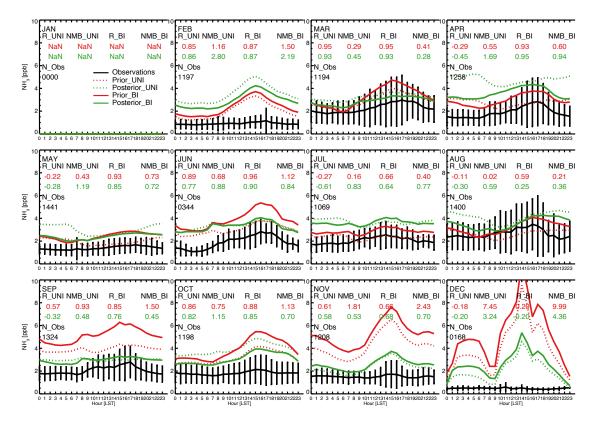


Figure 2: Monthly mean hourly surface NH_3 concentrations at a background site (Bavarian Forest National Park) [48°56′ N, 13°25′ E, 807 m a.s.l.] in Germany observed via QCL instrument (black) and simulated by GC driven by prior (red) and posterior (green) emissions through uni-di (dotted) and bi-di (solid) schemes for 11 months in 2016.

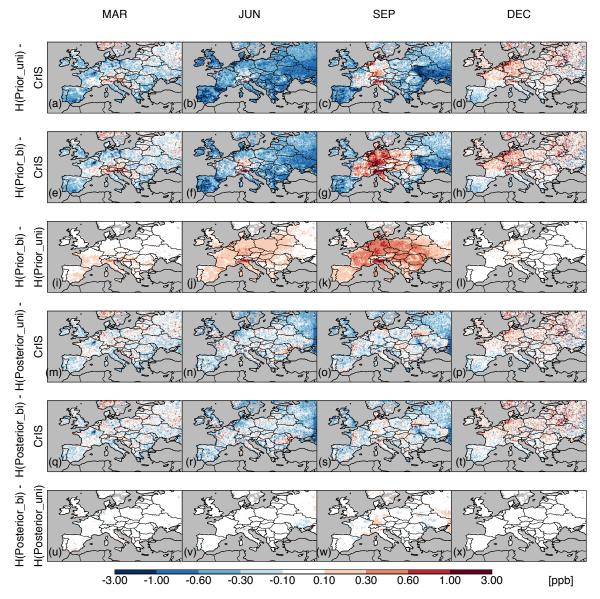
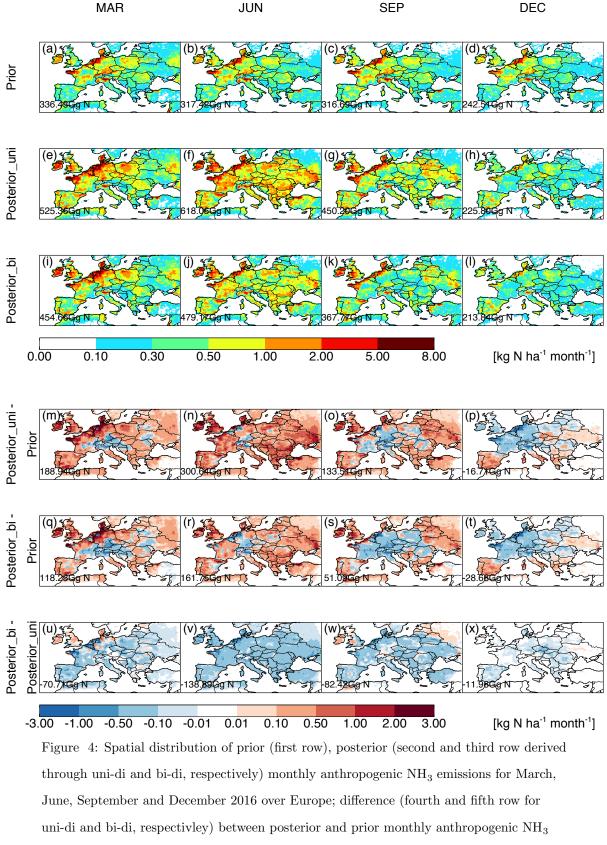



Figure 3: Difference between monthly mean CrIS surface NH_3 concentrations and prior and posterior simulations with uni-di and bi-di, respectively, in March, June, September and December in 2016.

emissions; difference (sixth row) between posterior monthly anthropogenic NH_3 emissions derived through uni-di and bi-di schemes.

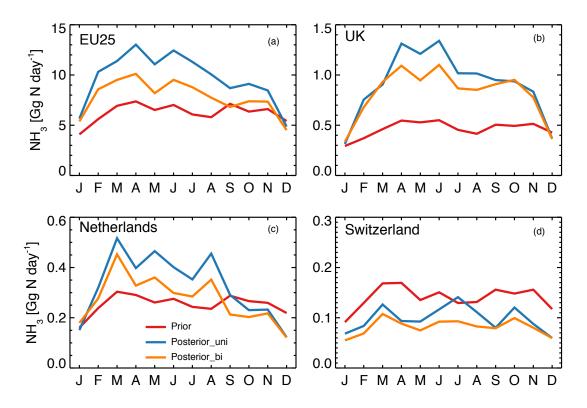


Figure 5: Regional/National monthly anthropogenic NH₃ emission estimates from prior inventory (red), and those derived from CrIS NH₃ with uni-directional scheme (blue) and with bi-directional scheme (orange), respectively. EU25 consists of Austria, Belgium, Bulgaria, Croatia, Republic of Cyprus, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia and Spain.

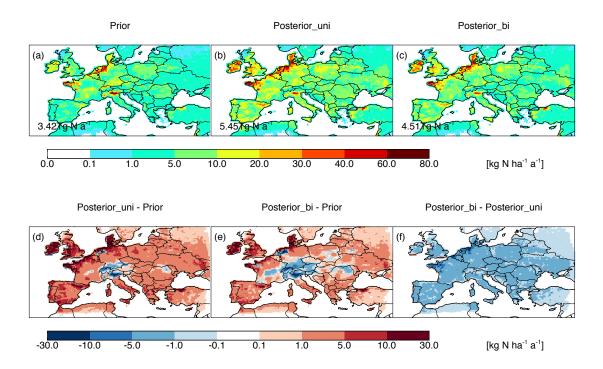


Figure 6: Spatial distribution of prior (a), posterior ((b) and (c) derived through uni-di and bi-di, respectively) annual anthropogenic NH_3 emissions over Europe in 2016; difference ((d) and (e) for uni-di and bi-di, respectivley) between posterior and prior annual anthropogenic NH_3 emissions; difference (f) between posterior annual anthropogenic NH_3 emissions derived through uni-di and bi-di schemes.

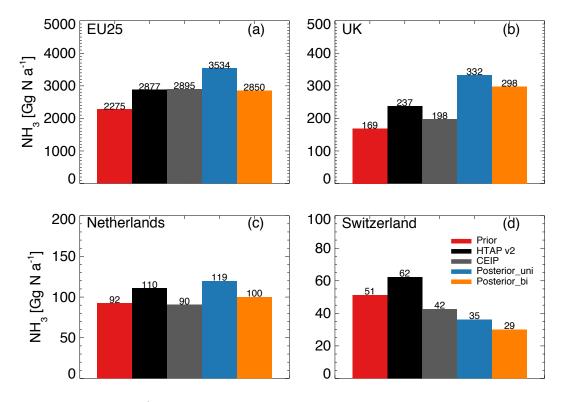


Figure 7: Regional/National total annual anthropogenic NH_3 emission estimates from prior inventory (red), HTAP v2 inventory (black, for 2010), CEIP inventory (gray, for 2016), and those derived from CrIS NH_3 through uni-di scheme (blue) and bi-di scheme (orange), respectively.

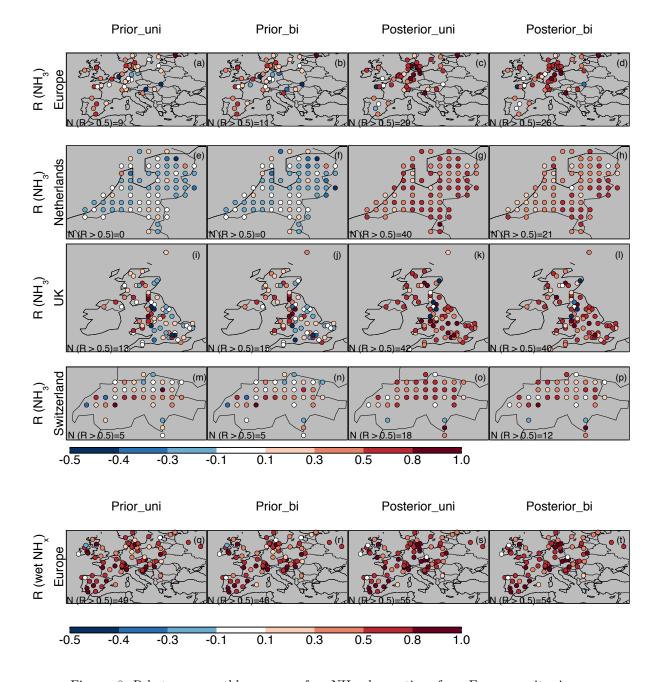


Figure 8: R between monthly mean surface NH_3 observations from European sites in 2016 (over Europe (a-d), Netherlands (e-h), UK (i-l) and Switzerland (m-p)) and simulations driven by prior and posterior emissions derived through uni-di and bi-di schemes, respectively, with linear averaging kernel. R between monthly mean NH_x wet deposition measurements and simulations over Europe (q-t) in 2016.

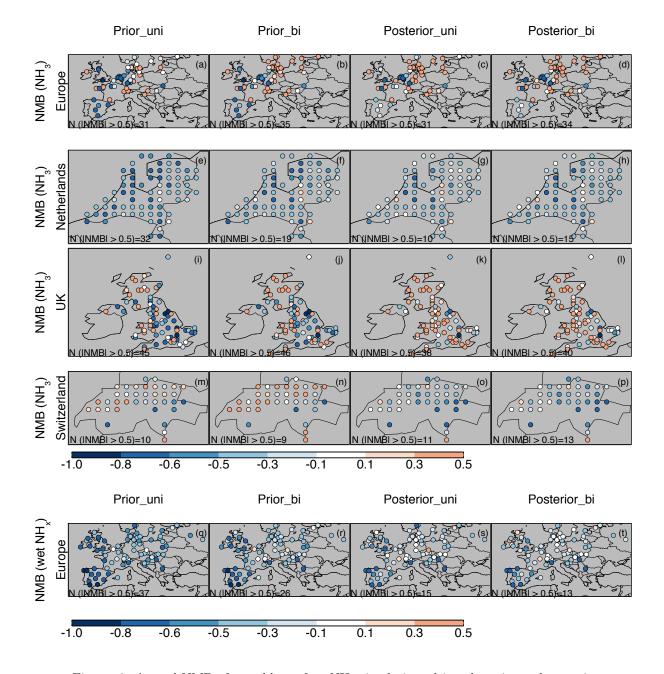


Figure 9: Annual NMB of monthly surface NH_3 simulations driven by prior and posterior emissions relative to monthly mean surface NH_3 observations from many sites in 2016 over Europe (a-d), Netherlands (e-h), UK (i-l) and Switzerland (m-p). Annual NMB of monthly NH_x wet deposition simulations relative to monthly mean NH_x wet deposition measurements over Europe (q-t) in 2016.

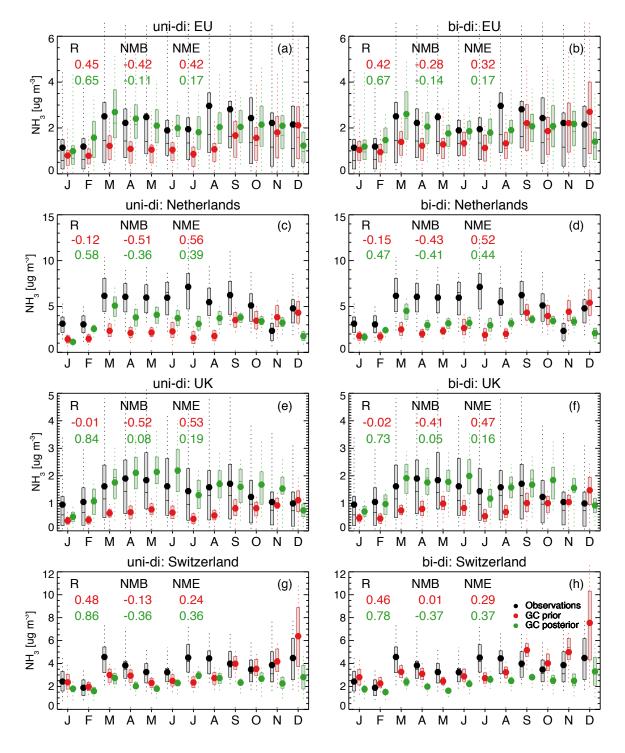


Figure 10: Comparison between domain-averaged monthly mean surface NH_3 observations (black) from European sites in 2016 and simulations driven by prior (red) and posterior (green) emissions derived through uni-di and bi-di schemes, respectively.

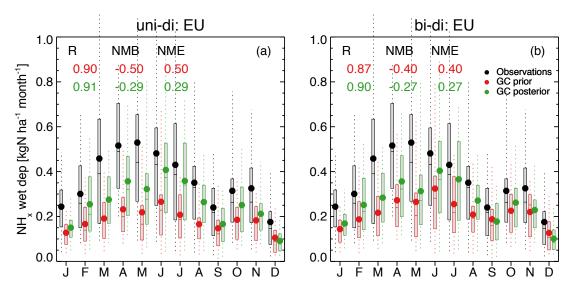


Figure 11: Comparison between domain-averaged monthly mean NH_x wet deposition observations (black) from European (EMEP) sites in 2016 and simulations driven by prior (red) and posterior (green) emissions derived through uni-di and bi-di schemes, respectively.

Supporting Information for

"4D-Var inversion of European NH₃ emissions using CrIS NH₃ measurements and GEOS-Chem adjoint with bi-directional and unidirectional flux schemes"

Hansen Cao¹, Daven K. Henze¹, Liye Zhu², Mark W. Shephard³, Karen Cady-Pereira⁴, Enrico Dammers⁵, Michael Sitwell³, Nicholas Heath⁴, Chantelle Lonsdale⁶, Jesse O. Bash⁷, Kazuyuki Miyazaki ⁸, Christophe Flechard⁹, Yannick Fauvel⁹, Roy Wichink Kruit¹⁰, Stefan Feigenspan¹¹, Christian Brümmer¹², Frederik Schrader¹², Marsailidh M. Twigg¹³, Sarah Leeson¹³, Yuk S. Tang¹³, Amy C.M. Stephens¹³, Christine Braban¹³, Keith Vincent¹⁴, Mario Meier¹⁵, Eva Seitler¹⁵, Camilla Geels¹⁶, Thomas Ellermann¹⁶, Agnieszka Sanocka¹⁴, Shannon L. Capps¹⁷

¹University of Colorado, Boulder, USA ²Sun Yat-sen University, China ³Environment and Climate Change Canada, Toronto, Ontario, Canada ⁴Atmospheric and Environmental Research Inc., USA ⁵Netherlands Organisation for Applied Scientific Research (TNO), Climate Air and Sustainability (CAS), Utrecht, The Netherlands ⁶Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY USA ⁷U.S. Environmental Protection Agency, USA ⁸Jet Propulsion Laboratory, California Institute of Technology, USA ⁹INRAE (National Research Institute for Agriculture, Food and Environment), UMR SAS, Agrocampus ¹⁰National Research institute for Agriculture, rood and Environment), OWRT SAS, Agrocampus
 Ouest, 65 rue de Saint-Brieuc, 35042 Rennes, France
 ¹⁰National Institute for Public Health and the Environment, The Netherlands
 ¹¹German Environment Agency, Germany
 ¹²Thünen Institute of Climate-Smart Agriculture, Germany
 ¹³UK Centre for Ecology & Hydrology, UK
 ¹⁴Ricardo Energy & Environment, Wantage, England, UK
 ¹⁵Forschungsstelle für Umweltbeobachtung, Switzerland
 ¹⁶Department of Environmental Science, Aarhus University, Denmark
 ¹⁷Civil, Architectural, and Environmental Engineering Department, Drexel University, Philadelphia, PA,

USA

Contents

1. Figures S1 to S2

Supporting figures and tables

Corresponding author: Daven K. Henze, daven.henze@colorado.edu

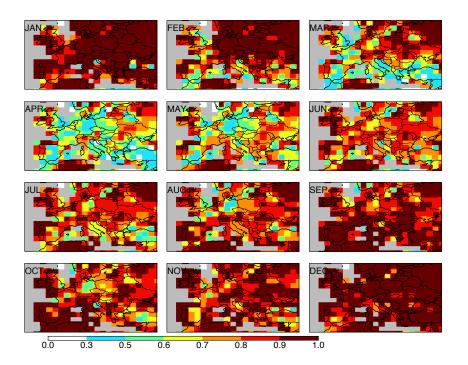


Figure S1: MASAGE-based ratio of monthly livestock $\rm NH_3$ emissions to monthly total anthropogenic $\rm NH_3$ emissions.

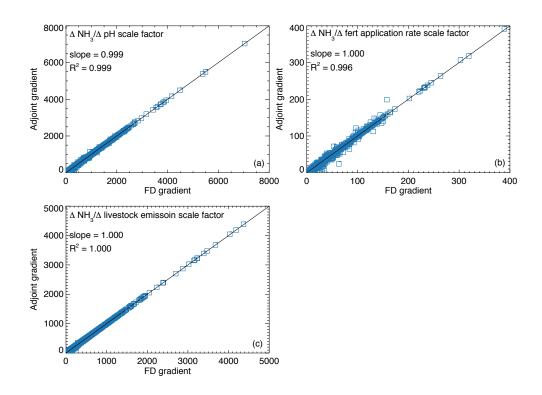


Figure S2: Scatter plot between adjoint gradient and finite difference (FD) gradient of simulated NH3 with respect to pH scale factor (a), fertilizer application rate scale factor (b) and livestock emission scale factor (c), respectively, from July 1st to 7th 2016 for the Europe domain at $0.3125^{o} \times 0.25^{o}$.