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Abstract

Oxygen isotopes in marine sediments (δ 18 O) are used to reconstruct Earth’s past temperature and reveal a generally cooling

climate over the Cenozoic (66Ma-present). This trend is punctuated by large multimillenial thermal extreme events, most

notably the Paleocene-Eocene Thermal Maximum (56Ma). We show that the distribution of these thermal extremes is excellently

captured by the generalized extreme value distribution. This then motivates its use to investigate the state-dependence of these

extremes. The distribution’s shape, captured by the shape parameter ξ, changes consistently with baseline δ 18 O values, such

that large thermal extremes (>3 standard deviations) are far more likely in warmer climate states. We project that anthropogenic

warming has the potential to return the baseline climate state to one where large thermal extremes are substantially more likely.

Short title: Thermal extreme state-dependence 66-0Ma One-Sentence Summary: Warmer baseline climate states are associated

with more extreme multimillenial warming events over the past 66 million years.
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Oxygen isotopes in marine sediments (δ18O) are used to reconstruct Earth’s

past temperature and reveal a generally cooling climate over the Cenozoic

(66Ma–present). This trend is punctuated by large multimillenial thermal ex-

treme events, most notably the Paleocene-Eocene Thermal Maximum (56Ma).

We show that the distribution of these thermal extremes is excellently cap-

tured by the generalized extreme value distribution. This then motivates its

use to investigate the state-dependence of these extremes. The distribution’s

shape, captured by the shape parameter ξ, changes consistently with baseline

δ18O values, such that large thermal extremes (>3 standard deviations) are far

more likely in warmer climate states. We project that anthropogenic warm-

ing has the potential to return the baseline climate state to one where large

thermal extremes are substantially more likely.

Short title: Thermal extreme state-dependence 66-0Ma

One-Sentence Summary: Warmer baseline climate states are associated with more extreme

multimillenial warming events over the past 66 million years.
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Analysis of geochemical archives provides insight into Earth’s climate history through prox-

ies of paleoclimate conditions e.g. (1). Characterizing this history is critical not only for under-

standing the evolution of modern Earth, but also for constraining possible future responses to

anthropogenic greenhouse gas emissions (2). Estimates of cumulative carbon dioxide emissions

so far, remaining fossil fuel reservoirs and the long term sensitivity of climate to cumulative car-

bon emission (3–5) indicate that humanity has the potential to perturb the climate system enough

that the large changes in Earth’s paleorecords (1) are relevant indicators of its potential response

on millennial timescales. It is thus particularly important to determine how paleoclimatic vari-

ations may depend on baseline climate state, because this is directly linked to the risk of a large

long-term Earth system response to anthropogenic forcing. Variations in Cenozoic climate

are studied using deep-sea benthic formaniferal δ18O, which relates approximately inversely to

global temperature and linearly to global ice volume such that low δ18O corresponds to warm

climate states (6). Much of the Cenozoic considered here was a greenhouse climate state with

minimal ice volume (1), and so δ18O is used as an inverse linear proxy for global tempera-

ture (7). Analogously, formaninferal δ13C records past carbon cycle changes through isotopic

fractionation during photosynthesis (8). A tremendous amount of scientific effort has gone into

producing, refining, and interpreting these records, and it is a marvel that we can infer with some

confidence so much about Earth’s climate tens of millions of years ago based on the isotopic

composition of shells of protist algae that sink to and are preserved in the seabed (9–11). Figure

1 shows the δ18O record from (11), which we focus on here. Four phenomena are evident: i) a

long-term cooling trend, ii) the emergence of periodic Pleistocene glacial-interglacial cycles at

2.6 million years ago (Ma), iii) noisy sub-million-year fluctuations before then, and iv) punctu-

ations of the record by large, rapid, negative δ18O excursions corresponding to multimillennial

timescale warming events, most notably the Paleocene-Eocene Thermal Maximum (PETM,

56Ma). The long term cooling trend and Pleistocene glacial-interglacial cycles have been the
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Figure 1: δ18O over the Cenozoic (66Ma-present), from (11). Paleocene-Eocene Thermal Max-
imum (PETM, ∼56Ma) is labeled, and y-axis is reversed (lower δ18O values correspond to
colder temperatures).

subject of extensive study (1, 9, 10), and the sub-million year noise has recently been shown

to be consistent with multiplicative fluctuations (12), potentially due to metabolic temperature-

sensitivity of the biosphere (13, 14). The tendency for large negative δ18O excursions, perhaps

the most concerning from a future climate perspective, has been noted (12), and considerable

investigation of individual events such as the PETM shows promise for providing useful con-

straints on Earth’s climate sensitivity (15). However, these thermal extreme events (iv) have not

been studied quantitatively and collectively, meaning a general explanation for these extremes

and their magnitude is lacking, impairing our ability to use these extremes to make inferences

about future climate. Here we present such an explanation.

In other settings from finance and insurance to hydrology and climatology, the generalized

extreme value (GEV) distribution is widely useful to study such extremes (16). Analogously

to how the ubiquity of normal and log-normal phenomena in nature is explained by the central
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limit theorem (17), the maxima of many natural phenomena tend to be GEV-distributed, which

is explained by the extreme value theorem. This theorem states that the GEV distribution is the

only possible limit distribution of properly normalized maxima of a sequence of independent

and identically distributed (i.i.d.) random variables. Natural phenomena are rarely if ever truly

i.i.d., but the GEV distribution holds and is applied broadly nonetheless (16), analogous to

the central limit theorem holding quite accurately for only a handful of summed or multiplied

random variables (17). The GEV distribution has three parameters µ, σ, and ξ, the last of which

controls the weight of its upper tail (16) (Materials and Methods). Here we show that the GEV

distribution describes thermal extremes (i.e. δ18O minima) in the Cenozoic excellently, and

then utilize it to study how the magnitude of these extremes depends on baseline climate state,

allowing us to project the increased likelihood of large (>3 standard deviations above baseline)

thermal extremes as a function of cumulative emissions.

First we show that the distribution of thermal extremes, as captured by standard (z-) scores

of δ18O minima in blocks of consecutive δ18O values, is well-characterized as GEV-distributed

(Figure 2). The Kolmogorov-Smirnov statistic D quantifies the deviation between the theoreti-

cal and empirical distributions; here D = 0.0213, well below the threshold D5% = 0.0389 for

significance at the 5% level for this sample size (18). The GEV distribution also applies for

δ18O maxima (i.e. thermal minima, D = 0.0142), δ13C maxima (D = 0.0145), and δ13C min-

ima (D = 0.0203). This result is also robust to choice of block size (Materials and Methods).

This excellent agreement suggests we can utilize the GEV distribution to characterize the rarity

of individual events in terms of return levels and return periods, but more importantly motivates

the use of the GEV to investigate the possible dependency of extremes on baseline climate state.

Through this lens of the GEV distribution we investigate whether the magnitude of ther-

mal extremes changes with baseline climate state. We fit the GEV distribution to ‘metablocks’

of standardized δ18O minima grouped according to their associated mean δ18O values. Figure
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Figure 2: Cumulative distribution function (black line) for standardized δ18O block minima and
for hypothesized generalized extreme value distribution (purple line) with maximum likelihood
estimated parameters. Inset shows corresponding probability density function and probability-
normalized histogram. The Kolmogorov-Smirnov statistic for the empirical and theoretical
distributions’ mismatch is D = 0.0213 < D5% = 0.0389, significant at the 5% level for this
sample size (18). A minimal block size of 20, taken from (19), was used here in order to
maximize the number of blocks for state-dependency analysis in Figure 3; significance holds
for larger block sizes.
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3A shows that the shape parameter ξ decreases monotonically as baseline δ18O increases, from

ξ = +0.01± 0.03 when δ18O = 0±0.5h, to ξ = −0.32± 0.08 when δ18O = 4±0.5h. The im-

plication of this ξ-change is shown in Figure 3B, which plots the GEV distribution with best-fit

parameters for δ18O = 0±0.5 andδ18O = 4±0.5. The relative likelihood of an δ18O minimum

> z standard deviations below the mean for a given z-score is captured by the ratio of these dis-

tributions’ complementary cumulative distribution functions (CCDFs). When δ18O∼4 as over

much of the past ∼3.5Ma, δ18O minima with z-scores >3 are virtually impossible/nonexistent,

whereas when δ18O∼0 as at the boundary between the Paleocene and the Eocene, such large

excursions still had some probability of occurring. We found no other significant or system-

atic changes in any other parameters (µ, σ, ξ) of extremes’ (maxima/minima of δ18O or δ13C)

distributions as a function of baseline climate or carbon cycle state (mean δ18O or δ13C), indi-

cating this phenomenon is restricted to the potential for large thermal maxima depending on the

background climate state.

As the state-dependency seen in Figure 3A is restricted to thermal maxima and does not

materialize in the δ13C record, we interpret it to be driven by state-dependency of the physical

climate system, and not of the carbon cycle. Thermal extremes have been interpreted as being

caused by the release of isotopically depleted organic carbon into the surface environment, such

as methane hydrates (22), permafrost (23), or dissolved organic carbon (24). Many of these

thermal extremes have been shown to be accompanied by extremes in δ13C (12). The lack of

ξ-changes in δ13C however is consistent with a temperature-dependent climate feedback; when

the climate is warmer, the same input of carbon produces a larger temperature change (15, 25).

Temperature-dependent climate feedbacks occur in most Earth System Models and is likely

primarily due to the water vapor feedback (26). Additionally, while by any analysis the PETM

is an outlier in the δ18O and δ13C record, our results help contextualize it statistically; such a

large outlier was far more probable during such a warm climate state, due to the far heavier tail
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Figure 3: (A) Generalized extreme value (GEV) distribution’s shape parameter ξ as a function
of baseline climate state. Standardized δ18O block minima are binned by block mean δ18O and
ξ is estimated by maximum likelihood. Black lines correspond to median absolute deviation
of bootstrap resamplings. Negative trend holds for larger block sizes and smaller bin widths.
(B) GEV probability density function with the parameters from mean δ18O = 0 ± 0.5 (solid
black line) and 4± 0.5 (dashed black line) from Figure 3A. Orange line is the ratio of these two
distributions’ complementary cumulative density functions, indicating e.g. that δ18O extremes
>22

3
standard deviations below the mean are>3x more likely when δ18O∼0 than when δ18O∼4.

(C) Relative likelihood of δ18O extremes >3z (three standard deviations below the mean) for
different mean δ18O values (upper x-axis) compared to present (mean δ18O = 3.5± 0.25). For
instance, such extremes are ∼5x more likely when δ18O = 2 ± 0.25. This relationship was
determined by weighted regression of ξ vs. mean δ18O over the range (3.75,1.75) using 0.5h
bins; other GEV parameters do not change systematically or significantly over this range (or
over the entire δ18O range). This global temperature increase (lower x-axis) is related to δ18O
changes using the ratio 0.22◦C/h from (20), which in turn is related to cumulative emissions
of carbon (lower x-axis) using the ratio 1.35◦C/EgC from (21) (1EgC = 1TtC = 1000PgC =
1000 GtC). Note these estimates are approximate and this subfigure should thus be considered
qualitative and illustrative.
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of the thermal extreme distribution.

We can utilize the trend in Figure 3A to estimate Earth’s increased susceptibility to large

(>3z) multimillenial thermal extremes as a result of potential human emissions. As a 0.22h

change is associated with a ∼1◦C temperature change (20), cumulative carbon emissions so far

plus remaining fossil fuel carbon resources are on the order of 5 EgC (= 5 TtC = 5000 PgC =

5000 GtC) (4), and 1 EgC cumulative emissions is associated with ∼1.35◦C warming (21) last-

ing thousands of years (5), we focus on the δ18O range 3.5(±0.25)-2(±0.25)h, and estimate

the ξ change over the equivalent ranges 3.5-1.75h δ18O (present day δ18O ≈ 3.5), 0-8◦C tem-

perature anomaly, and 0-6 EgC emissions. Doing so we find that the probability of large multi-

millenial thermal extremes increases with background warming, doubling at approximately 2◦C

warming, quadrupling at approximately 5◦C warming, and sextupling at approximately 7.5◦C

warming. (We note that all of these relationships are approximate and this extrapolation should

therefore be taken illustratively and qualitatively.)

Altogether our results suggest that thermal extremes over the Cenozoic are more likely to be

large when the baseline climate state is warmer. Because a similar behavior is not seen in carbon

cycle extremes, this dependency is most plausibly due to the temperature-sensitivity of physical

climate feedbacks such as the water vapor, lapse rate, or cloud feedbacks. We have shown this

using the deep-sea benthic foramaniferal δ18O and δ13C records and the generalized extreme

value distribution, which captures block maxima and minima of these records excellently. These

findings have implications for the possible consequences of anthropogenic emissions, namely

that the probability of large multimillenial thermal extremes (on top of the direct anthropogenic

warming) may considerably increase if a substantial portion of remaining fossil fuel reserves

are combusted.
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Supplementary Materials: Methods

δ18O records were taken from (11) (Figure 1), along with associated δ13C records; these vari-

ables and their relationship to temperature and other aspects of the Earth system are described

extensively elsewhere. For blocks of consecutive values the mean, standard deviation, and

minima were calculated to determine the standard deviations below the mean (z-score) of the

minimum δ18O value for that block. The distribution of minima’s z-scores is then fit by a gen-

eralized extreme value (GEV) distribution via maximum likelihood estimation (Matlab’s mle

function). The GEV distribution has the form:

f(x;µ, σ, ξ) =
1

σ
t(x)ξ+1e−t(x)

where f(·) is the probability density function and

t(x) =

{
(1 + ξ(x−µ

σ
))−1/ξ if ξ 6= 0

e−(x−µ)/σ if ξ = 0

so µ, and σ are the location and scale parameters and ξ is the parameter that controls the

shape of the distribution. Whether the empirical distribution of maxima deviates significantly

is then determined by calculating the Kolmogorov-Smirnov statistic D, which is the maxi-

mum difference between the hypothesized and empirical cumulative distribution functions, and

comparing it to a critical value at the 5% significance level, D5% (18); the difference is not

significant if D < D5%. Figure 2 uses the minimum block size of 20 from (19), for which

D = 0.0213 < D5% = 0.0389 and the median z-score is 1.91. Here we focus on the minimum

block size because maximizing the number of blocks is useful to assess changes in the distri-
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bution’s shape as a function of baseline climate state, as this requires grouping sets of blocks

into ‘metablocks.’ In general, the larger the block size, the larger the minima’s z-scores will be,

and also the larger D5% will be due to a smaller sample size of maxima. For instance, using

a block size of 67 (the largest prime factor of the length of the δ18O record, 24321) yielded a

D = 0.0279 < 0.0708 = D5% and a median z-score of 2.46, while a block size of 33 (another

factor of 24321) yielded D = 0.0202 < 0.0498 = D5% and a median z-score of 2.17. D-values

for δ18O maxima and δ13C maxima and minima reported in the main text ae for the same block

size of 20, and are also significant for larger block sizes.

Figure 3A was generated by repeating this process on metablocks of block minima, where

blocks were grouped by their mean δ18O values into the bins (0,1,2,3,4)±0.5h. Uncertain-

ties (shown using the robust metric of median absolute deviation) were estimated by bootstrap

resampling the distribution of maxima and re-fitting the GEV distribution. We use 10,000 boot-

strap iterations, which we find to be more than sufficient as ten 1,000-member subsets were

negligibly different. The other GEV distribution parameters (location µ and scale σ) vary negli-

gibly, neither systematically nor significantly (p ≥ 0.33 for the block and bin sizes in Figure 3A;

this also holds for the bin sizes in Figure 3C), with basline climate state (i.e. across metablocks).

The decreasing trend of ξ with mean δ18O holds for larger block sizes (e.g. 33 from above) or

narrower bin widths (e.g. ±0.25 from Figure 3C. In Figure 3B, the complementary cumula-

tive distribution function of a probability distribution is one minus its cumulative distribution

function. For Figure 3C, we repeat the procedure to estimate the δ18O-dependence of ξ (with

uncertainties) using the bins (2,2.5,3,3.5)±0.25. We then perform a weighted regression of ξ

vs. mean δ18O to estimate ξ(δ18O) over this range, yielding an estimate of the GEV distribution

for any given δ18O value between 1.75-3.5h. This is then used to calculate the probability den-

sity >3 z-scores, which is shown in Figure 3C relative to the probability density >3 z-scores

estimated for δ18O = 3.5h. We underscore that this subfigure, which includes assumed pro-
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portionalities between δ18O, global temperature change, and cumulative emissions, should be

interpreted as illustrative and qualitative.

We repeated these calculations for block maxima of δ18O and for block maxima and minima

of δ13C. All of these were well-characterized by GEV distributions (D < D5% in each case),

but we found no evidence for any state-dependence other than that reported in the main text.

In other words only the shape parameter ξ for δ18O minima was dependent on mean δ18O, and

no other GEV distribution parameter of any other maxima or minima was dependent on mean

δ18O or δ18C.

The glacial-interglacial cycles of the Quaternary period (2.6Ma–present) are recognized

not to follow the same sort of fluctuation characteristics as the rest of the Cenozoic, which

must be accounted for in any analysis of extremes. Figures 2 and 3 exclude the last 2Ma;

neither increasing this to excluding the entire Quaternary period (2.6Ma) nor decreasing this to

excluding only after the mid-Pleistocene transition (1.25Ma) affects the results or conclusions.

Additionally, these are robust to including the Quaternary period and filtering out the glacial-

interglacial cycles via robust locally estimated scatterplot smoothing (R-LOESS) with a window

size of 10. Finally we note that our interpretation of δ18O minima as thermal maxima is robust to

effects of ice volume on δ18O because ice sheets primarily act to change the slope and intercept

of the linear temperature-δ18O relationship T ≈ α − βδ18O, with α, β > 0 approximately

constant over the timescales of the extremes considered here. Finally we note that excluding

the PETM did not affect our results (as would be expected, as this is only one thermal maximum,

and we are analyzing distributions of many thermal maxima) and therefore our inferences about

PETM likelihood are not confounded by including it in our analyses.
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