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Abstract

Previous work using multibeam sonar to map diffuse hydrothermal flows is extended to estimate the heat output of diffuse

flows. In the first step toward inversion, temperature statistics are obtained from sonar data and compared to thermistor data

in order to set the value of an empirical constant. Finally, a simple model is used to obtain heat-flux density from sonar-derived

temperature statistics. The method is applied to data from the Cabled Observatory Vent Imaging Sonar (COVIS) deployed on

the Ocean Observatories Initiative’s Regional Cabled Array at the ASHES vent field on Axial Seamount. Inversion results are

presented as maps of heat-flux density in MW/m2 and as time series of heat-flux density averaged over COVIS’ field of view.
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Abstract 
Previous work using multibeam sonar to map diffuse hydrothermal flows is extended to estimate 
the heat output of diffuse flows. In the first step toward inversion, temperature statistics are 
obtained from sonar data and compared to thermistor data in order to set the value of an 
empirical constant. Finally, a simple model is used to obtain heat-flux density from sonar-
derived temperature statistics. The method is applied to data from the Cabled Observatory Vent 
Imaging Sonar (COVIS) deployed on the Ocean Observatories Initiative's Regional Cabled 
Array at the ASHES vent field on Axial Seamount. Inversion results are presented as maps of 
heat-flux density in MW/m2 and as time series of heat-flux density averaged over COVIS’ field 
of view. 

1 Introduction 
This article extends the work reported in [Xu et al. 2021] with the goal of quantifying the heat 
output from a portion of the ASHES Vent Field on Axial Seamount. The earlier article gives 
references to the literature as well as a detailed description of the data provided by the Cabled 
Observatory Vent Imaging Sonar (COVIS). Diffuse discharges take many forms and may 
originate from the sides of sulfide mounds, isolated cracks, lava tubes, and areas of permeable 
seafloor [Bemis et al., 2012, Fig. 1], [Barreyre et al., 2012]. The heat output of diffuse-flow 
discharge may equal or exceed that of focused flow from associated smokers [Barreyre et al., 
2012], [Rona and Trivett, 1992], [Schultz et al., 1992], [Veirs et al., 2006]. Shultz et al. [1992] 
used an electromagnetic-based flowmeter and several thermistors on the sulfide mound called 
Peanut in the southern half of Main Endeavour Field (MEF) to simultaneously measure 
temperature and vertical velocity in diffuse discharge for about two months estimating a diffuse 
heat-flux density of 2.91±0.23 MW/m2. Trivett and Williams [1994] used thermistor moorings 
and tripod-mounted current meters to estimate heat flux from diffuse-flow regions on the 
Southern Juan de Fuca Ridge, obtaining a net flux of 125 ± 75 MW for the most active region.  
Their instruments were placed at a distance from the diffuse-flow regions of interest and relied 
on currents to convect the warm water toward their apparatus Viers et al. [2006], using data from 
an ROV, a CTD, and current meters, estimated the along-axis heat flux at MEF to be 8-42 MW. 
They concluded that the MEF heat flux was about equally divided between focused and diffuse 
flows. More recently, acoustic estimates of areal extent were combined with limited temperature 
and flow rate measurements to estimate heat transport by diffuse discharge at North Tower of the 
sulfide mound Grotto in MEF as 33-380 MW or a heat flux of 0.33-3.8 MW/m2 over the 100 m2 
summit of the North Tower [Rona et al., 2015].  
Observations of hydrothermal flows for the northern part of ASHES were reported in previous 
studies. Rona and Trivett [1992] conducted a thermal survey over a 100 m by 100 m area 
enclosing the depression region using a remotely operated vehicle (ROV) carrying a 1-m long 
vertical thermistor array. They estimated the heat output from both focused and diffuse flow 
sources to be 2.4-6.4 MW and 15-75 MW, respectively, from in-situ temperature measurements, 
which suggested diffuse flow venting was the dominant hydrothermal heat source at ASHES. 
Pruis and Johnson [2004] measured the flow rate and temperature of the discharge from a 
diffuse-flow source in ASHES using a fluid sampler cemented to the seafloor. They estimated a 
volume flux of 48 m3/yr and a heat flux of 260 W/m2 for the 1 m2 area sealed by the sampler. 
Most recently, Mittelstaedt et al., [2016] measured heat flux of diffuse flow venting from a 
narrow fracture near the southern end of the depression region using the Diffuse Effluent 



Measurement System (DEMS), which is a camera system augmented with thermistors that can 
measure the flow rate and temperature of diffuse-flow effluents. They obtained an estimated 
heat-flux density of 0.07-0.51 MW/m2, which was subsequently extrapolated over all the cracks 
detected in a photomosaic survey to get a total heat flux from venting fractures of 0.1-4 MW. 
With the exception of [Trivett and Williams, 1994], previous work either provides time series at 
specific points or large-scale snapshots of heat flux. The uncertainty in these measurements is 
great, with the ratio of upper to lower bounds being as large as 5 or 10. These facts motivate the 
present attempt to use multibeam sonar to estimate heat flux across substantial areas over long 
times. 
The Cabled Observatory Vent Imaging Sonar (COVIS) was installed in July 2018 on the Ocean 
Observatories Initiative (OOI) Regional Cabled Array at the ASHES vent field on Axial 
Seamount. The resulting data have been used to obtain time series of diffuse-flow activity, 
primarily through estimation of the area of diffuse flow regions [Xu et al., 2021].  The present 
effort seeks to extend this work and that of [Jackson et al., 2017], to provide a method for sonar 
observation of the heat output of diffuse flows. In Sect. 2, the thermistor data used as ground-
truth are described, and, in Sect. 3, sonar data are discussed, and the first stage of inversion used 
to estimate temperature statistics is developed. Section 4 compares inverted and directly 
measured temperature statistics, and the final stage of inversion for heat-flux density is 
developed in Sect. 5. Inversion results for heat flux are given in Sect. 6, and Sect. 7 offers 
conclusions and discusses outstanding issues. 

2 Thermistor Data 
The thermistor array pictured in Fig. 1 was set on the seafloor by ROV Jason at the two sites 
shown in Fig. 2. The thermistors are RBRsolo T, with response time of 0.1 s, consistent with the 
sonar ping-to-ping spacing of 0.25 s. At sites 1H and 4C several stations were occupied on June 
6, 2019, with nominal 25-cm spacing. Seven stations were occupied at 1H and eleven at 4C. The 
multiple stations give information on the spatial variability and on spatial averages of 
temperature. 



 

  
                                      

     
 

Figure 1. Sketch of thermistor array used for ground-
truth measurements. 

                                         

 
Figure 2. Sites in ASHES vent field where thermistor 
arrays were deployed in 2018 and 2019. Sites 1H and 
4C are marked by green squares. COVIS’s location is 
marked by a black dot. The smaller bathymetric 
feature to the NW of COVIS is the Mushroom black 
smoker and the larger one to the east of COVIS is 
Inferno. The color scale gives the height in meters 
above the base of COVIS.

Time series having lengths of 2 to 6 minutes were obtained at each station, with sampling 
frequencies of 4 Hz on two thermistors in the array and 10 Hz on the remaining eight 
thermistors. In processing, the faster sampling rate was reduced to 4 Hz by decimation. Figure 3 
shows the mean and standard deviation of temperature profiles at the seven stations occupied at 
1H. The “temperature anomaly” is defined as the difference with ambient temperature and is 
substantial only up to heights about 50 cm above the seafloor. This maximum height may depend 
upon ambient current, but no current measurements are available. Measurements of the vertical 
component of current would be welcome, as the product of temperature anomaly and vertical 
current is proportional to the vertical component of heat-flux density. It is of particular 
importance to note that the standard deviation of temperature is very nearly equal to the anomaly. 
This behavior was noted at all stations having substantial anomaly and is an important element in 
our inversion algorithm. There is large variability in the magnitude of the temperature anomaly 
from station to station, and this spatial intermittency must be accounted for in the inversion 
algorithm. 
 



 
Figure 3. Vertical profiles of mean and standard deviation of temperature at diffuse-flow site 1H. The heights of 
individual thermistors are marked by circles on the curves for average temperature. 

 

The thermistors are autonomous, with independent sampling, and the drift of the clocks on each 
unit was sufficient to cause lack of synchronization on the order of a few seconds. As the sonar 
samples at a rate of 4 Hz, this lack of synchronization is of concern. To assess the magnitude of 
clock drift, cross-correlations between different thermistors were examined, but no peaks were 
evident over lags up to 10 s. This leads to the conclusion that the random parts of the time series 
are essentially independent between thermistors. If the random thermal structure were “frozen” 
and advected vertically, a strong correlation would be expected at lags determined by the vertical 
component of velocity and clock offsets due to drift. It is concluded that the thermal structure in 
space changes on time scales shorter than advection times between thermistors, and that the 
signature of upward advection is not visible in the thermistor data. In this circumstance, clock 
drift is of no concern, and statistics appropriate for comparison with inversions of sonar data are 
estimated as described below. 
The first step is to determine the vertically path-averaged temperature difference by summing 
over vertically-spaced thermistors. A formal definition of path-averaged temperature difference 
is 
                                              

0

1( , ) [ ( , ) ( , )]pa

H
T t T t z T t z dz

H
τ τ∆ = − −∫

   (1) 

 
The change in temperature between times separated by lag τ is averaged over a vertical path of 
length H, starting at z = 0, the seafloor. This average will later be related to the change in 
acoustic time-of-flight from the seafloor to the sonar. Even though the acoustic path is not 
vertical, averages along the slanted acoustic path are equal to those in the vertical if the medium 
is stratified, with no variation in the horizontal. This is not true at any single time, but will be 

0 2 4 6 8

Temperature 
°
 C

0

50

100

150

200
H

ei
gh

t (
cm

)
Mean Temperature, Station 1

Mean

Std. Dev.

0 2 4 6 8

Temperature 
°
 C

0

50

100

150

200

H
ei

gh
t (

cm
)

Mean Temperature, Station 2

Mean

Std. Dev.

0 2 4 6 8

Temperature 
°
 C

0

50

100

150

200

H
ei

gh
t (

cm
)

Mean Temperature, Station 3

Mean

Std. Dev.

0 2 4 6 8

Temperature 
°
 C

0

50

100

150

200

H
ei

gh
t (

cm
)

Mean Temperature, Station 4

Mean

Std. Dev.

0 2 4 6 8

Temperature 
°
 C

0

50

100

150

200

H
ei

gh
t (

cm
)

Mean Temperature, Station 5

Mean

Std. Dev.

0 2 4 6 8

Temperature 
°
 C

0

50

100

150

200

H
ei

gh
t (

cm
)

Mean Temperature, Station 6

Mean

Std. Dev.

0 2 4 6 8

Temperature 
°
 C

0

50

100

150

200

H
ei

gh
t (

cm
)

Mean Temperature, Station 7

Mean

Std. Dev.



approximately true for averages over times long enough to include at least one tidal cycle. The 
integral in Eq. (1) will be approximated by a discrete sum over the temperatures measured by 
individual thermistors in the array. 
   
                               

1

1( , ) [ ( ) ( )]
M

pa i j m m j m j i
m

T t h T t T t
D

τ τ
=
∑∆ = − −                               (2) 

Here, m is the index specifying each thermistor in the vertical array, D is the height of the array, 
and hm is the spacing between thermistors. While the array height D = 2 m is less than the sonar 
height H = 4.2 m, the temperature anomaly is limited to even smaller heights, so it can be 
assumed that (2) is a reasonable approximation to (1), provided the temperature field is sampled 
densely enough in the vertical. The structure function needed for comparison with sonar 
inversions is estimated as the average over time samples of the squared change in temperature 
difference for lag time τi: 
 
                                                  max 2

1

1( ) [ ( , )]
J I

i pa i j
j

S T t
J I

τ τ
−

=
∑= ∆

−
                        (3) 

In this expression, I is the largest time sample number available after taking account of the lag τi. 
 
An issue arises from the thermal inertia of the thermistors. Even though their response time of 
0.1 s is shorter than the sonar sampling interval of 0.25 s, the inversion method to be discussed 
later is partially dependent on short lags in the structure function, and these are affected by the 
thermal inertia of the thermistors. To compensate for this, the temperature time series are 
corrected by dividing their Fourier transforms by a transfer function that is itself a Fourier 
transform of the response of the thermistor to a unit impulse of temperature. According to the 
manufacturer, this response can be approximated by an exponential with e-folding time T = 0.1 s. 
The corresponding transfer function is 1/(1 i Tω+ ). The effect of this correction on the estimated 
structure function is illustrated in Fig. 4. 

                                  
Figure 4. Structure function for path-averaged temperature with and without correction for thermal inertia of 
thermistors. This is an average over the 7 stations occupied at 1H. 
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3 Sonar Data 
3.1 Sonar system 
COVIS is a high-frequency (200 and 400 kHz) sonar system, based on the Reson 7125 
multibeam sonar. The source and receiver transducers are mounted on a tripod 4.2 m high on a 
tri-axial rotator which provides freedom to set pitch, roll, and yaw. COVIS provides near real-
time images and monitoring of hydrothermal flow [Bemis et al., 2015]. It employs a wide-
vertical-angle transmitter (22º 3-dB full beamwidth at 200kHz) and narrow horizontal-angle (1º 
3-dB full beamwidth at 200 kHz) multi-beam receiver with 128º azimuthal coverage.  The 
transmitter and receiver are pitched downward 20º, and three different yaw settings separated by 
approximately 70º are used to cover three angular “sectors”. As in earlier acoustic mapping 
efforts [Rona et al., 1997], COVIS exploits the expected constancy of ping returns from the 
seafloor to detect the phase changes caused by travel time variations due to the variable water 
temperature between COVIS and the seafloor [Rona and Jones, 2009].  As there is time jitter 
between the instant of transmission and beginning of digitization, the transmitted signal that 
leaks into data channels via cross talk is used to align the phase of successive echo time series. In 
the typical mode of operation for diffuse-flow study, COVIS transmits a burst of 40 pings 
(sometimes more) at a rate of 4 Hz, with a burst transmitted every hour or half-hour. The 
transmitted pulse has an approximately rectangular envelope of width 0.3 ms and a nominal 
source level of 200 dB re 1 µPa@1m.  
 

3.2 Sonar data processing 
COVIS uses digital beamforming in the horizontal with a Hamming window to provide 
azimuthal resolution of 1º at 200 kHz. For each beam there is a complex (baseband) time series  

( )ms t where m is the ping number in the burst. The time series are sampled at a rate of 34 kHz.  

The ping-to-ping correlation function is formed using two echo time series 1( )s t  and 2 ( )s t from 
the same beam, transmitted at “slow” times 1t  and 2 1t t τ= + and with “fast” time arguments t   
measured from the mid-point of each transmission. Slow time can be regarded as the usual clock 
time (e.g., UTC), while fast time resets to zero with each sonar transmission. The ping-to-ping 
correlation estimator is 

                                             12

11 22

| |K
K K

ρ =  ,                                                      (4)  

where 

                                                  *
12 1 2 0( ) ( ) ( ) ,K s t s t w t t dt

∞

−∞

= −∫                                        (5) 

and with 11K  and 22K being given by similar integrals with the squared magnitude of each echo 
time series. If the two echo time series are identical, ρ  has a value of unity, and if the two are 
substantially different, ρ will have a magnitude much smaller than unity. The integral in (5) is 
over fast time with the signal product weighted by a Hamming window function ( )w t  whose 
position time, 0t , determines path length (“slant range”), 0 / 2r ct=  , and whose width (1.5 ms) 
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is set by a trade-off between range resolution and the desire to reduce statistical fluctuations. The 
integral is performed as a sum over samples in the time domain. The estimate provided by Eq. 
(4) is averaged over all the data available for a 24-hour period. This rather long period was 
chosen in order to average over tidal effects, which will be discussed in Sect. 6. COVIS was 
programmed to obtain diffuse-flow data either every one-half hour or every hour. Except for 
occasional data loss, 24 or 48 such estimates are averaged. For each day, averaged ping-to-ping 
correlation is computed for 38 lag times with spacing 0.25 s, for all 128 sonar beams, and for 
ranges out to 30 m with an interval of 0.56 m between placement of the Hamming window in 
range. These results, originally in a polar coordinate system, are interpolated onto a 2D 
rectangular grid with 0.5-m spacing in both dimensions. In this gridding process, the bathymetry 
as measured by COVIS is taken into account in converting the coordinates (azimuthal angle and 
slant range to seafloor) to x- and y-coordinates. 
 
3.3 Structure Function 
As a first step toward inversion, a relation between ping-to-ping correlation and the temperature 
structure function will be sought. Changes in sound speed cause changes in the sonar echo from 
the seafloor quantified by the ping-to-ping correlation. There is a simple linear relationship 
between temperature change T∆  and sound-speed change c∆ . For this work, / 4.37dc dT = ms-

1K-1 is used, appropriate for nominal temperature 2.4º C, salinity 34.5 psu, and depth 1440 m. 
Salinity fluctuations have a negligible effect, as a salinity change of about 15 psu would be 
required to match the sound-speed change caused by a (plausible) 5º temperature change. 
Current fluctuations have no short-term effect on the sonar signal, as time shifts due to this 
mechanism are cancelled over the round-trip acoustic path. Of course, currents do transport and 
alter the turbulent temperature structure, contributing to ping-to-ping change in the sonar signals.  
It is not feasible to obtain a closed-form model for the expected value of the estimator ρ , as 
Expression (4) is an irrational functional of the two time series. In previous work [Jackson et al., 
2017], we employed a formal approximation, but lack of any measure of the bias that might 
result from this approximation motivates a new approach. In this approach, Monte Carlo 
simulations (described later in this article) are used to generate synthetic sonar signals using a 
point-scatterer model. 
The time-of-flight for a sonar signal to travel to a point on the seafloor and back to the sonar is  

                                                                 1
10

2
r drt

c
= ∫                                                       (6)  

for ping 1, with the integral being along the nearly straight path of length r shown in Fig. 5. At a 
later time, the position-dependent sound speed will have changed from 1c  to 2 2c c c= + ∆ , and the 
time-of-flight for ping 2 will be altered to  
                                                            2 1(1 )t t α= −                                                       (7) 

where 

                                                            
0

1 r

cdr
cr

α ≈ ∆∫  .                                                   (8)  
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In deriving this expression ray bending is neglected, based on ray-tracing simulations showing 
that refractive effects are negligible in the circumstances of interest. The parameter c is a 
nominal, position-independent sound speed, and 
                                                             2 1c c c∆ = −                                                         (9)  

is dependent on position along the path and is assumed to have absolute value much smaller than 
c . The model neglects dependence upon coordinates parallel to the seafloor within the sonar 
resolution cell, thus c∆ must be interpreted as an average over these coordinates. 
 

                               
 
Figure 5. Geometry for sonar measurement of a diffuse-flow region. The line-of-sight path length r is indicated. 

 
Next, consider how the time scaling (7) caused by sound-speed change affects the second echo 
signal 2 ( )s t relative to the first, 1( )s t .  Treating the sonar and environment as a time-invariant 
system (invariant over the very short round-trip acoustic travel time), one can write 

                                               0
1 0( ) ( ) ( )i ts t s t e g t t dtω

∞
′

−∞

′ ′ ′= −∫  ,                                        (10) 

where ( )g t  is the “impulse response” of the combined sonar-environment system at the time of 
the first transmission, 0 ( )s t  is the envelope of the transmitted signal, and 0ω  is the center 
frequency of the sonar in rad/s. The impulse response incorporates the complexity of scattering 
by the seafloor as well as the effects of acoustic transmission and sonar properties. Due to the 
time scaling shown in (7), the second echo is 

                                                         0
2 0( ) ( ) ( )i ts t s t e g t t t dtω α

∞
′

−∞

′ ′ ′= − −∫ .                                                (11) 

For the Monte Carlo calculations, the impulse response is constructed by assuming point 
scatterers having random, zero-mean, Gaussian-distributed scattering amplitudes and random 
locations on a flat seafloor. Each scatterer contributes a scaled, delayed copy of the transmitted 
signal to the final synthesized echo signal. To account for the observed spatial intermittency of 
the diffuse-flow regions at ASHES, only a fraction of the scatterers at the center of the 
simulation seafloor patch (referred to later as the “hot spot”) are subject to sound-speed change, 
which is measured by α defined above. The relevant measure of intermittency will be denoted F, 
and is the fraction of the 1.5-ms window width over which the sound-speed change is applied. 
This fraction is adjusted to fit ground-truth thermistor data. The parameter α is changed 
randomly for each Monte Carlo realization and is drawn from a zero-mean Gaussian distribution.  
In order that the horizontally averaged, path-averaged sound-speed change have the standard 
deviation cσα, the standard deviation of α over the hot spot is assigned the value σα/F.  
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The Monte Carlo calculations produced synthetic data comprising 400 echo-pair realizations. 
These were generated with Gaussian-distributed α with 40 different standard deviations at 7 
different ranges out to 34 m. Thus 7x2x400x40 = 224000 synthetic signals are generated. The 
range dependence of correlation was negligible, so correlation was averaged over both range and 
realizations. The average ping-to-ping correlation was fitted by an algebraic function, with 
results shown in Fig. 6. This curve is for F = 0.15, a value found by fits of sonar inversion of 
synthetic data to thermistor data as discussed later in this article. The algebraic function is then 
inverted to give an expression for the standard deviation of α in terms of average correlation.   
Referring to Fig. 6, the decorrelation, 1 ρ− < > , is proportional to the square of σα for small σα. 
As σα grows, ρ< >  approaches a constant, non-zero, asymptote. It is important to realize that the 
σα on the x-axis of Fig. 6 represents the spatial average of the normalized, path-averaged sound-
speed standard deviation. As such it is smaller than the standard deviation within the hot spot.

                              
Figure 6. Average correlation obtained from Monte Carlo simulations. The abscissa is the standard deviation of 
normalized, path-averaged sound-speed change.  

The path-averaged sound-speed change is 

                                                          
0

1 r

pac c cdl
r

α∆ = = ∆∫ .                                                  (12) 

It follows that the inversion method allows an estimate of path-averaged temperature change, 
 
                                                                 / ( / )pa paT c dc dT∆ = ∆ .               (13) 
  
Given that path-averaged temperature change, rather than path-averaged temperature itself is 
estimated, a natural statistical characterization is provided by the structure function (3) and here 
expressed as 
                                                      2( , ) [ ( , )]s pa sS t T tτ τ=< ∆ > ,                                             (14)   

where st is a slow-time variable. The variable τ  is the time difference between the two pings 
being compared. The brackets <>  denote a formal average over a hypothetical infinite ensemble 
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but will be implemented as a sample average over one day’s data. Note that the structure 
function is simply the second moment of path-average temperature change occurring after an 
elapsed time τ , which will be referred to as “lag.” As temperature change is proportional to 
sound-speed change, (14) is equivalent to 

                                                         2 2( , )
/

( )s
cS t

dc dT ατ σ= .                                   (15) 

This is the expression that is used to estimate the structure function for path-averaged 
temperature. Recapping, the cross correlation between pings separated in time by τ is computed 
using Expression (1). The cross correlation is averaged over the 24 or 48 separate transmissions 
for each day, and the expression illustrated in Fig. 6 is used to obtain σα. Finally, (15) is used to 
obtain the temperature structure function over the range of lags 0 < τ < 10 s. 
 
To facilitate inversion for heat flux density, the following three-parameter fit is made to the 
structure function for path-averaged temperature: 

                                                       0( / )2( ) 2 [1 ]TS e
µτ ττ σ −= −  ,                                                          (16) 

where 2
Tσ is the variance of path-averaged temperature fluctuations, 0τ  is a time scale, and µ is 

an exponent giving the power-law behavior at small lags. The covariance for path-averaged 
temperature fluctuations in terms of the fitting parameters is 
 
                                                                     0( / )2( , )T s TK t e

µτ ττ σ −= ,                           (17) 
 
Figure 7 gives an example of the fitting of the acoustically estimated structure function for path-
averaged temperature for Site H-1 by Expression (16). 

                     
  
Figure 7. Structure function and three-parameter fit for path-averaged temperature structure function estimated 
from sonar data. Nine adjacent grid points at Site 1H are displayed for 7 July, 2019.
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4 Comparison of Thermistor and Sonar Data 
The first step in validation of the inversion method is comparison of the sonar-derived structure 
function with that obtained from thermistor data. For this, sonar data from 7 July 2019, the day 
after thermistor data were obtained, were used assuming the fractional area occupied by diffuse 
venting is F = 0.15. Figure 8 shows the comparison for the two sites of interest, with the 
thermistor results shown as circles, and the sonar results shown as solid curves. The sonar curves 
are obtained from a 24-hour average of ping-to-ping correlation. Navigational error in placing 
the thermistor measurement sites with respect to COVIS coordinates could be as large as 2 m. To 
accommodate this, the mean (solid curves) and sample standard deviation (error bars) of 25 
sonar-derived structure functions from within a 2.5-m x 2.5-m area have been computed and 
plotted. These standard deviations represent the spatial variability of the inversion which, in 
agreement with visual observation, is large. This variability translates navigational error into 
uncertainty that compromises comparison of thermistor and sonar data. To obtain the thermistor 
statistics, Expression (3) is evaluated for each station, and the statistical error in each of these 
estimates is neglected, as the number of time samples is very large in comparison to the number 
of stations. The thermistor estimates (red circles) are averages over all stations with error bars 
that are the sample standard deviations divided by the square root of the number of stations (7 for 
1-H, 11 for 4-C).  
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Figure 8. Comparison of structure function for vertically integrated temperature structure estimated from sonar and 
thermistor data. Upper panel, site 1H, lower panel, site 4C.  The black error bars depict the spatial variability of the 
inversion over 2.5-m x 2.5-m  squares, while the red error bars represent the standard deviations of  the  estimates 
of the structure function using thermistor data.

The comparison of sonar and thermistor results is satisfactory, although there is a mismatch for 
the shortest lags for Site 1H. This site had a rather low level of hydrothermal activity compared 
to site 4C, and it appears that the flattening of the sonar-derived structure function at small lags 
indicates a “floor” below which good estimates are not possible. This floor is most likely due to 
random thermal structure in the water column, due to wafting of the focused flows of Mushroom 
and Inferno. The spatial variability for the sonar inversion at Site 4C is very large, indicating 
strong spatial intermittency with concomitant sensitivity to navigational error. The large 
downward extent of the error bars representing this variability results from the standard deviation 
approaching or exceeding the sample mean, and is exaggerated by the use of a logarithmic 
vertical scale. As noted above, it is assumed that the fractional area occupied by diffuse venting 
is F = 0.15. As this fraction is increased, the sonar curves move upward, and as it is decreased, 
they move downward. The value F = 0.15 gives consistency between thermistor and sonar 
estimates at the two sites and is used in inversions to be shown later. It is encouraging that a 
single choice of F gives reasonable agreement between sonar- and thermistor-derived structure 
functions at two different sites. While F must vary to some extent with location at scales larger 
than the resolution of the inversion, it seems reasonable to assume that the chosen value of F 
represents a spatial average. This choice of F is the first step in the inversion method. Having a 
value for F, the relation between ping-to-ping correlation and the structure function is 
established. With this relation, the sonar data provide structure function estimates. Each estimate, 
for each point on the 2D grid, is reduced to 3 numbers by fitting the analytic expression (16). 
Finally, as described in the following section, two of these three numbers are used in estimating 
the heat-flux density for each point on the grid.  
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5 Inversion Algorithm 
The heat-flux density, q, in W/m2, is proportional to the product of average vertical velocity, w, 
and the average of the temperature anomaly Tanom: 
 
                                                              vp anomq wc T= < >  ,                                           (18) 

 
where cvp is the heat capacity per unit volume at constant pressure. As noted in Sect. 2, the 
temperature anomaly is approximately equal to the standard deviation of temperature,  
                                                                         T anomTσ =< > .                                  (19) 
The sonar inversion gives the standard deviation of path-averaged temperature, which can be 
expressed as 
                                                                          /Tpa T d Dσ σ= ,                   (20) 
where d is the effective thickness of the warm layer, and D is the height of the sonar (4.2 m). The 
sonar inversion also provides a characteristic time, τ0, that quantifies the time required for the 
temperature field to undergo significant change. As the path-averaged temperature is dominated 
by the largest scales of the random temperature field, it seems reasonable to assume that these 
scales are of order d, and that the vertical velocity is 
                                                                            0/w d τ= .             (21) 
Combining (18)-(21), the heat-flux density is 
                                                                          0/vp Tpaq c Dσ τ= .                (22) 
Only two of the three parameters produced by the inversion for the structure function appear in 
Expression (22). The use of the temperature standard deviation needs no further justification, but 
the omission of the exponent parameter μ can be justified because τ0 is the lag time for which the 
structure function attains a value equal to 1-1/e of its asymptote, irrespective of the value of μ. 
This is an empirical model, and it is likely that (22) would be modified by multiplication by a 
constant of order unity as a result of future comparison of sonar-derived heat-flux density with 
direct measurements.  
6 Inversion Results 
Figure 9 is an example of the application of Expression (22) to obtain heat-flux density from 
COVIS data. The two images are formed from a combination of data from the three different 
azimuthal sectors with ping-to-ping correlation averaged over the period 00:00 to 24:00 UTC on 
July 7, 2019 and July 11, 2019. This rather long averaging period is intended to reduce the effect 
of tidal currents on the heat-flux estimates. Xu et al. (2021) have shown that tidal effects on 
sonar diffuse-flow data are significant. In forming Fig. 9, data have been deleted at ranges 
deemed too short or too long to give reliable values for ping-to-ping correlation. Data have also 
been deleted in regions near the Mushroom (M) and Inferno (I) black smokers. These deletions 
are necessitated by shadowing of the seafloor, whether by the sulfide structures or the focused 
plumes, which wander in angle in response to currents. 
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Figure 9. Heat-flux density in MW/m2 as determined using Expression (22), with ping-to-ping correlation 
averaged over the period 0:00 to 23:30, UTC July 7, 2019 (Left panel) and July 11, 2019 (Right panel). 
Data have been deleted in the vicinity of the Mushroom (M) and Inferno (I) smokers. Ground-truth 
thermistor data were taken at Sites 1H and 4C, noted on the plots.  

 
The two images show appreciable differences, with more activity evident on July 7 than July 11. 
These could be artifacts caused by either the Inferno or Mushroom plumes, as interposition of a 
plume between the sonar and the seafloor might cause inactive regions to appear active, as noted 
later. The ground-truth sites are marked in Fig. 9, and it is apparent that activity at 1H is much 
lower than at 4C, consistent with thermistor measurements and Fig. 8. 
 
A time series of heat output has been formed by integrating the heat-flux density (obtained from 
daily averages of the ping-to-ping correlation) over area and dividing the result by area to obtain 
average heat-flux density. The yaw rotator motor failed on 24 November 2019 with the result 
that data gathering at later times was restricted to Sector 1 which includes the Mushroom and 
Inferno vents. As a consequence, the time series presented in Fig. 10 is restricted to Sector 1 with 
the deletions noted in connection with Fig. 9. In the time before failure of the yaw motor, the 
sonar azimuthal pointing direction showed occasional changes which resulted in abrupt changes 
in estimated heat flux. In response, the time series displayed in Fig. 10 is further restricted to 
times after the yaw motor failure, ensuring that the pointing direction was constant. The time 
series shows no evident trends over the period 24 November 2019 through 27 April 2021.  
 
The cause of the time variation seen in the upper panel of Fig. 10 is unknown. It may be either 
due to actual variation in heat output, or it may be an artifact caused by tidal currents. Our efforts 
to compare the heat-flux density time series with pressure and current time series have been 
inconclusive, but more effort in this direction is warranted. Sample averages over the heat-flux 
density shown in the figure yield 285 ± 43 kW m-2. If it is assumed that the variation seen in Fig. 
10 does not represent actual variation in heat output, then the standard deviation 43 kW m-2 can 
be taken as the uncertainty in heat-flux estimates from one-day’s worth of data.  
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 Figure 10. Upper panel: Time series average heat-flux density over Sector 1. Lower panel: Time series for 
fractional active area. 
 
The lower panel of Fig. 10 is a time series for “fractional area”, which is defined as follows. First 
the “active area” is defined as  
 

                                          
2

2

( ( , ) )

( , )
S

active

S

q x y dx dy
A

q x y dx dy

∫

∫
=

.                                                    (23) 

This definition gives a value that is equal to the total area included in the heat-flux image 
                            
 
                                                             

S
A dx dy∫=  ,                                                          (24) 

if the heat-flux density is constant over the entire area. If the heat flux vanishes everywhere 
except on patches that occupy an area Ap, where it takes on a single value for all patches, 
definition (23) yields the intuitive value Aactive = Ap. The fractional area plotted in Fig. 10 is 
Aactive/A. It typically ranges between 0.7 and 0.8, showing that the heat flux density obtained by 
inversion is not concentrated in a few small patches, but spread significantly. This conflicts with 
video observations that the diffuse-flow patches are quite localized. We attribute this, at least in 
part, to the effect of currents and the use of averaging over a 24-hour period for each data point 
in Fig. 10. There is no conflict with the assumed fractional active area of 0.15 assumed in Sect. 
3.3, as this fraction refers to the fine-scale distribution of activity, unresolvable by the inversion 
method. Figure 11 shows that there is a definite correlation between fractional active area and 
heat-flux density, with fractional area increasing as heat-flux density increases. This may 
indicate that a part of the inverted heat flux is an artifact, caused by wafting of the focused 
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plumes into the sonar’s lines-of-sight, or it may simply indicate that increased activity involves 
an increased area of the seafloor. Wafting of the focused plumes would cause inactive areas to 
appear active, increasing fractional area. At present we have no means of correcting for the bias 
that would result from such an artifact if, in fact, it occurs. 

                                           
Figure 11. Average heat-flux density over Sector 1 vs. fractional active area. 
 
 
Rona and Trivett [1992] made heat-flux measurements at ASHES, and their nearest diffuse-flow 
region had area 962 m2 and estimated heat flux density 57 kW/ m2. Our value averaged over 
COVIS’ 567 m2 field of view (combining all three sectors)  is 187 kW/ m2 for 7 July 2019. The 
mean of the time series of Fig. 10 is 285 kW/ m2 for sector 1, with area 233 m2 after deleting 
regions near Mushroom and Inferno. The statistical error in this number is only 2 kW/ m2 owing 
to the large number (443) of samples. The systematic error is unknown but expected to be a 
number of order unity times this mean. Given the 1:5 ratio of the uncertainty bounds given by 
Rona and Trivett, their estimate does not help with calibration of our method, although the two 
measurements are consistent.  
 

7 Conclusions 
A method has been developed to estimate the heat output of diffuse hydrothermal flows using 
multibeam sonar data.  Temperature fluctuations modulate seafloor echoes, so that ping-to-ping 
correlation can be used to estimate properties of the random temperature field from which heat-
flux density can be obtained. The method is essentially empirical, and calibration by comparison 
with directly measured heat flux in a future field exercise would be very useful. Even without 
calibration, the method provides estimates of heat-flux density up to an unknown factor of order 
unity. These estimates are consistent with historical data and are given as maps over the sonar 
field-of-view, with one such map per day. A time series over the period 24 November 2019 
through 27 April 2021 shows no significant trends in heat flux. 
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