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Abstract

This study assesses the effective climate sensitivity (EffCS) and transient climate response (TCR) derived from global energy

budget constraints within historical simulations of 8 CMIP6 global climate models (GCMs). These calculations are enabled by

use of the Radiative Forcing Model Intercomparison Project (RFMIP) simulations, which permit accurate quantification of the

historical effective radiative forcing. We find that long-term historical energy budget constraints generally underestimate EffCS

from CO2 quadrupling and TCR from CO2 ramping, both by 12%, owing to changes in radiative feedbacks and changes in

ocean heat uptake efficiency. Atmospheric GCMs forced by observed warming patterns produce lower values of EffCS that are

more in line with those inferred from observed historical energy budget constraints. Understanding the discrepancies between

modeled and observed historical surface warming patterns remains critical for constraining EffCS and TCR from the historical

record.
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Table S1. Estimates of radiative feedback parameter, E↵CS and TCR. �his and E↵CShis

values from amip-piForcing(amip) simulations are calculated from linear regressions over 1870

- 2014 (1979 – 2014); from historical simulations are over 1870 – 2014 and 1979 – 2014 (in

bracket). �4xCO2 and E↵CS4xCO2 from abrupt4xCO2 simulations are calculated from regressions

of �N against �T over 150yrs of the simulations. TCRhis values from historical simulations are

calculated by taking di↵erences between 1995 – 2014 and 1869 – 1882. (Note that multi-model

mean is calculated by averaging over all 8 models, except for amip-piForcing estimates, in which

case multi-model mean is average of 6 available models)

Feedback parameter [W m�2 K�1] E↵CS [K] TCR [K]

Models amipPF(amip) historical 4xCO2 amipPF(amip) historical 4xCO2 historical 1pctCO2

CanESM5 -1.46(-1.46) -0.72(-0.66) -0.65 2.49(2.50) 5.11(5.51) 5.64 2.60 2.75

CNRM-CM6-1 -1.26(-1.21) -0.75(-0.67) -0.74 3.01(3.13) 5.04(5.68) 4.90 2.45 2.23

GFDL-CM4 -1.90(-2.44) -1.55(-1.40) -0.82 2.04(1.6) 2.51(2.77) 3.89 1.39 2.05

GISS-E2-1-G N/A (-1.64) -1.26(-1.20) -1.45 N/A (2.01) 2.61(2.76) 2.71 1.44 1.66

HadGEM3-GC31-LL -1.33(-1.72) -0.80(-0.63) -0.63 2.92(2.26) 4.82(6.16) 5.55 1.96 2.47

IPSL-CM6A-LR -1.64(-1.96) -1.07(-0.89) -0.75 2.30(1.93) 3.54(4.28) 4.56 2.16 2.39

MIROC6 -1.50(-1.75) -1.23(-1.09) -1.40 2.30(1.96) 2.79(3.15) 2.60 1.55 1.58

NorESM2-LM N/A (-3.17) -1.82(-1.60) -1.34 N/A (1.18) 2.05(2.32) 2.56 1.15 1.48

Multi-model mean -1.52(-1.92) -1.15(-1.02) -0.97 2.51(2.07) 3.54(4.06) 4.05 1.84 2.08

August 18, 2021, 8:30pm
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Key Points:15

• Within CMIP6 models, historical energy budget constraints underestimate equi-16

librium climate sensitivity and transient climate response17

• Atmosphere-only models forced by observed surface warming patterns produce lower18

values, in line with historical observations.19

• Discrepancies between modeled and observed historical surface warming patterns20

account for the differences in feedbacks and climate sensitivity estimates21
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Abstract22

This study assesses the effective climate sensitivity (EffCS) and transient climate response23

(TCR) derived from global energy budget constraints within historical simulations of 824

CMIP6 global climate models (GCMs). These calculations are enabled by use of the Ra-25

diative Forcing Model Intercomparison Project (RFMIP) simulations, which permit ac-26

curate quantification of the historical effective radiative forcing. We find that long-term27

historical energy budget constraints generally underestimate EffCS from CO2 quadru-28

pling and TCR from CO2 ramping, both by 12%, owing to changes in radiative feedbacks29

and changes in ocean heat uptake efficiency. Atmospheric GCMs forced by observed warm-30

ing patterns produce lower values of EffCS that are more in line with those inferred from31

observed historical energy budget constraints. Understanding the discrepancies between32

modeled and observed historical surface warming patterns remains critical for constrain-33

ing EffCS and TCR from the historical record.34

Plain Language Summary35

Here we use climate models to evaluate the extent to which future warming can36

be inferred from observations of historical warming. To do so, we employ the RFMIP37

simulations of 8 models to calculate the historical radiative forcing, and assess histor-38

ical energy budget constraints on two metrics of global warming: effective climate sen-39

sitivity and transient climate response. We find that model historical simulations gen-40

erally underestimate the climate sensitivity and transient climate response, because his-41

torical warming patterns differ from projected warming patterns. Simulations with atmosphere-42

only models using observed warming patterns produce even lower values of climate sen-43

sitivity, suggesting that estimates of climate sensitivity based on recent observations may44

be similarly biased low.45

1 Introduction46

Equilibrium climate sensitivity (ECS) and transient climate response (TCR) are47

two fundamental metrics for evaluating climate change projections. ECS represents the48

equilibrium surface warming in response to a doubling of atmospheric CO2 concentra-49

tion relative to pre-industrial levels. Although idealized, ECS has been found to explain50

most of the spread in projected 21st century global temperature change under realistic51

emission scenarios (Grose et al., 2018; Sherwood et al., 2020). TCR represents the tran-52
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sient surface warming at the time of CO2 doubling under an idealized 1% per year CO253

increase. As a measure of transient response, TCR is better constrained and is also in-54

formative about the projected degree of global warming in the coming century.55

In principle, ECS and TCR can be inferred from the global energy balance frame-56

work (Gregory et al., 2002):57

∆N = ∆F + λ∆T, (1)

where ∆N is the global-mean top-of-atmosphere (TOA) radiation anomaly (approximately58

equal to ocean heat uptake), ∆F is the effective radiative forcing (ERF; Myhre et al.,59

2013), ∆T is the global-mean surface air temperature anomaly, and λ is the radiative60

feedback parameter (negative for a stable climate). ECS is inferred as: ECS = −F2x/λeq,61

where F2x is the ERF from CO2 doubling, and λeq is the radiative feedback when a new62

equilibrium is reached (∆N = 0). Ideally, ECS can be estimated from equilibrium states63

within global climate models (GCM) forced by an abrupt CO2 doubling (abrupt2xCO2)64

or CO2 quadrupling (abrupt4xCO2), after sufficiently long integration (Rugenstein et al.,65

2020). In practice, ECS is often extrapolated from a linear regression of ∆N against ∆T66

for the first 150yrs of abrupt4xCO2 simulations (Gregory et al., 2004). This extrapola-67

tion generally underestimates the true ECS due to changes in radiative feedbacks as cli-68

mate equilibrates (Rugenstein et al., 2020), owing to time-evolving surface warming pat-69

terns (e.g., Armour et al., 2013; Andrews et al., 2015; Dong et al., 2020), and nonlinear70

mean-state dependence of radiative feedbacks (e.g., Caballero & Huber, 2013; Bloch-Johnson71

et al., 2015, 2021). Therefore, we refer the ECS values estimated from these non-equilibrium72

states to as an effective climate sensitivity (EffCS; Andrews et al., 2015; Sherwood et73

al., 2020):74

EffCS = −F2x

λeff
, (2)

assuming the effective radiative feedback (λeff) at a transient state would remain con-75

stant to equilibrium. Specifically, in this paper we denote EffCS values from abrupt4xCO276

simulations (through regressions of annual-mean ∆N against ∆T for the first 150yrs)77

as EffCS4xCO2 (data from Zelinka et al., 2020). We also estimate EffCS values from the78

historical energy budget constraints (using Eqs. 1 and 2), in which case we refer to it79

as EffCShis.80

For TCR, it is commonly calculated as the global-mean surface air temperature change81

averaged over a 20-year period centered on year 70 of the 1pctCO2 simulations where82
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CO2 concentration is doubled (denoted here as TCR1pct). The values of TCR can also83

be estimated from historical energy budget constraints (see more details in Section 4),84

in which case we will refer to it as TCRhis.85

EffCS4xCO2 and TCR1pct estimates from fully-coupled atmosphere-ocean GCMs86

(AOGCMs) have been found to be substantially higher than values of EffCShis and TCRhis87

from observed energy budget constraints (e.g., Otto et al., 2013; Lewis & Curry, 2015,88

2018; Forster, 2016), raising a key question of whether the AOGCMs are overly sensi-89

tive. However, lower values of EffCShis and TCRhis have also been found in AOGCM historical90

simulations, but only in a few models (Winton et al. 2020 for GFDL-CM4; Andrews et91

al. 2019 for HadGEM3-GC3.1-LL; Dessler et al. 2018 for MPI-ESM1.1). The limited num-92

ber of model studies reflects the fact that the time-varying historical ERF (∆F in Eq.93

1) is not often diagnosed, precluding accurate calculation of radiative feedback and thus94

EffCShis and TCRhis. Some other studies have instead used abrupt4xCO2 or 1pctCO295

simulations as a surrogate for historical warming (Armour, 2017; Proistosescu & Huy-96

bers, 2017; Lewis & Curry, 2018; Dong et al., 2020), or used a rough estimate of histor-97

ical ERF taken from IPCC AR5 (Myhre et al., 2013) for CMIP5 AOGCMs (Marvel et98

al., 2018; Gregory et al., 2020). These approaches provide inter-model comparisons, and99

generally find that EffCS4xCO2 is larger than EffCShis, but it is unclear how accurate their100

estimates are given that they do not use model-specific estimates of ERF (or in some cases101

lack historical non-CO2 forcings altogether).102

This work is thus motivated by two key questions: (1) how robust is the finding103

that values of EffCS4xCO2 and TCR1pct are higher than values of EffCShis and TCRhis104

estimated using historical energy budget constraints? (2) How do the estimates of EffCShis105

and TCRhis from models compare to those from observed energy budget constraints? The106

answers to these questions have major implications for how the historical record informs107

future climate projections. Here we employ simulations of the Radiative Forcing Model108

Intercomparison Project (RFMIP; Pincus et al., 2016), which provide the time series of109

historical ERF for 8 CMIP6 AOGCMs (section 2). With ERF in hand, we assess EffCShis110

and TCRhis values within historical simulations and compare to the values of EffCS4xCO2111

and TCR1pct for each of these models (section 3 and 4). We then compare EffCS and112

TCR estimates between models and observations, and discuss implications for observation-113

based historical energy budget constraints on EffCS and TCR (section 5).114
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2 Data115

2.1 Historical Effective Radiative Forcing from RFMIP Simulations116

The ERF includes rapid adjustments from the atmosphere in response to changes117

in CO2 or other forcing agents (Myhre et al., 2013). It can be quantified from the TOA118

radiation changes within atmosphere-only GCM (AGCM) simulations wherein forcing119

agents are changed while SST and sea-ice concentration (SIC) fields are fixed at pre-industrial120

values (Forster et al., 2016). Here we make use of the fixed-SST simulations of RFMIP121

that are currently available for 8 CMIP6 models (CanESM5, CNRM-CM6-1, GFDL-CM4,122

GISS-E2-1-G, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, NorESM2-LM). The time-123

series of historical ERF is calculated as the difference of net TOA radiative flux between124

a 30-year control run (piClim-control), where all forcing agents are fixed to pre-industrial125

levels, and a forcing run (piClim-histall), where time-varying atmospheric concentrations126

of all historical forcing agents are imposed. Historical ERF from a single group of forc-127

ing agents (e.g., greenhouse gases, anthropogenic aerosols, natural forcings including vol-128

canoes and solar variability) can also be estimated from single-forcing runs of RFMIP129

(piClim-histghg , piClim-histaer , piClim-histnat, respectively). We also estimate ERF of130

CO2 doubling, F2x, from RFMIP piClim-4xCO2 siulations, where CO2 is abruptly quadru-131

pled and held constant for 30yrs while SST and SIC fields are fixed. F2x is computed from132

the TOA radiation changes of the 30yr-average (scaled by 1/2 to estimate the forcing133

for CO2 doubling from CO2 quadrupling simulations). For all RFMIP simulations, the134

ensemble mean is used when more than one member of the simulation exist.135

Note that the TOA radiation flux changes derived from the fixed-SST simulations136

includes the effect of temperature changes over land and sea ice, which should be con-137

sidered as part of the radiative response rather than ERF. We remove this portion of ra-138

diative effects by subtracting off the global-mean surface air temperature change scaled139

by each model’s radiative feedback parameter from its abrupt4xCO2 simulation – the method140

proposed in Hansen et al. (2005). Recent studies find advantages in several new correc-141

tion methods, such as fixing both SST and land-surface temperatures in AGCM simu-142

lations (Andrews et al., 2021), or using surface temperature radiative kernels (Smith et143

al., 2020). We choose to apply the Hansen et al. (2005) method here given that it is a144

widely used method and readily improves ERF estimates using the available output of145
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the RFMIP simulations. All the historical ERFs are calculated as global and annual means,146

spanning the period 1850 – 2014 (the same interval of fully-coupled historical simulations).147

2.2 Historical simulations of AOGCMs and AGCMs148

Within historical simulations of AOGCMs, we compute global mean N and T from149

the mean of all available ensemble members, in attempt to reduce noises from internal150

variability. Except for GFDL-CM4 (1 member), NorESM2-LM (3 members), and HadGEM3-151

GC31-LL (4 members), all models have more than 10 historical ensemble members avail-152

able. The annual mean changes of N and T relative to pre-industrial levels are calcu-153

lated by subtracting a linear fit of the global annual mean piControl values to remove154

unforced model drift. Note that ∆N , ∆F , and ∆T in the energy budget framework (Eq.155

1) can also be defined as differences between two specific historical states. We will elab-156

orate the periods over which we compute the historical energy balance in the following157

two sections. In order to examine the contributions of individual forcing agents to his-158

torical climate change, we also employ single-forcing historical simulations (hist-GHG ,159

hist-aer , hist-nat) described by the Detection and Attribution Model Intercomparison160

Project (DAMIP; Gillett et al., 2016), where only one type of forcing agent is changed161

while all other forcing agents are fixed at preindustrial levels.162

Results from the coupled AOGCMs are compared to two sets of AGCM simula-163

tions. One is the amip simulation, a CMIP6 DECK experiment (Eyring et al., 2016) where164

AGCMs are forced by time-evolving observed SST and SIC fields and by time-varying165

historical forcing agents. While amip simulations are available for all of the 8 CMIP6 mod-166

els assessed here, they are performed only over 1979 – 2015. To investigate early histor-167

ical energy budget in AGCMs, we also make use of amip-piForcing simulations described168

by the Cloud Feedback Model Intercomparison Project (CFMIP; Webb et al., 2017), which169

are available from 1870 to 2014. Similar to amip, the amip-piForcing simulations are forced170

by observed SST and SIC fields while all forcing agents are fixed at pre-industrial lev-171

els (i.e., ERF is zero). Radiative feedbacks are in theory identical between a model’s amip-piForcing172

and amip runs because SST and SIC fields are the same, assuming the linearity of the173

global energy balance (Eq. 1) and that the ERF added to amip simulations are accurately174

quantified by RFMIP simulations. A caveat is that only 6 out of 8 models used here (CanESM5,175

CNRM-CM6-1, GFDL-CM4, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6) have amip-piForcing176

experiments available. Given that most of the variability in TOA radiative fluxes comes177
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about through variations in SSTs which are fixed in AGCM simulations, for both sets178

of AGCM simulations we only use the first realization of each model.179

3 Historical Energy Budget Constraints on Radiative Feedbacks and180

EffCS181

In the energy budget framework, EffCShis can be written as:182

EffCShis = −F2x

λhis
, (3)

where the historical effective radiative feedback parameter (λhis) is given by:183

λhis =
∆N − ∆F

∆T
. (4)

We first show historical variations in λhis, calculated by a linear regression form184

of Eq. 4 in a sliding 30-year window. We find remarkable differences in decadal-scale ra-185

diative feedbacks between historical simulations (black line in Fig. 1a) and amip-piForcing186

simulations (blue line in Fig. 1a). While natural variability may have played a dominant187

role in the first half of the 20th century, where net ERF was relatively small (Fig. S1),188

the discrepancy between AOGCMs and AGCMs persists throughout the full historical189

period towards early 21st century. Notably, λhis in the amip-piForcing simulations of AGCMs190

trends toward more-negative values since 1970s to present, consistent with earlier stud-191

ies using CMIP5 models (Andrews et al., 2018; Silvers et al., 2018; Gregory et al., 2020;192

Dong et al., 2019); whereas in the historical simulations of AOGCMs, the trend of λhis193

is rather weak or even slightly towards more-positive values. During the second half of194

the century, λhis values from AOGCMs track those in hist-GHG simulations (red line),195

suggesting the simulated feedbacks are primarily driven by GHG forcing, which has dom-196

inated global net ERF over this period (Fig. S1).197

We next assess EffCShis from energy budget constraints within the historical sim-198

ulations of the AOGCMs and the AGCMs. To compute the energy budget in Eqs. 3 and199

4, the time interval over which anomalies (∆) are calculated needs to be carefully cho-200

sen to avoid short-term variability and effects of volcanic eruptions (Lewis and Curry201

2014; Forster 2016). Previous studies have often used two methods: (1) taking finite dif-202

ferences between a base period and a final period (Lewis & Curry, 2015, 2018; Winton203

et al., 2020; Sherwood et al., 2020); or (2) using regression over the full period of inter-204

est (Gregory et al., 2020; Andrews et al., 2019). Since we are comparing EffCS between205
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Figure 1. Historical energy budget constraints on net radiative feedback and EffCS. (a)

Time series of the estimated historical radiative feedbacks (λhis). Thick lines denote multi-model

means, shadings denote one standard deviation across models. (b, c) EffCS estimated from the

energy budget of (b) full historical record (1870 – 2014) and (c) recent decades (1979 – 2014).

The outlined colored bars on the right in (b, c) denote the multi-model mean values of EffCS

from corresponding simulations, with error bars indicating one standard deviation across models.

The white hatched bar in (b) denotes the median EffCShis value of 2.5K based on observed en-

ergy budget changes reported in IPCC AR6 (Forster et al., in press), with the error bars denoting

5-95% range of 1.6 – 4.8 K. Models listed (from the left to right) are: CanESM5, CNRM-CM6-1,

GFDL-CM4, GISS-E2-1-G, HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, NorESM2-LM.
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AOGCMs and AGCMs (including amip simulations which are only available from 1979206

onwards), we choose to use the regression method here. That is, the λhis used to com-207

pute EffCShis (Eq. 3) is calculated via ordinary least squares (OLS) regression of Eq. 4,208

over two periods of our interest: the full historical period 1870 – 2014 (Fig. 1b), and the209

recent decades of the Satellite Era 1979 – 2014 (Fig. 1c).210

3.1 EffCShis from Long-term Historical Energy Budget (1870 - 2014)211

The values of EffCShis inferred from long-term energy budget in historical simula-212

tions are generally lower than EffCS4xCO2 from abrupt4xCO2 simulations (Fig. 1b). As213

noted above, the difference between EffCShis and EffCS4xCO2 has been documented in214

a few models. For GFDL-CM4, Winton et al. (2020) found an EffCShis of 1.8K and an215

EffCS4xCO2 of 4K (EffCS4xCO2= 5K if using yrs 51-300 of the model’s extended abrupt4xCO2216

simulation). For HadGEM3-GC3.1-LL, Andrews et al. (2019) found an effective F2x of217

3.49 W m−2 and a historical feedback of 0.86 W m−2 K−1(average of 4 ensembles), im-218

plying an EffCShis of 4.1K, in contrast to the model’s EffCS4xCO2 of 5.5K. For MPI-ESM1.1,219

Dessler et al. (2018) found an ensemble-median EffCShis of 2.72K, slightly lower than220

the value of EffCS of 2.93K estimated from a CO2 doubling simulation. Here we show221

that, within 6 out of 8 fully-coupled CMIP6 AOGCMs assessed, historical energy bud-222

get constraints underestimate EffCS4xCO2 from CO2 quadrupling, with an average of 12%223

lower across all models (Table S1). Averaging over all 8 AOGCMs, EffCShis is 3.56 K224

(±1.17K; one standard deviation across models, unless noted elsewhere) and EffCS4xCO2225

is 4.05K (±1.46 K), corresponding to an averaged λhis of -1.15 W m−2 K−1 (±0.37 W m−2 K−1)226

and λ4xCO2 (from the regression of 150yrs abrupt4xCO2 simulations, data from Zelinka227

et al. 2020) of -0.97 W m−2 K−1 (±0.34 W m−2 K−1), respectively. Lower values of EffCShis228

are found in AGCM amip-piForcing experiments over the same historical period, with229

a mean EffCShis value of 2.51K (±0.35K) across 6 available models, which is lower than230

the mean EffCS4xCO2 value of 4.52 K (±1.04 K) across the same 6 models by 44%. Us-231

ing the Winton et al. (2020) method, i.e., taking ∆N , ∆T and ∆F as differences between232

1869 – 1882 and 1995 – 2014, yields nearly the same result (the difference between the233

two methods is statistically insignificant in a T-test): the mean value of EffCShis is 3.50234

K (±1.31 K) from historical simulations across all 8 AOGCMs and 2.54 K (±0.4 K) from235

amip-piForcing simulations across 6 available AGCMs.236
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The EffCS and radiative feedback differences between historical energy budget con-237

straints and CO2 quadrupling in models arise primarily from differences between histor-238

ical and near-equilibrium warming patterns (Fig. 2). Under CO2 quadrupling, AOGCMs239

generally project a warming pattern that is representative of the equilibrium response240

showing polar amplification and weakened tropical Pacific west-east SST gradient (Fig.241

2c; Andrews et al., 2015; Ceppi & Gregory, 2017; Andrews & Webb, 2018; Dong et al.,242

2020); whereas the SST trend pattern in historical simulations appears to be more spa-243

tially uniform (Fig. 2a). It has been argued that the projected enhancement of warm-244

ing in the tropical eastern Pacific relative to the tropical western Pacific in models tends245

to weaken the lower tropospheric stability, thereby weakening the negative low cloud feed-246

back and negative lapse-rate feedback, producing a higher EffCS (Zhou et al., 2016; Ceppi247

& Gregory, 2017; Andrews & Webb, 2018; Dong et al., 2019). In contrast, the relatively248

uniform tropical warming patterns simulated in historical simulations would maintain249

negative cloud feedback and therefore lower EffCS. The fact that EffCShis estimates from250

amip-piForcing simulations are even lower reflects that the observed historical warming251

pattern shows slightly enhanced warming in the Indo-Pacific Ocean and delayed warm-252

ing in both the eastern Pacific Ocean and part of the Southern Ocean (e.g., Zhou et al.,253

2016; Dong et al., 2019, 2020; Silvers et al., 2018).254

The historical pattern effect that leads to lower values of EffCShis may partially255

result from various non-CO2 forcing agents that have operated in the historical period256

(e.g., Marvel et al., 2016; Forster, 2016). Gregory et al. (2020) suggest that volcanic forc-257

ing may bias estimate of EffCS from CO2 quadrupling by causing different surface warm-258

ing patterns in CMIP5 models. Winton et al. (2020) find that a large portion of the EffCShis259

underestimate in GFDL-CM4 is attributable to its large efficacy of aerosol forcing. To260

test this possibility within other CMIP6 models, we make use of the DAMIP non-GHG261

forcing simulations, namely, hist-aer and hist-nat (Fig. S2). Within all but one model,262

natural forcing (volcanoes and solar variability) alone produces even lower values of EffCShis263

than those from historical simulations (i.e., a larger historical pattern effect). In com-264

parison, when forced by anthropogenic aerosol forcing alone, four models show a larger265

historical pattern effect while three models show a reduced pattern effect. These results266

suggest that natural forcing may be key to the historical pattern effect, while the effect267

of aerosol forcing is less robust across models.268
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Figure 2. Historical and equilibrium SST trend patterns. SST linear trends over (a) 1870 –

2014, (b)1979 – 2014, and (c) 150 years of abrupt4xCO2 simulations, calculated via OLS regres-

sions of annual-mean SST against time. The observed SST trend patterns in (a, b) are calculated

using AMIPII dataset (Hurrell et al., 2008). The model-mean SST trend patterns is all panels are

calculated by averaging over all 8 AOGCMs.
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3.2 EffCShis from Recent Energy Budget (1979-2014)269

Having quantified the long-term historical energy budget constraint on EffCS, we270

next focus on the most recent decades 1979 – 2014 (Fig. 1c), where observations of global271

SSTs have been improved by satellite products. This is also the period where GHG forc-272

ing has increased dramatically while aerosol forcing trends are relatively small (Fig. S1).273

With stronger ERF having operated over this period, nearly all coupled AOGCMs pro-274

duce higher values of EffCShis, with a multi-model mean EffCShis of 4.08K (correspond-275

ing to a mean radiative feedback of -1.02 W m−2 K−1), comparable to the mean EffCS4xCO2276

of 4.05K.277

Does this imply that the historical pattern effect is weak in recent decades? In fact,278

the EffCShis values over this period from all 8 AOGCMs are substantially higher than279

values of EffCShis from their AGCM counterparts driven by observed warming patterns280

within amip simulations (blue bar in Fig. 1c) and amip-piForcing simulations (not shown).281

Averaging over all AGCMs, the mean EffCShis and the corresponding λhis from amip ex-282

periments is 2.07 K (±0.57 K) and -1.92 W m−2 K−1 (±0.58 W m−2 K−1), respectively.283

The EffCShis difference between coupled AOGCMs and their counterpart AGCMs can284

be traced to the difference between modeled and observed SST patterns over recent decades.285

The ensemble-mean SST trend pattern in historical simulations of AOGCMs fails to cap-286

ture many key features in observations (Fig. 2b), including the pronounced cooling trends287

over the eastern Pacific and Southern Ocean. In particular, the observed enhancement288

of tropical Pacific zonal SST gradient has been linked to the observed increase in low clouds289

over the stratocumulus deck, which contributes to a more-negative radiative feedback290

and lower EffCS (Zhou et al., 2016; Ceppi & Gregory, 2017; Dong et al., 2019; Fueglistaler,291

2019). A few studies have argued that the observed tropical Pacific SST pattern may292

be driven by anthropogenic sulfate aerosol forcing (Takahashi & Watanabe, 2016) or vol-293

canic forcings (Gregory et al., 2020). Using the DAMIP simulations, we found that the294

SST trend patterns driven by anthropogenic aerosol forcing and natural forcing are in-295

deed more spatially heterogeneous, with some models showing weak cooling in the trop-296

ical eastern Pacific (Fig. S3). However, the cooling trends produced in these non-GHG297

simulations are much weaker than that observed, and are therefore generally overwhelmed298

by the warming trends produced by GHG forcing (Fig. S3a).299
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It is also possible that the observed warming pattern is in part a result of natural300

variability and therefore expected to differ from the ensemble mean of model simulations.301

For example, Watanabe et al. (2021) found that the observed equatorial Pacific west-302

east SST gradient over a longer historical period (1951-2010) lies within the range of large303

ensembles of model simulations. Olonscheck et al. (2020) also suggests a general consis-304

tency between observed SSTs and those simulated by CMIP5 and CMIP6 models, when305

focusing on specific regions. However, such regional analyses may be insufficient to ex-306

plain the broad pattern of observed SST trends beyond the equatorial Pacific (e.g., the307

cooling off the coast in the subtropics and in the Southern Ocean), and their results may308

be sensitive to the region and time interval selected. We have examined EffCShis and the309

equatorial Pacific zonal SST gradient for all individual members of historical simulations.310

We define the zonal SST gradient following Watanabe et al. (2021): the difference be-311

tween the eastern Pacific (180°- 80°W, 5°S - 5°N) and the western Pacific (110°E-180°,312

5°S - 5°N). But we calculate SST linear trends over 1979 – 2014 instead of 1951 – 2010313

as in Watanabe et al. (2021). Over these recent decades, nearly all of the 180 CMIP6314

ensemble members fail to capture the low EffCShis values from the corresponding amip315

simulations and the observed zonal SST gradient (Fig. S4), suggesting a significant bias316

in the pattern effect between AOGCMs and observations.317

Identifying the causes of the recent observed SST trend pattern is beyond the scope318

of this study. Our results on the historical energy budget constraints suggest that EffCShis319

estimates from historical simulations generally underestimate EffCS4xCO2 from CO2 qua-320

drupling due to the pattern effect. However, the historical pattern effect is relatively small321

over recent decades in AOGCMs, owing to the fact that their historical warming pat-322

terns over recent decades are not substantially different from their equilibrium warm-323

ing patterns. In section 5, we will further examine model-observation comparisons.324

4 Historical Energy Budget Constraints on TCR325

In the energy budget framework, TCR can be inferred from sufficiently long-term326

historical record where ∆T increases approximately proportional to ∆F :327

TCRhis = ∆T
F2x

∆F
. (5)

Under the global energy framework (Eq. 1), TCRhis is governed by both historical ra-328

diative feedback (λhis) and ocean heat uptake (OHU) efficiency (κhis), with the relation-329
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ship between these approximated as (Gregory & Mitchell, 1997; Raper et al., 2002; Gre-330

gory & Forster, 2008; Gregory et al., 2015):331

TCRhis =
F2x

κhis − λhis
, (6)

where κhis is defined as:332

κhis =
∆N

∆T
. (7)

Here we calculate TCRhis from historical simulations using Eq. 5, where anoma-333

lies (∆) are averaged over 1995 – 2014 relative to 1869 – 1882. This period is chosen to334

cover a sufficiently long time of historical record, and also to be largely consistent with335

several recent studies (Lewis & Curry, 2018; Winton et al., 2020). As noted above, Winton336

et al. (2020) found a TCRhis of 1.27K for GFDL-CM4, lower than the model’s TCR1pct337

of 2.05K. Here we find that most of the AOGCMs are consistent with GFDL-CM4 – the338

historical energy budget constraint underestimates TCR values from 1pctCO2 simula-339

tions, by about 12% on average (Fig. 3a). The mean TCRhis value across 8 AOGCMs340

is 1.84K (±0.51K), lower than the mean TCR1pct value of 2.08K (±0.43K).341

As shown in Eq. 6, the difference between TCRhis and TCR1pct could arise from342

changes in radiative feedbacks and/or changes in OHU efficiency over time (Gregory et343

al., 2015). To separate these two factors, we estimate λ and κ from historical and 1pctCO2344

simulations, following Eq. 4 and Eq. 7, respectively. For historical estimates, ∆N , ∆T345

and ∆F are taken as finite differences between 1995 - 2014 and 1869 - 1882. For 1pctCO2346

estimates, ∆N and ∆T are from the 20-year period centered on year 70 of the simula-347

tion when CO2 is doubled (∆T is equivalent to TCR1pct); ∆F at the time of CO2 dou-348

bling is approximated by F2x, with a caveat that the true F2x in 1pctCO2 simulations349

was found slightly non-logarithmic (Gregory et al., 2015, 2020). In all models κhis is larger350

than κ1pct which could contribute to the lower values of TCRhis relative to TCR1pct (Fig.351

3b). A weakening of κ over time has also been discovered within 1pctCO2 simulations,352

from the first doubling of CO2 to the second doubling, which contributes to an increase353

in TCR during the second 70-yrs of the simulations (e.g., Gregory & Forster, 2008; Gre-354

gory et al., 2015). On the other hand, the difference between λhis and λ1pct varies by mod-355

els (Fig. 3c). Two models show λhis more negative than λ1pct, along with their large κhis,356

suggesting that the lower values of TCRhis in these models are owing to changes in both357

radiative feedbacks and OHU efficiency. The rest of the models show λhis either very close358

to or slightly less negative than λ1pct, suggesting a dominant role of changes in κ. One359
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Figure 3. (a) TCR estimates from historical energy budget constraints and 1pctCO2 simula-

tions. Black bars denote TCRhis values from fully-coupled historical simulations. Red bars denote

TCR1pct values from 1pctCO2 simulations. The white hatched bar denotes the best estimate of

TCRhis of 1.32K based on observed energy budget changes reported by Lewis and Curry (2018),

with a 17-83% range of 1.1-1.65K. (b) Ocean heat uptake efficiency and (c) radiative feedback

from historical and 1pctCO2 simulations of all 8 AOGCMs.
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exception is CNRM-CM6-1, whose TCRhis is higher than TCR1pct. The overestimate360

of its TCRhis can be traced to a less-negative λhis and a small difference in κhis.361

In summary, we find an overall underestimate of TCR of about 0.2K using histor-362

ical energy budget constraints within AOGCMs. Values of TCRhis are generally biased363

low owing to the combination of too-negative radiative feedback and/or too-large OHU364

efficiency during the historical period. The differences in λ and κ between historical and365

1pctCO2 are largely ameliorated when using hist-GHG simulations (Fig. S5), suggest-366

ing that the underestimate of TCRhis is mostly driven by historical non-GHG forcings.367

Overall, these results suggest that as time evolves and CO2 forcing increases, the weak-368

ening of both radiative feedback and OHU efficiency could lead to higher values of TCR369

than those inferred from historical energy budget constraints.370

5 Discussions and Conclusions371

In the previous two sections, we have compared estimates of EffCS and TCR be-372

tween different simulations of coupled and atmosphere-only GCMs. How do the model373

results compare to values of EffCShis and TCRhis from the observed energy budget con-374

straints, and what implications do the results have for our interpretation of these observation-375

based estimates?376

In Figs. 1 and 3 we show that the reported values of EffCShis and TCRhis from ob-377

servations are much lower than the values of EffCS4xCO2 and TCR1pct from CMIP6 mod-378

els. For an observation-based estimate of EffCShis, we use values reported in IPCC AR6379

(Forster et al., in press): a median value of 2.5K and 5 - 95% range of 1.6 – 4.8K based380

on observed energy budget changes from 1850 - 1900 to 2006 – 2019 (Fig. 1b). For TCR,381

we use values reported by Lewis and Curry (2018): a median value of 1.32K and a 17–382

83% range of 1.1 – 1.65 K based on observed energy budget changes over 1869 – 1882383

to 1995 – 2016 (Fig. 3). Values of EffCShis from AGCM simulations forced by observed384

SST patterns are well in line with observation-based values of EffCShis (c.f. blue bars385

and white bar in Fig. 1b), despite the fact that AOGCM values of EffCShis and EffCS4xCO2386

are both higher, confirming the fidelity of the radiative response of atmospheric mod-387

els given observed SST and SIC trends (Andrews et al., 2018; Loeb et al., 2020). The388

difference between projected EffCS4xCO2 and observationally-constrained EffCShis is thus389

owing to changes in SST patterns with time. It implies that if nature evolves towards390
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equilibrium in the way that AOGCMs project, we should expect higher values of EffCS391

and TCR (i.e., evolving toward EffCS4xCO2 and TCR1pct) in the future than those in-392

ferred from observed historical energy budget constraints.393

Our findings are broadly consistent with earlier studies focusing on two individ-394

ual CMIP6 models (Andrews et al., 2019; Winton et al., 2020): historical energy bud-395

get constraints generally (within 6 out of 8 AOGCMs) underestimate the values of Ef-396

fCS from CO2 quadrupling and TCR from CO2 ramping, both by 12% on average. The397

underestimate of EffCShis is owing to differences in radiative feedbacks induced by the398

pattern effect; the underestimate of TCRhis is owing to a combination of differences in399

both radiative feedbacks and ocean heat uptake efficiency. Using observations, histor-400

ical energy budget constraints provide even lower values of EffCShis and TCRhis, which401

are in line with the values from AGCMs forced by observed SSTs and SICs. Account-402

ing the pattern effect and assuming the observed SST pattern will evolve towards the403

projected equilibrium warming pattern, the observed historical energy budget may pro-404

vide a baised-low constraint on EffCS and TCR.405

That said, the projections by GCMs are confronted by not only uncertainties as-406

sociated with atmospheric physics, e.g., cloud feedbacks (Webb et al., 2013; Zelinka et407

al., 2020; Sherwood et al., 2020), but also a critical open question: how reliable are model408

projections of future SST and SIC patterns? We find that estimates of EffCShis and TCRhis409

from historical simulations of coupled AOGCMs fall outside of the range of observation-410

based values, due to differences between observed and modeled SST trend patterns, which411

are particularly acute over recent decades. If the observed SST trend pattern (e.g., the412

strengthening of the tropical zonal SST gradient) is caused by internal natural variabil-413

ity, which will reverse sign in the coming decades according to AOGCM projections (Watanabe414

et al., 2021), then the higher values of EffCS and TCR found within AOGCMs may be415

more informative about near-future climate change under continued CO2 forcing. If the416

recent observed SST trend pattern is a result of model biases in the response to anthro-417

pogenic forcing (e.g., Seager et al., 2019; Coats & Karnauskas, 2017), the lower values418

of EffCShis and TCRhis from observations may persist over the coming decades, in which419

case 21st century warming may be lower than GCMs project. This work suggests that420

understanding the causes of the recent observed surface warming pattern and model-observation421

discrepancies is critical for constraining transient and near-equilibrium climate change.422
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Figure S1. Time series of historical e↵ective radiative forcing estimated from RFMIP simu-

lations. Thick lines denote multi-model means, shadings denote one standard deviation across

models.
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Figure S2. Similar to Figure (1b), except E↵CShis estimates are from historical energy budget

constraints within historical non-GHG simulations. Yellow bars denote the values of E↵CShis

from hist-aer simulations, and green bars denote the values of E↵CShis from hist-nat simulations.

Note that GFDL-CM4 currently does not have single-forcing historical simulations available.
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Figure S3. Similar to Figure 2(b), patterns of SST linear trends over 1979 - 2014 from

(a)hist-GHG , (b)hist-aer , (c)hist-nat simulations.
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Figure S4. (a - h) E↵CShis from 1979 – 2014 of all available members of historical simulations

(black bar) and amip simulations (red line) for each of the 8 models. (i) The tropical Pacific

zonal SST gradient (�SSTW-E) over 1979 – 2014 (defined in Watanabe et al., 2021) from all

models historical ensemble members (blue bars) and observations (red shading). The observations

include 4 datasets: HadISST1 (Rayner et al., 2003), AMIPII (Hurrell et al., 2008), COBE-SST2

(Hirahara et al., 2014), ERSSTv5 (Huang et al., 2017). The red shading denotes the mean

�SSTW-E ±one standard deviation across 4 observational datasets. The number in the top right

corner in each panel denotes the number of total model ensembles plotted.
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Figure S5. Same as Figure 3, except in (a) yellow bars denote TCRhis values from hist-GHG

simulations, and in (b, c) his and �his values from hist-GHG simulations
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