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Abstract

The accurate prediction of rainfall, and in particular rainfall extremes, remains challenging for numerical weather prediction

models. This can be attributed to subgrid-scale parameterizations of processes that play a crucial role in the multi-scale

dynamics, as well as the strongly intermittent nature and the highly skewed, non-Gaussian distribution of rainfall. Here we

show that a specific type of deep neural networks can learn rainfall extremes from a numerical weather prediction ensemble. A

frequency-based weighting of the loss function is proposed to enable the learning of extreme values in the distributions’ tails.

We apply our framework in a post-processing step to correct for errors in the model-predicted rainfall. Our method yields a

much more accurate representation of relative rainfall frequencies and improves the forecast skill of extremes by factors ranging

from two to above six, depending on the event magnitude.
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Key Points:8

• Correcting biases in the rainfall forecast of a numerical weather prediction ensem-9

ble with a deep neural network.10

• Training with a weighted loss function enables the neural network to learn the heavy11

tailed target distribution.12

• The method improves the relative frequency and categorical skill scores of rain-13

fall extremes.14
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Abstract15

The accurate prediction of rainfall, and in particular rainfall extremes, remains challeng-16

ing for numerical weather prediction models. This can be attributed to subgrid-scale pa-17

rameterizations of processes that play a crucial role in the multi-scale dynamics, as well18

as the strongly intermittent nature and the highly skewed, non-Gaussian distribution of19

rainfall. Here we show that a specific type of deep neural networks can learn rainfall ex-20

tremes from a numerical weather prediction ensemble. A frequency-based weighting of21

the loss function is proposed to enable the learning of extreme values in the distributions’22

tails. We apply our framework in a post-processing step to correct for errors in the model-23

predicted rainfall. Our method yields a much more accurate representation of relative24

rainfall frequencies and improves the forecast skill of extremes by factors ranging from25

two to above six, depending on the event magnitude.26

Plain Language Summary27

Modelling rainfall is challenging because of its large variability in space and time,28

and its highly skewed distribution. Numerical weather prediction (NWP) models have29

to be simulated on discretized grids with finite resolution. Although important especially30

for the generation of rainfall, small-scale processes can therefore not be resolved explic-31

itly and must be paremeterized, i.e. included as empirical functions of the resolved vari-32

ables. This introduces model biases that can lead to an underestimation of extreme events.33

Here we apply a deep neural network (DNN) to correct biases in the rainfall forecast of34

a NWP ensemble. The DNN is optimized with a loss function that includes weights to35

penalize rare extremes, and shows substantially improved performance in the prediction36

of extreme rainfall.37

1 Introduction38

Modelling and predicting rainfall, and in particular its extremes, is challenging be-39

cause of the relevant multi-scale dynamics ranging from small-scale droplet interactions40

to large-scale weather systems, the high intermittency in space and time, as well the strongly41

non-Gaussian, right-skewed distribution (Koutsoyiannis, 2004b, 2004a). With larger spa-42

tial averages approximately following a positive trend expected from the thermodynamic43

Clausius-Clapeyron relation (Allan & Soden, 2008; Donat et al., 2013; Guerreiro et al.,44

2018), the frequency and severity of extreme rainfall are projected to increase in a warm-45

ing atmosphere (Fischer & Knutti, 2016), making their accurate prediction even more46

challenging but also more important.47

Numerical weather prediction (NWP) models, solving the fluid dynamical equa-48

tions governing the dynamics of the atmosphere, are essential for weather forecasting,49

including the prediction of heavy rainfall events. Despite the large improvements made50

over the past decades (Bauer et al., 2015), considerable sources of error remain in the51

models, in particular for rainfall (Boyle & Klein, 2010). Global NWP models, with a res-52

olution of about 20 km, cannot explicitly resolve many of the relevant small-scale pro-53

cesses. These processes need to be included as sub-grid parameterizations, i.e., they are54

written as empirical functions of the explicitly resolved (grid-scale) variables. These pa-55

rameterizations of important processes involved in the generation of rainfall introduces56

biases and errors that can lead to an underestimation of extremes (Kang et al., 2015).57

Recent work has shown promising results by including data-driven machine learn-58

ing methods including neural networks (LeCun et al., 2015), into the traditional NWP59

workflow. Well-suited applications of neural networks range from data-assimilation (Bocquet60

et al., 2020), purely data-driven and hybrid weather prediction (Weyn et al., 2020; Rasp61

& Thuerey, 2021; Brenowitz & Bretherton, 2018; Watt-Meyer et al., 2021) to post-processing62

NWP output (Rasp & Lerch, 2018; Grönquist et al., 2021).63
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Here we apply a deep neural network (DNN) to correct the ECMWF (European64

Centre for Medium-Range Weather Forecasts, 2012) Integrated Forecast System (IFS)65

for biases by post-processing its rainfall output. When DNNs are tasked to infer a vari-66

able with large intermittency and a heavy-tailed distribution, such as rainfall, the op-67

timization with an averaging loss function such as the widely employed mean squared68

error (MSE) can be expected to lead to a good approximate of the distribution’s mean,69

but an underestimation of the extreme values in the tail. For rainfall, this problem has70

been addressed in different ways, e.g by translating the regression task into a classifica-71

tion problem (Agrawal et al., 2019; Sønderby et al., 2020), by using methods from com-72

puter vision (Tran & Song, 2019), and by employing a weighted loss function (Shi et al.,73

2017; Franch et al., 2020). The latter being composed of a weighted MSE and mean ab-74

solute error (MAE), with a set of five discrete weights determined by binned rainfall in-75

tensities. We show that a state-of-the-art DNN architecture is able to infer extreme val-76

ues in the far right tail of the target distribution from remotely sensed rainfall data us-77

ing a loss that combines a continuously weighted MSE with a structural similarity mea-78

sure. Notably, we use NWP ensemble simulations as input features, which do not exhibit79

an accurate representation of the extremes.80

2 Materials and Methods81

2.1 Integrated forecast system82

Atmospheric variables simulated by an ensemble of the Integrated Forecast Sys-83

tem (IFS) from the European Center for Medium-Range Weather Forecasting (ECMWF)84

(European Centre for Medium-Range Weather Forecasts, 2012) are taken as inputs of85

the DNN. The ensemble consists of ten members with a spatial resolution of 0.5625◦ (or86

approximately 63 km) and 137 vertical levels. It is initialized twice daily at 06 and 1887

UTC with a 12 hour lead time and small perturbations in the initial conditions. In this88

work, the ensemble mean of the variables is used, which is provided at three-hourly time89

steps and 0.5◦ horizontal resolution.90

2.2 Training data91

The input features of the DNN are the three-hourly accumulated rainfall and ver-92

tical velocities of the IFS ensemble mean. The latter is taken from eleven pressure lev-93

els: 200, 250, 300, 400, 500, 600, 700, 800, 900, 950, and 1000 hPa. The vertical veloc-94

ity is dynamically linked to rainfall through convective processes and large-scale updrafts95

of warm, moist air (Pfahl et al., 2017; Müller et al., 2020). The satellite-based Tropical96

Rainfall Measurement Mission (TRMM) 3B42 V7 product (Huffman et al., 2007) is used97

as a training ground truth at three-hourly temporal resolution and is regridded to 0.5◦98

by bilinear interpolation using the the Climate Data Operator (CDO) software (Schulzweida,99

2019), to match the IFS grid. The TRMM data is considered to have high accuracy es-100

pecially for heavy rainfall extremes (Boers et al., 2015). The geographic region of this101

study is the entire spatial coverage of the TRMM product, which ranges from 50◦ S to102

50◦ N and 180◦ W to 180◦ W. Further, the June, July and August season is used and103

split into a training set (1998-2008), a validation set (2009-2011) to optimize the hyper-104

parameters of the DNN model, and a test set for evaluation (2012-2014). Although the105

TRMM product is continued till present, a change of the satellites in 2014 has introduced106

significant biases, as shown in Figure S5, and the period after 2014 was therefore excluded.107

2.3 Definition of rainfall extremes108

We define extreme events as those 3-hourly time steps for which the rainfall sums109

exceed a pre-defined threshold. This threshold is determined individually for each grid110

–3–
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Figure 1. Sketch of the U-Net-based DNN architecture, the number of channels is indicated

inside each layer. The horizontal dimensions per pooling level are given on the left.

cell in terms of percentiles, computed on the sets of 3-hourly time steps with rainfall amounts111

above 0.1 [mm/3h].112

2.4 Neural network architecture113

The DNN architecture is based on the U-Net (Ronneberger et al., 2015), a convo-114

lutional neural network that can capture multi-scale spatial patterns through a combi-115

nation of pooling operations for large-scale feature extraction and skip-connections to116

preserve small-scale, high-frequency information. The U-Net architecture has shown good117

performance in weather prediction and post-processing tasks (Grönquist et al., 2021; Weyn118

et al., 2020). The model, shown in Figure 1, takes the standardized spatial fields of the119

atmospheric variables as input, where the number of 12 input channels equals the num-120

ber of variables times the corresponding number of pressure levels. The output layer has121

a single channel representing the rainfall rates and applies a rectified linear unit (ReLU)122

to ensure non-negative output values. The number of weights per layer is reduced by half123

compared to the original model from (Ronneberger et al., 2015), and only two max pool-124

ing operations are applied since a larger model size did not improve the performance.125

The ADAM optimizer (Kingma & Ba, 2017) was used for training the network together126

with a batch size of 64, a learning rate of 10−4 and early stopping to prevent overfitting.127

2.5 Loss function128

To improve the training regarding extreme values and the intermittency, we pro-129

pose the weighted loss function130

Lλ(y, ŷ) =
λ

N

N∑
i=1

w(yi)(yi − ŷi)
2 + (1 − λ)MS-SSIM(y, ŷ), (1)

where N is the number of training examples, w is a weight function and y and ŷ are the131

target and prediction, respectively. The cost function is thus a convex sum of the weighted132

MSE and the so-called multi-scale structural similarity measure MS-SSIM (Wang et al.,133

–4–
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2003), introducing an additional hyperparameter λ. The MS-SSIM quantifies the struc-134

tural similarity between two images. This is done through an interative comparison of135

luminance, contrast and structure on different scales by downsampling and low-pass fil-136

tering the image signals (see supporting information). The weights w are defined as137

w(yi) = min
(
αeβyi , 1

)
, (2)

where α and β are hyperparameters. We optimize the hyperparameters on the valida-138

tion set and set them to α = 0.007, β = 0.048 and λ = 0.158. Since the relative fre-139

quency of 3-hourly rainfall events decreases approximately exponentially with increas-140

ing magnitude, the weights aim to account for the statistical imbalance. Ebert-Uphoff141

et al. (Ebert-Uphoff & Hilburn, 2020) also use an exponentially weighted MSE loss to142

emphasis rare and high values when training a DNN to estimate radar composite reflec-143

tivity from satellite imagery. In our case, we find that only optimizing with the weighted144

MSE leads to large biases which can be removed through the addition of the MS-SSIM145

into the loss. Further introducing bounds on the weights was crucial for a robust opti-146

mization of the network.147

2.6 Baseline148

A linear ridge regression (Hoerl & Kennard, 1970) with the IFS ensemble mean rain-149

fall of a single grid-cell as input is used as a baseline model. Including the vertical ve-150

locity fields did not improve the performance of this baseline model.151

3 Results152

3.1 Evaluation of the continuous forecast skill of the deep learning model153

We first compare the histograms of the relative frequencies of the 3-hourly rain-154

fall values for the outputs from IFS, the different post-processing models, and the ground155

truth given by the TRMM remote sensing product (Figure 2a, 2b). The histograms of156

grid-cell values are computed over the entire part of the globe covered by the TRMM157

data (50◦S to 50◦N) and test set period. Training the DNN with an MSE or a MS-SSIM158

loss leads to a similar rainfall frequency distribution as the IFS ensemble mean and the159

linear ridge regression baseline, with over-representation of low rainfall frequencies and160

underestimation of the tail, as compared to the observational TRMM target. Training161

with the CW loss function in Eq. (1), instead, enables the DNN to infer a distribution162

that is substantially closer to the target distribution. The frequencies of low rainfall rates163

are correctly reduced, while at the same time achieving a better statistical representa-164

tion of the extremes in the tail. The ridge regression shows the largest bias towards low165

rainfall rates, hence not improving the IFS output at all.166

We assess the continuous forecast skill of the different models by computing the167

root mean square error (RMSE), mean error (ME) and the complex-wavelet structural168

similarity index (CW-SSIM) (Sampat et al., 2009) (see supporting information). The CW-169

SSIM allows a structural comparison of two images that is insensitive to small non-structural170

transformations such as rotation and translation, but sensitive to structural changes such171

as sharpness. Time steps with rainfall below a threshold of 0.1 [mm/3h] have been ex-172

cluded before applying the error metrics since rainfall on such low scales cannot be mea-173

sured accurately by satellite-based remote sensing (Huffman et al., 2007). The results174

are summarized in Table 1 as averages of the absolute cell-wise metrics. Training the DNN175

with the MS-SSIM leads to the lowest RMSE, while the CW loss function shows a ME176

similar to the MS-SSIM, and the highest structural similarity. Processing the IFS out-177

put with the ridge regression does not lead to improvements. Omitting rainfall from the178

input features and thus purely focusing on the vertical wind velocities W is not signif-179

icantly affecting the performance of the model. The weighted loss function combined with180
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Table 1. Continuous validation statistics are given for the IFS ensemble mean, ridge regres-

sion and the DNNs trained with different loss functions and the input variables rainfall (P) and

vertical velocity (W) from the IFS.

Model Loss Input RMSE % ME % CW-SSIM %

IFS - - 1.457 - 0.175 - 0.359 -
Ridge Regr. MSE P 1.473 -1.1 0.209 -19.4 0.359 0
DNN MSE W 1.375 5.6 0.165 5.7 0.388 8.1
DNN MSE P, W 1.372 5.8 0.166 5.1 0.395 10
DNN MS-SSIM P, W 1.368 6.1 0.136 22.3 0.441 22.8
DNN CW P, W 1.439 1.2 0.135 22.9 0.545 51.8

the MS-SSIM leads to an improvement of the ME by almost 23% and an improvement181

of the CW-SSIM metric by more than 50%.182

3.2 Evaluation of the forecast skill of the deep learning model for ex-183

treme events184

To evaluate the forecast skill for extreme events, categorical statistics can be com-185

puted from the contingency table containing the true positives and negatives, as well as186

the false positives and negatives (Table S1). A detailed definition of the events and skill187

scores is given in the supporting information. Table 2 summarizes the skill scores for events188

above the 95th percentile. The Heidke Skill Score (HSS), which is equal to zero for a ran-189

dom forecast and equal to one for a perfect forecast, is shown in Figure 2c for thresh-190

olds ranging from the 75th to the 99th percentile; corresponding results for the other scores191

are given in the supplementary Figures S1 to S4. The DNNs improve the scores com-192

pared to the IFS mean and ridge regression, in particular for events above the 90th and193

higher percentiles (Figure 2c). The DNN trained using the MS-SSIM alone as loss shows194

the highest scores below the 95th threshold. The proposed CW loss leads to significant195

improvements even above the 95th percentile (improving the IFS forecast by 192% in196

terms of the HSS) and yields the only skilful forecast for events above the 99th percentile197

(improving the IFS forecast by more than 500% in terms of the HSS). Note that the FAR198

score is not as strongly improved as the other skills, indicating slightly more frequent false199

alarms when optimizing with the CW loss. We attribute this to the highly localized, in-200

termittent nature of rainfall extremes and emphasize that - in view of the results for the201

other error metrics - the increased number of false positives is more than balanced by202

the increased number of true positives. The DNN trained with the combined weight (CW)203

introduced above leads to substantial improvements also for the spatial patterns of ex-204

tremes, in particular for regions with stronger extreme rainfall events (Figure 3).205

4 Discussion206

We introduced a DNN to model rainfall extremes from short-range numerical weather207

ensemble forecasts. To address the strong statistical imbalance of the training data, a208

loss function is introduced that combines a weighted MSE with a structural similarity209

measure. The proposed combined loss function (CW) is found to substantially improve210

the training with respect to extremes compared to using the MSE and MS-SSIM indi-211

vidually, which are two commonly used loss functions. For comparison, we show that post-212

processing the IFS mean with a ridge regression model does not lead to any improve-213

ments. This motivates the importance of a non-linear DNN architecture such as the U-214

–6–
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Figure 2. Relative rainfall frequencies and categorical extreme rainfall forecast scores for the

different post-processing models compared to the IFS. Histograms of three-hourly rainfall event

magnitudes are shown on a linear y-axis (a) and a logarithmic y-axis (b) for TRMM (black),

IFS (blue), ridge regression (orange), DNN trained with the MSE loss (green), the MS-SSIM loss

(purple) and the CW loss (red). (c) The Heidke Skill Score (HSS) for events above increasing

percentile thresholds is shown for the IFS (blue), ridge regression (orange), DNN trained with

the MSE loss (green), the MS-SSIM loss (purple), and with the CW loss proposed here (red). A

HSS greater than zero implies an improvement over a random forecast, and HSS = 1 would imply

a perfect forecast (see supporting information). (d) The relative improvement of the different

machine learning methods over the IFS mean, in percentages.

Table 2. Event-based forecast skill scores for rainfall events above the 95th percentile. The

percentage columns give the relative improvement over the IFS mean for each error metric and

skill score.

Model Loss HSS % F1 % CSI % POD % FAR %

IFS - 0.067 - 0.069 - 0.036 - 0.041 - 0.778 -

Ridge Regr. MSE 0.040 -40 0.041 -41 0.021 -42 0.022 -46 0.775 0

DNN MSE 0.113 69 0.115 67 0.061 69 0.066 61 0.567 27

DNN MS-SSIM 0.174 160 0.177 157 0.097 169 0.115 180 0.622 20

DNN CW 0.192 187 0.195 183 0.108 200 0.139 239 0.673 13
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Figure 3. Spatial distribution of the 95th rainfall percentile and HSS for events above the

95th percentile. (a) The 95th percentile of the rainfall distribution at each grid cell of the TRMM

dataset. (b) The spatially resolved HSS for the IFS mean. (c) The spatially resolved HSS for

the DNN post-processed forecast, trained with the proposed CW loss. Hatched areas indicate

grid-cells where the HSS could not be evaluated because no extreme events occurred in these

locations.
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Net. Moreover, our results suggest that the U-Net architecture is indeed capable of cap-215

turing the multi-scale spatial structure of rainfall accurately.216

The CW loss substantially improves relative rainfall frequencies in the DNN out-217

put, the mean error and structural similarity of overall rainfall fields, as well as categor-218

ical skill scores for extreme events above the 90th and higher percentile, with strongly219

increasing rate of improvement for higher thresholds.220

Taking the mean of the IFS ensemble is expected to damp the extremes in the fore-221

cast. Hence, the results of the IFS shown here do not represent the skill of single ensem-222

ble members to forecast extremes. Nevertheless, our results demonstrate the ability of223

the proposed DNN architecture to learn extremes that are not resolved in the input fea-224

tures, and to substantially improve their prediction.225

Interestingly, the error statistics did not change significantly when rainfall was ex-226

cluded and only the vertical wind speed were considered as input features. This indicates227

that the DNN can learn a good representation of rainfall and especially its extremes from228

the vertical velocity alone.229

Similarly surprising is the improved structural similarity when using the CW loss,230

compared to using the MS-SSIM alone as loss function. Although the considered fore-231

cast has a high temporal resolution of three hours, the forecast lead time of up to twelve232

hours is still comparably short. With applications to disaster prevention in mind, an ex-233

tension of the study to longer forecast lead times will be an important direction for fu-234

ture research. Further, making use of the entire IFS ensemble will allow to incorporate235

uncertainties into the framework that are essential for operational forecasting of extreme236

events.237
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Text S1. The root mean square error (RMSE) and mean error (ME) are defined as,

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (1)

ME =
1

N

N∑
i=1

(ŷi − yi), (2)

where N is the number of training examples, y is the TRMM target and ŷ is the modelled

rainfall output. The multi-scale structural similarity measure (MS-SSIM)(Wang et al.,

2003) quantifies the structural similarity between two images, in our case two spatial rain-
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fall maps, as sets of N grid-cells, i.e. y = {yi|i = 1, 2, ..., N} and ŷ = {ŷi|i = 1, 2, ..., N}.

The MS-SSIM then iteratively computes three measures, for luminance l(y, ŷ), contrast

c(y, ŷ) and structure s(y, ŷ) by successively downsampling and low-pass filtering the im-

age signals. The three measures are defined as

l(y, ŷ) =
2µyµŷ + C1

µ2
y + µ2

ŷ + C1

, (3)

c(y, ŷ) =
2σyσŷ + C2

σ2
y + σ2

ŷ + C2

, (4)

s(y, ŷ) =
σyŷ + C3

σyσŷ + C3

, (5)

where µy is the mean, σy the standard deviation of y and σy,ŷ the covariance of y and ŷ.

The small constants C1, C2, and C3 are inlcuded to improve the stability. The MS-SSIM

can then be written as,

MS-SSIM(y, ŷ) = [lM(y, ŷ)]αM ·
M∏
j=1

[cj(y, ŷ)]βj · [sj(y, ŷ)]γj , (6)

where M denotes the number downsampling iterations. The exponents αM , βj and γj

can be adjusted to give different weights to the measures, but are set to αj = βj = γj.

The complex wavelet structural similarity (CW-SSIM)(Sampat et al., 2009), extends the

idea of structural similarity to the complex wavelet domain. The motivation behind it is

that structural changes between two images, such as small rotations or translations will

lead to a constant relative phase shift in the coefficients of a complex wavelet transform.

Therefore, the CW-SSIM is constructed in such a way that it is insensitive to relative

phase shifts and magnitude distortions. On the other hand it is sensitive to non-structural

transformations in images, such as changes in sharpness, that will lead to phase shifts in

the coefficients. The CW-SSIM is defined as

CW-SSIM(cy, cŷ) =
2|∑N

i=1 cy,ic
∗
ŷ,i|+ C∑N

i=1 |cy,i|2 +
∑N
i=1 |cŷ,i|2 + C

, (7)
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where cy = {cy,i|i = 1, 2, ..., N} and cŷ = {cŷ,i|i = 1, 2, ..., N} are two sets of complex

wavelet coefficients obtained at the same spatial location and wavelet subbands of the

two images being compared. The asterix denotes the complex conjugate and C is a small

constant for stability.

Text S2. We quantify the forecast skill of extreme events with categorical skill scores

commonly used in meteorology and machine learning, such as the critical success index

(CSI), probability of detection (POD), false alarm ratio (FAR), F1 and Heidke skill score

(HSS). These skill scores can be computed from the contingency table (see Table S1).

The table classifies event forecast outcomes into true positives (TP), false positives (FP),

false negatives (FN) and true negatives (TN). Based on these categories, the skill scores

can be defined as

Recall =
TP

TP + FN
,

Precision =
TP

TP + FP
,

F1 = 2
Precision Precision

Precision + Precision
,

HSS =
2(TP TN− FP FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
,

CSI =
TP

TP + FN + FP
,

POD = Recall,

FAR =
FP

FP + TP
.

The recall score computes the proportion of relevant events that were classified correctly

and precision gives the fraction of positive classifications that were correct. The F1 score

combines precision and recall as a harmonic mean and is commonly used in machine

learning to evaluate predictions on strongly imbalanced data. The Heidke Skill Score
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(HSS) evaluates the accuracy of event predictions, e.g. rainfall extremes, relative to a

random forecast and can also be used for strongly imbalanced classes. The critical success

(CSI) relates the accuracy of event predictions to the actually observed events, without

accounting for correct negative predictions. The probability of detection (POD) and

false alarm ratio (FAR) scores should be assessed together, where the former is defined

identically to the recall score. Since POD ignores false alarms, the false alarms ratio

(FAR) can be used to evaluate these.
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Figure S1. The critical success index (CSI) for rainfall events above the 75th percentile

threshold.
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Figure S2. The probability of detection (POD) of rainfall events above the 75th percentile

threshold.
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Figure S3. The false alarm ratio (FAR) of rainfall events above the 75th percentile threshold.
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Figure S4. The F1 score for rainfall events above the 75th percentile threshold.
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Figure S5. The histograms of grid-cell values show here are computed over the entire part of

the globe covered by the TRMM data (50◦S to 50◦N) and for single years. The histograms of

years before 2015 are colored in red and for years thereafter in blue.

Table S1. Contingency table of forecast outcomes for binary events.

Observed Not observed
Forecasted True positive (TP) False positive (FP)
Not forecasted False negative (FN) True negative (TN)
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