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Abstract

Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric com-

position. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a

fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emit-

ted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these

methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing mea-

surements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ)

campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate

and compare emission rates at an exceptionally high resolution using three separate approaches: top-down, bottom-up, and

a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these

high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We

uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single

approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited

weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the

low resolution global inventories and the high resolution approaches is likely caused by high levels of uncertainty in essential

variables used in bottom-up inventories and imperfect assumptions in top-down inventories.
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Key Points: 22 

• In situ measurements of wildland fire smoke plumes provide emission rates for 23 
evaluating emissions inventories at unprecedented resolution  24 

• Fire emissions inventories struggle to capture the emissions rate characteristics of 25 
individual fires but may perform well in the aggregate 26 

• Bottom-up inventories suffer from major uncertainty in key variables, while top-down 27 
inventories may have bias from imperfect assumptions  28 
  29 
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Abstract  30 
Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air 31 
quality and atmospheric composition. Two traditional approaches are widely used to calculate 32 
fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. 33 
However, these methods often considerably disagree on the amount of particulate mass emitted 34 
from fires. Previously available observational datasets tended to be sparse, and lacked the 35 
statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive 36 
and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the 37 
recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) 38 
campaign to statistically assess the skill of the two traditional approaches. We use detailed 39 
campaign observations to calculate and compare emission rates at an exceptionally high 40 
resolution using three separate approaches: top-down, bottom-up, and a novel approach based 41 
entirely on integrated airborne in situ measurements. We then compute the daily average of these 42 
high-resolution estimates and compare with estimates from lower resolution, global top-down 43 
and bottom-up inventories. We uncover strong, linear relationships between all of the high-44 
resolution emission rate estimates in aggregate, however no single approach is capable of 45 
capturing the emission characteristics of every fire. Global inventory emission rate estimates 46 
exhibited weaker correlations with the high-resolution approaches and displayed evidence of 47 
systematic bias. The disparity between the low resolution global inventories and the high 48 
resolution approaches is likely caused by high levels of uncertainty in essential variables used in 49 
bottom-up inventories and imperfect assumptions in top-down inventories. 50 

Plain Language Summary 51 
Smoke emitted by wildland fires is dangerous to human health and contributes to climate change. 52 
To predict and evaluate the impacts of fires, we need to know how much smoke is emitted into 53 
the atmosphere. There are two state-of-the-art methods used to estimate the mass of smoke 54 
emitted by fires, but they often disagree. In this study, we use unusually detailed measurements 55 
collected using an aircraft that flew within wildland fire smoke plumes to calculate the amount of 56 
smoke emitted from fires in the Western United States. We compare emission rates derived from 57 
the exceptionally high spatial and temporal resolution approach to the two traditional, lower 58 
resolution approaches to understand why they sometimes diverge. 59 

1 Introduction 60 
Wildland fires can be dangerous, destructive forces of nature that degrade air quality and 61 

threaten human health and infrastructure (Larsen et al., 2018). However, fires are also a naturally 62 
occurring disturbance needed to maintain the health and biodiversity of many ecosystems 63 
(Goldammer et al., 2008; Weaver, 1974). In the Western United States, the natural fire cycle has 64 
been completely disrupted and distorted by human interference (Fusco et al., 2016; Harvey, 65 
2016), where large increases in fire size and occurrence are transpiring because of a buildup of 66 
fuels caused by historically excessive fire suppression, increased settlement in the wildland 67 
urban interface, and more favorable fire weather conditions (Abatzoglou & Williams, 2016; 68 
Dennison et al., 2014; Mell et al., 2010; Stavros et al., 2014; Stephens & Ruth, 2005; Theobald 69 
& Romme, 2007; Westerling et al., 2003). There is a need for balance between reducing the 70 
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hazards of wildland fires while maintaining forest health under the influence of a changing 71 
climate. 72 

Unless we can better understand and predict the deleterious impacts of wildland fire 73 
smoke emissions on air quality and human health, it will be nearly impossible for society to 74 
respond and adapt to this evolving and complex system. Informed land management policy that 75 
utilizes prescribed fires to reduce fuel buildup and reinvigorate ecosystems in order to ultimately 76 
minimize smoke exposure for downwind communities necessitates the ability to quantify the 77 
composition, magnitude, and transport of smoke (Noss et al., 2006; Schweizer et al., 2018). In 78 
the case of accidental or uncontrolled wildfires, the capability to accurately predict smoke 79 
transport is necessary to alert sensitive populations and mitigate the overall impact of smoke on 80 
human health (Larkin et al., 2009; McKenzie et al., 2006). Atmospheric models rely entirely on 81 
geospatial databases of fire locations and estimated emissions (so-called fire emissions 82 
inventories) to represent the contribution of fire emissions to downwind atmospheric 83 
composition (Wiedinmyer et al., 2006). Two distinct approaches are traditionally used to create 84 
these emissions inventories: a fuels-based bottom-up approach and a satellite-based top-down 85 
approach (Seiler & Crutzen, 1980; Wooster et al., 2005).  86 

The bottom-up approach calculates the mass of carbon emitted by a fire as the product of 87 
burned area, fuel mass per unit area, the carbon fraction of fuel, and combustion completeness 88 
(Seiler & Crutzen, 1980). This approach, also known as the carbon mass balance method, 89 
operates under the explicit assumption that all burnt biomass carbon is volatilized and emitted to 90 
the atmosphere (Ward & Radke, 1993). Although a fuels-based approach is the key feature of 91 
bottom-up algorithms, most also rely on remote sensing observations from satellite sensors such 92 
as the Moderate Resolution Imaging Spectroradiometer (MODIS) or Visible Infrared Imaging 93 
Radiometer Suite (VIIRS) to determine burned area. Burned area can be calculated using active 94 
fire detections, by assuming the entire landscape captured in the resolution of a single satellite 95 
pixel burned, or burned area can be taken directly from higher level data products (Kaiser et al., 96 
2012; van der Werf et al., 2017; Wiedinmyer et al., 2011). Fuel mass per unit area is often 97 
derived from either a biogeochemical model initialized with satellite observations and/or from 98 
labor intensive fuel databases of fuel type and loading (McKenzie et al., 2012; Pettinari & 99 
Chuvieco, 2016; Sandberg et al., 2001; van der Werf et al., 2017). Fuel carbon content is often 100 
assumed based on laboratory measurements from previous studies or estimated using the sum of 101 
CO2, CO, and CH4 emission factors (Akagi et al., 2011; McMeeking et al., 2009; Santín et al., 102 
2015; Susott et al., 1991; van der Werf et al., 2017; Yokelson et al., 1997). Combustion 103 
completeness is calculated as a function of changes in visual landscape characteristics, reduction 104 
in fuel moisture, increase in summer land surface temperature, tree cover, and/or daily fire 105 
weather indices (Kaiser et al., 2012; van der Werf et al., 2017; Wiedinmyer et al., 2011).  106 

The bottom-up approach requires an ecosystem-specific emission factor to convert total 107 
carbon mass emissions to emissions of a particular trace gas or aerosol species (Akagi et al., 108 
2011; Andreae & Merlet, 2001). Emission factors are often attained from compilations of 109 
previous studies categorized by fuel or vegetation type and show a wide range of natural 110 
variability depending on the exact composition of fuel being burned and combustion conditions. 111 
Certain species, including many volatile organic compounds (VOCs) and aerosols, rapidly 112 
evolve in the atmosphere following emission, which necessitates emission factor estimates 113 
derived only from measurements of young, fresh smoke. There are numerous particulate mass 114 
(PM) emission factors published from ground and laboratory based studies, however in situ 115 
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airborne measurements of PM emission factors for Western US wildland fires are particularly 116 
scarce (Akagi et al., 2011). 117 

The top-down approach follows from Wooster et al. (2005), who showed that the burning 118 
of dry vegetation yields the same amount of energy, regardless of fuel type. Top-down 119 
inventories assume fire radiative power (FRP) observations from satellite remote sensing can be 120 
used as a direct measurement of the amount of biomass consumed in a fire in an effort to bypass 121 
the latency and uncertainty associated with variables required in bottom-up style inventories 122 
(Ichoku & Kaufman, 2005). In the top-down approach, FRP is multiplied by a predetermined 123 
coefficient, known as a smoke emission coefficient (Ce), to calculate fire emission rates of PM. 124 
Smoke emission coefficients are constants derived for individual ecosystems by combining 125 
multiple years of aerosol optical depth (AOD) remote sensing observations with a mass 126 
extinction efficiency (MEE), a constant that relates particle extinction to particle mass (Giglio et 127 
al., 2006; Ichoku et al., 2008; Kaiser et al., 2012). Ichoku et al. (2008) demonstrated that the 128 
relationship between fire radiative energy (FRE), or temporally integrated FRP, and the emission 129 
rate of PM could be quantified using AOD during a controlled laboratory-based experiment. The 130 
smoke emission coefficient determined from the laboratory-based experiment agrees with 131 
independent estimates derived from satellite measurements of FRP and AOD measured over 132 
large-scale wildfires, which leads to the assumption that this approach can be extrapolated to 133 
global scale observations of FRP and AOD. 134 

There are dozens of top-down and bottom-up emissions inventories available for use in 135 
atmospheric transport models. These inventories encompass wide ranges of spatial and temporal 136 
scales and can be used to account for hundreds of individual pollutants emitted by fires 137 
(Darmenov & da Silva, 2013; Ichoku & Ellison, 2014; Kaiser et al., 2009; Mota & Wooster, 138 
2018; van der Werf et al., 2017; Wiedinmyer et al., 2011). The choice of which inventory to use 139 
in modeling applications is crucial, because different fire emissions inventories can profoundly 140 
disagree on the magnitude, composition, and temporal variability of fire emissions, especially 141 
PM (Carter et al., 2020; Larkin et al., 2014;  Liu et al., 2020; Pan et al., 2020). The underlying 142 
cause of the disagreement is difficult to isolate, but could be an artifact of the various 143 
assumptions used in each inventory. Most global emissions inventories are plagued with high 144 
levels of uncertainty stemming from the individual datasets used to calculate emissions, which 145 
further complicates the ability to isolate the cause of the discrepancies among inventories 146 
(French et al., 2004; Urbanski et al., 2011; Wiedinmyer et al., 2011). For example, the detection 147 
and quantification of active fire locations, FRP, and AOD using satellite remote sensing suffers 148 
from the obscuration of the land surface by clouds or thick smoke, limited spatiotemporal 149 
coverage or resolution, and instrument detection limits. 150 

It is fundamentally challenging to correctly quantify biomass burning emissions due to 151 
the highly variable composition and structure of the fuels that fires consume, and because fires 152 
can rapidly change their behavior in response to dynamic meteorological or environmental 153 
conditions (Kennedy et al., 2020; Liu, 2004; Schultz et al., 2008). The datasets used in global fire 154 
emissions inventories attempt to capture these dynamics, but they often lack the spatial and 155 
temporal resolution needed to fully encapsulate all of the individual components that influence 156 
emissions. Intensive in situ measurements of smoke from the joint NASA/NOAA Fire Influence 157 
on Regional to Global Environments and Air Quality (FIREX-AQ) campaign that was conducted 158 
during the summer of 2019 provide a unique opportunity to evaluate the assumptions and 159 
uncertainties in both top-down and bottom-up approaches for calculating fire emissions. During 160 
FIREX-AQ, the NASA DC-8 aircraft was outfitted with a comprehensive instrument payload 161 
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that sampled smoke plumes from Western US wildland fires and Southeastern US prescribed and 162 
agricultural fires. The plume sampling strategy for the western portion of the campaign consisted 163 
of an above-plume, longitudinal run along the entire length of the plume to allow for nadir-164 
pointing remote sensing of the smoke followed by a set of plume transects perpendicular to the 165 
direction of smoke transport where the aircraft sampled the plume in situ during a series of 166 
sequentially-downwind, cross-sectional passes (Wiggins et al., 2020).  167 

Measurements collected during FIREX-AQ provide the opportunity for a rare direct 168 
comparison and evaluation of the traditional, lower resolution approaches to calculate fire 169 
emissions at an unusually high spatial and temporal resolution. In this study, we calculate fire 170 
total carbon and total PM emission rates from Western US wildland fires sampled during 171 
FIREX-AQ using a novel, independent approach based on in situ smoke plume measurements. 172 
Here, we integrate in situ trace gas and aerosol measurements with information on plume 173 
thickness gleaned from airborne High-Spectral Resolution Lidar (HSRL) measurements to 174 
calculate emission rates. Although this new approach is subject to its own uncertainties and 175 
sources of error, we assume emission rate estimates derived from this approach are as close to 176 
accurate as we can realistically achieve, because they are based on in situ measurements, and 177 
their calculation doesn’t require as many strong assumptions as the more traditional approaches. 178 
We further capitalize on FIREX-AQ data to calculate fire emission rates using a high-resolution 179 
top-down approach and a high-resolution bottom-up approach. The high-resolution top-down 180 
approach (referred to as HSRL-GOES) uses airborne HSRL measurements of particle extinction 181 
instead of satellite observations of AOD, and the high-resolution bottom-up approach (referred to 182 
as Fuel2Fire) uses carbon emission estimates from the newly-developed Fuel2Fire carbon 183 
emissions inventory that has been developed and optimized specifically to estimate emissions 184 
from the fires sampled during FIREX-AQ. We also obtain emission rates from a traditional 185 
bottom-up fire emissions inventory, Global Fire Emissions Database (GFED4.1s), and a 186 
traditional top-down fire emissions inventory, Fire Energetics and Emissions Research 187 
(FEERv1.0). GFED and FEER have much lower temporal and spatial resolutions (3-hr/daily, 188 
0.25° and daily, 0.1° respectively) compared to the three high-resolution FIREX-AQ based 189 
approaches. We evaluate the performance of GFED and FEER, along with the high-resolution 190 
approaches, against the in situ measurement based approach to investigate potential bias and 191 
assess the validity of the assumptions unique to each approach (Figure 1). We also investigate 192 
and quantify uncertainty for all of the approaches used to calculate emission rates in this study. 193 
The goal of this paper is to understand how the estimates of total carbon and PM emission rates 194 
from traditional, lower resolution methods compare to the high-resolution estimates available for 195 
the fires sampled during the FIREX-AQ campaign. The results of this analysis should be of keen 196 
interest for the global wildfire emissions inventory community as well as atmospheric scientists 197 
seeking to use airborne observations to constrain wildland fire aerosol emissions. 198 

2 Methods 199 

2.1 Emission Rate Estimates from Global Inventories 200 

2.1.1 GFED4.1s (Low-Resolution Bottom-up) 201 

GFED is a global fire emissions inventory that internally calculates carbon emission rates 202 
using a traditional bottom-up approach as follows  203 
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																																												E! = BA × FL × CC × F!                                  (1) 204 
where EC is the carbon mass emission rate, BA is the burned area, FL is the fuel mass loading 205 
per area, CC is the combustion completeness (expressed as a percent), and FC is the mass fraction 206 
of carbon in the fuel (van der Werf et al., 2017). GFED obtains burned area estimates from 207 
MODIS (MCD64A1), fuel loading and combustion completeness are derived from the Carnegie-208 
Ames-Stanford Approach (CASA) biogeochemical model, and carbon mass fraction is defined 209 
per ecosystem from compilations of previous studies (Akagi et al., 2011; Andreae & Merlet, 210 
2001; van der Werf et al., 2017). 211 

To represent a traditional bottom-up approach, we use daily average carbon emission 212 
rates per area from GFED4.1s (https://www.globalfiredata.org/) to calculate daily average PM 213 
emission rates (EPM) for the western fires sampled during FIREX-AQ as follows  214 

																																																										E"# = EF"# × ∑
$%!×'P,GFED	

)(
                                  (2) 215 

where EFPM is the total particulate matter mass emission factor suggested by GFED for 216 
temperate forests (17.6 gPM kg-biomass consumed-1), 𝐸,*  is the area-normalized daily carbon 217 
emissions in each GFED pixel, AP,GFED is the GFED pixel area (0.25° x 0.25°), and the 218 
summation is carried out over all GFED pixels within 0.25° of the centroid of the final United 219 
States Geological Survey Geospatial Multi-Agency Coordination (GeoMAC) fire perimeter for 220 
each fire. In Equation 2, we use the FC suggested by GFED for temperate forests (0.489 kgC kg-221 
biomass consumed-1). The use of ecosystem level constant values for EFPM and FC is intended to 222 
provide good results in aggregate on the regional-to-global scales required by models, although 223 
individual fires will deviate from these specifications. GFED data is provided on a daily and a 3-224 
hr basis in UTC time, and here we use the daily product. We convert from UTC time to local 225 
time by assuming daily emissions (local time) are equal to 75% of the emissions from the day a 226 
given fire was sampled by the DC-8 aircraft (local time) plus 25% of the emissions from the day 227 
after (local time). 228 
 We estimate relative uncertainty in EC and EPM estimates derived from GFED by 229 
propagating uncertainty through equation 1 and equation 2. For equation 1, we assume the 230 
following relative uncertainties: BA = 44%, FL = 111%, CC = 11%, and FC = 10%. For equation 231 
2, we assume EFPM has a relative uncertainty of 36% and EC has a relative uncertainty calculated 232 
by propagating uncertainty through equation 1. We obtain the relative uncertainty in the BA 233 
product used by GFED from an analysis of MODIS burned area by Giglio et al. (2018). FL and 234 
CC relative uncertainty are derived by taking the standard deviation divided by the average for 235 
all field measurements of Western US fuels as compiled by van Leeuwen et al. (2014) and 236 
updated by van der Werf et al. (2017). FC relative uncertainty is defined as the standard deviation 237 
divided by the average in FC values given by Akagi et al. (2011). The relative uncertainty in 238 
EFPM is calculated as the standard deviation divided by the average of EFPM derived from all 239 
previous studies of temperate forest EFPM measurements used in GFED (Akagi et al., 2011; 240 
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Andreae and Merlet, 2001; van der Werf et al. 2017). The calculated relative uncertainty in 241 
GFED EPM is 126% and EC is 120% (Supplementary Table S1). 242 

2.1.2 FEERv1.0 (Low-Resolution Top-down)  243 
FEER is a global fire emissions inventory that calculates daily average EPM using a 244 

traditional top-down approach as  245 

																																																																		E"# = C+ × FRP                                  (3) 246 
where Ce is an ecosystem-dependent predetermined smoke emission coefficient, and FRP 247 
observations are from MODIS. FEER derives Ce using multiple years of coupled MODIS AOD 248 
at 550nm and FRP observations and an assumed constant MEE at 550nm of 4.6 m2 g-1 derived 249 
from previous studies (Reid et al., 2005b). Smoke emission coefficients have been predetermined 250 
by FEER and are provided globally at a 1° x 1° resolution 251 
(https://feer.gsfc.nasa.gov/projects/emissions/) (Ichoku & Ellison, 2014). 252 

Daily average EPM estimates are provided at a 0.1° x 0.1° resolution through a coupling 253 
of FEER smoke emission coefficients and MODIS FRP observations (FEERv1.0-G1.2). For the 254 
traditional top-down approach, we calculate daily average EPM estimates for each of the western 255 
fires sampled during FIREX-AQ as  256 

																																																												E"# = ∑E/"#)**+ × AP,FEER                      (4) 257 

where E/"#,--. is the area-normalized daily average EPM from each FEER pixel, and AP,FEER is 258 
the FEER grid cell area (0.1° x 0.1°). The summation is over all FEER grid cells per fire. FEER 259 
grid cells are included if they are within 0.1° of the centroid of the final GeoMAC fire perimeter 260 
for each fire. We convert from UTC time to local time following the same approach described in 261 
section 2.1.1. We also calculate the average FEER Ce for the fires sampled during the western 262 
portion of the FIREX-AQ campaign as the average of all Ce estimates in every 1° grid cell that 263 
encompassed at least a fraction of the final GeoMAC perimeter of a fire. 264 
 We estimate relative uncertainty in FEER EPM estimates by propagating uncertainty 265 
through equation 3. We calculate the relative uncertainty of Ce as the standard deviation divided 266 
by the mean of all extracted FEER Ce values used in this analysis, and we obtain the relative 267 
uncertainty of MODIS FRP from Freeborn et al. (2014). FEER Ce for Western US wildland fires 268 
has a relative uncertainty of 73% and FRP has a relative uncertainty of 27%, yielding a relative 269 
uncertainty in FEER EPM of 78% (Supplementary Table S1). 270 

2.2 Emission Rate Estimates from FIREX-AQ  271 

2.2.1 In Situ Measurement Approach (High-Resolution) 272 
 We capitalize on the intensive, high spatial and temporal resolution smoke plume 273 
measurements from the DC-8 aircraft during FIREX-AQ to calculate EC and EPM via a novel in 274 
situ measurement-driven approach. We assume fire emission rates over time are equal to the flux 275 
of smoke as it passes through a vertical slice of the smoke plume, represented as an HSRL 276 



manuscript prepared for Journal of Geophysical Research - Atmospheres 

curtain measured during in situ transects (Figure 1). We calculate EC and EPM for each wildland 277 
fire sampled during FIREX-AQ on a sub-plume (per transect) basis as  278 

																																																E1 = WS2222 × GS2222 × ∑ ∆X2 × H2∆t
2/01
223453                      (5) 279 

where Ex is the emission rate of species X (either carbon or PM), WS2222 is the transect average wind 280 
speed, GS2222 is the transect average ground speed, ∆X2 is the excess concentration of species X 281 
averaged over 10 second intervals to match the horizontal resolution of the HSRL data collected 282 
at aircraft measurement time t, and Ht (m) is the plume thickness measured by the nadir and 283 
zenith pointing HSRL profiles at aircraft measurement time t (Hair et al., 2008). This approach 284 
assumes that the vertical distribution of each species is uniform, and the lidar is used to find the 285 
vertical extent of the plume.  Excess concentrations are calculated by subtracting a background 286 
concentration defined as the average concentration 5-10 seconds prior to the start of the transect 287 
and 5-10 seconds after the end of the transect. In a few cases, the PM background is elevated 288 
during the time interval used to define a background such that the excess mixing ratio is 289 
computed as a negative value, and these cases are excluded from the analysis. The time interval 290 
from tstart to tend is equal to the length of time to complete each transect, and ∆t is ~10 seconds, 291 
which is the horizontal resolution of the HSRL data. Ht is calculated as the sum of HSRL profile 292 
bin heights (∆z2) where the particle backscatter coefficient (β2) is greater than 1 km-1 sr-1, which 293 
was larger than the average background scattering and defined the smoke plume edges for the 294 
cases sampled. 295 

																																																		H2 = ∑ ∆z2[β2 > 1	km-1		sr-1]345
346 	             (6) 296 

In exceptionally dense smoke plumes, the HSRL laser light was fully attenuated before it 297 
could completely pass through the smoke plume edge, and for these cases we assume the smoke 298 
plume extended to the surface and neglect the missing portion of the plume above the aircraft. 299 
This approach is reasonable as the aircraft tended to sample the smoke plumes near the top of the 300 
atmospheric boundary layer, which places a weak upper constraint on the top of the plume just as 301 
the surface places a lower constraint on boundary layer mixing processes. An alternative 302 
approach to calculate plume thickness using HSRL observations leverages the ratio of the 303 
backscatter coefficient in a single HSRL bin to the sum of all backscatter coefficients in a 304 
vertical column. We estimate the sensitivity of plume thickness to these two approaches and 305 
discover strong agreement (slope = 0.72, r = 0.83), although the alternative approach estimates 306 
slightly lower plume thickness on average (Figure S1). We ultimately choose the approach to 307 
calculate plume thickness as outlined in equation 6 in an effort to avoid additional uncertainty 308 
from relying more heavily on the backscatter coefficient, which may be confounded by changes 309 
in aerosol size and/or optical properties rather than mass loading. 310 

Total PM is calculated as the sum of organic aerosol (OA), sulfate, nitrate, ammonium, 311 
and black carbon aerosol (BC) reported at standard temperature and pressure conditions and 312 
converted to ambient volumetric units. The 50% geometric transmission diameter for the AMS is 313 
approximately 600nm, which sufficiently captures the size range for the majority of biomass 314 
burning derived particles, with the exception of supermicron ash particles (Adachi et al., 2021; 315 
Moore et al., 2021). All components of the submicron non-refractory total PM concentrations are 316 
measured using an Aerodyne Time of Flight Aerosol Mass Spectrometer (ToF-AMS) 317 
(Canagaratna et al., 2007; DeCarlo et al., 2006; Guo et al., 2021) . Refractory BC mass 318 
concentrations are provided by a Single Particle Soot Photometer (SP2, Droplet Measurement 319 
Technologies). Total carbon is calculated as the sum of CO2, CO, CH4, organic carbonaceous 320 
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aerosol (OC), and BC aerosol. OC is estimated using the OA to OC ratio provided by the ToF-321 
AMS. The CO2 mixing ratio measurements are obtained using a non‐dispersive infrared (IR) 322 
spectrometer (LICOR, Inc. Model 7000) adapted for aircraft measurements in a method similar 323 
to Vay et al. (2003), while CO and CH4 mixing ratios are obtained from mid‐IR laser absorption 324 
spectrometry (Sachse et al., 1991). All three trace gas species were calibrated in‐flight with 325 
standards from the National Oceanic and Atmospheric Administration Earth Science Research 326 
Laboratories (NOAA ESRL) traceable to World Meteorological Organization (WMO) scales. 327 
The trace gas measurements were converted from mole fractions to ambient volumetric units by 328 
multiplying the mixing ratio by the ratio of the molecular weight to the molecular volume at 329 
ambient temperature and pressure conditions.  330 

We estimate relative uncertainty in EC and EPM using equations 5 and 6. We calculate the 331 
following relative uncertainties: WS = 20%, GS = 3%, Ht = 28%, DC = 56%, and DPM = 67%. 332 
The relative uncertainty for each variable is assumed to be equal to the mean divided by the 333 
standard deviation of observations collected during all smoke plume transects. The computed 334 
relative uncertainty in EC is 66% and the relative uncertainty in EPM is 75% (Supplementary 335 
Table S1).  336 

2.2.2 Fuel2Fire (High-Resolution Bottom-up) 337 
EC estimates for all FIREX-AQ wildland fires derived using a bottom-up style approach 338 

are publicly available on the FIREX-AQ data archive 339 
(https://doi.org/10.5067/SUBORBITAL/FIREXAQ2019/DATA001). This dataset, the Fuel2Fire 340 
carbon emissions inventory, is optimized and designed to estimate carbon emissions specifically 341 
for the fires sampled during FIREX-AQ. We use Fuel2Fire EC estimates for the high-resolution 342 
bottom-up approach to estimate EC and EPM on a per transect basis for each of the fires included 343 
in this analysis. As a bottom-up inventory, Fuel2Fire calculates EC in the same way as GFED, 344 
following equation 1. The Fuel2Fire emissions inventory derives burned area using a 345 
combination of active fire detections from MODIS, VIIRS, and/or Geostationary Operational 346 
Environment Satellite Program (GOES-16 and 17 ABI L2 +). Active fire pixels from one or 347 
more of these active fire detection products are selected to best match ground-verified 348 
interagency situational reports from fire management teams, as well as GeoMAC fire perimeters. 349 
Fuel2Fire determines fuel loading using ultra high-resolution (30 meter) fuels data from the 350 
Fuels Characteristics and Classification System (FCCS) and models combustion completeness as 351 
a function of daily fire weather danger ratings. Total daily carbon emissions are temporally 352 
distributed using a diurnal cycle of fire activity derived from geostationary satellite observations 353 
of FRP from GOES-16 and 17. Fuel2Fire assumes FC is 0.5 kg kg-1 (McMeeking et al., 2009; 354 
Santín et al., 2015; Yokelson et al., 1997). The archived carbon emissions data has a native 355 
temporal resolution that matches GOES-16 and 17 data (5 minutes) and is linearly interpolated to 356 
1 Hz data for consistency with the aircraft data. EC estimates from Fuel2Fire extend over the 357 
course of an entire 24-hour day (local time) that a given fire was sampled during FIREX-AQ. 358 

We convert EC estimates from the Fuel2Fire inventory to EPM as follows 359 

        E"# = $!×	$)67
)C

                                                    (7) 360 

Here, we obtain EC from the Fuel2Fire inventory, while EFPM is calculated using aircraft 361 
observations. We choose to calculate EFPM from in situ observations as opposed to assuming 362 
EFPM from a compilation of previous studies in order to investigate the potential influence of the 363 
choice in EFPM on differences in emission rate estimates. FC is assumed to be 0.5 kgC kg-fuel-1, 364 
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but we note FC can vary from 0.35-0.55 (Akagi et al., 2011; Burling et al., 2010; McMeeking et 365 
al. 2009; Susott, 1996).  We calculate EFPM for each in situ smoke plume transect using airborne 366 
measurements following the carbon mass balance approach (Ward & Radke, 1993; Yokelson et 367 
al., 1996, 1999). Although the smoke age and, thus, probability of plume processing increases as 368 
a function of downwind distance from the fire, we assume PM is conserved over the relatively 369 
short period of time (0.5-7 hrs) that the smoke has been exposed to atmospheric aging processes 370 
when it was sampled by the DC-8 and attribute any changes in mass concentration to variability 371 
in fire activity (Garofalo et a., 2019; Hodshire et al., 2019). The time of emission is not the same 372 
as when the DC-8 sampled the plume, so we correct for this time offset by adding smoke age to 373 
the time of emission when determining the Fuel2Fire total carbon emission rates on a sub-plume, 374 
per transect basis. The smoke age is calculated for each point on the DC-8 transect assuming 375 
horizontal straight line advection of the smoke plume at the DC-8 measured wind speed 376 
(Wiggins et al., 2020).  377 

We estimate relative uncertainty in EC and EPM derived from Fuel2Fire by propagating 378 
uncertainty through equation 7. The relative uncertainty in EC is assumed to be 55%, calculated 379 
by taking the average divided by the standard deviation of all computed EC estimates for each 380 
fire and every transect included in this analysis. The relative uncertainty in EFPM is 39%, 381 
computed as the mean of all calculated EFPM for all fires divided by the standard deviation. The 382 
relative uncertainty in EPM is thus 67% (Supplementary Table S1).  383 

2.2.3 HSRL-GOES (High-Resolution Top-down) 384 
We use FIREX-AQ aircraft-based HSRL measurements of aerosol extinction and 385 

geostationary satellite observations of FRP from GOES to calculate EPM using a high-resolution 386 
top-down approach, referred to as HSRL-GOES. We use the same equation that is used in FEER 387 
(Equation 3) to calculate EPM for the western fires sampled during FIREX-AQ on a per transect 388 
basis for the high-resolution top-down approach. Instead of using MODIS FRP, we obtain FRP 389 
from the GOES‐16 and GOES‐17 ABI L2 + Fire/hot spot Detection and Characterization product 390 
from the Wildfire Automated Biomass Burning Algorithm processing system (Schmidt, 2019). 391 
GOES has an exceptionally high temporal resolution (~5-15 mins) with FRP observations that 392 
cover the entire continental US at a spatial resolution of 2km (Schmidt, 2019). We time align 393 
GOES FRP observations to match the in situ plume sampling time by adding the smoke age to 394 
the FRP observation time, and we include all FRP observations within 4km (the spatial 395 
resolution of GOES-16 and 17) of a given fire’s final GeoMAC perimeter centroid. FRP per 396 
transect is calculated as the sum of all instantaneous FRP observations for a given fire averaged 397 
over the in situ plume sampling time for a given transect. The smoke emission coefficient is also 398 
calculated for each fire on a per transect basis as follows: 399 

 400 

																																																		C+ =
7899999×:89999

#$$9999999×);"999999999 	× ∑ ∆AOT2	∆t
2/01
223453                                         (8)                                                      401 

 402 

where FRP<222222 is the time-aligned, transect-average GOES FRP,  MEE222222 is the transect average MEE 403 
calculated from in situ measurements as described below, and ∆AOT is aerosol optical thickness 404 
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derived from vertically integrating the background-subtracted 532nm HSRL particle extinction 405 
coefficient (∆α) as described by 406 

 407 

																																																																	∆AOT2 = 	 ∫ ∆α2∆z                     (9) 408 

 409 

HSRL is not able to collect measurements immediately above and below the aircraft. We linearly 410 
interpolated through the 60m aircraft gap in the HSRL curtains to account for the missing data. 411 
Background extinction is defined as the average HSRL extinction profile 10 sec before and after 412 
the smoke plume transect. In cases where the laser light fully attenuated before it reached the 413 
bottom of the plume, we assume the plume extended to the surface and extrapolate extinction to 414 
the ground using the closest measurement to the surface. In limited cases where the beam is 415 
completed attenuated in the zenith direction, we integrate over the measured range but do not add 416 
any correction as this is expected to be a relatively small contribution as the aircraft was typically 417 
flying near the top of the atmospheric boundary layer near plume top. We use the high-resolution 418 
in situ measurements from the DC-8 to calculate MEE; however, we note that most top-down 419 
inventories (such as FEER) assume a constant MEE of 4.6 m2 g-1 derived from previous studies. 420 
We calculate transect average MEE as the slope of an reduced major axis regression with a 421 
forced zero intercept between total PM and the dry aerosol extinction coefficient at 532nm for 422 
each transect. The extinction coefficient is calculated as the sum of dry scattering and absorption 423 
coefficients measured by a TSI-3563 Nephelometer at 550nm and a 3-wavelength Particle Soot 424 
Absorption Photometer at 532nm (PSAP, Radiance Research) respectively. Scattering 425 
coefficients are converted to 532nm to match the absorption coefficients using the angstrom 426 
exponent as calculated by the blue and green channels from the nephelometer. Scattering 427 
coefficients are corrected for truncation errors following Anderson and Ogren (1998), and PSAP 428 
absorption data are corrected following Virkkula et al. (2010). The aerosol extinction 429 
humidification factor, f(RH) is assumed to be unity, which is consistent with the FIREX-AQ in-430 
plume measurements. 431 
 We estimate the uncertainty in HSRL-GOES EPM by propagating uncertainty through 432 
equation 3, where the relative uncertainty in Ce derived following equation 8 is calculated as the 433 
mean Ce from all fires divided by the standard deviation (67%), and the relative uncertainty in 434 
FRP is assumed to be 40% (Li et al., 2020). The relative uncertainty in HSRL-GOES EPM is thus 435 
77% (Supplementary Table S1).  436 

2.3 Comparison of Approaches 437 
We summarize the approaches and relevant equations used in this study to calculate EC 438 

and EPM in Table 1. We evaluate emission rate estimates between the high-resolution bottom-up 439 
(Fuel2Fire) and top-down (HSRL-GOES) based approaches against the in situ approach on a per 440 
transect basis for individual wildland fires sampled during FIREX-AQ. The relationship between 441 
the different approaches is quantified using the slope of a reduced major axis regression with a 442 
forced zero intercept, a Pearson’s correlation coefficient, and root mean square error (RMSE). 443 
These calculations are performed as a campaign level summary that includes all transects and all 444 
fires and for each fire individually.  445 

We compare daily (24 hour local time) average EPM estimates from the three high 446 
resolution approaches (In Situ, Fuel2Fire, and HSRL-GOES) to daily average estimates derived 447 
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from lower resolution global fire emissions inventories (GFED and FEER). These comparisons 448 
are performed on daily average emission rate estimates, as opposed to estimates on a per transect 449 
basis, because of the lower temporal resolutions of GFED (3 hr/daily) and FEER (daily).  450 

2.4 Smoke Emission Coefficients 451 
The high spatial and temporal resolution of the in situ, bottom-up (Fuel2Fire), and top-452 

down (HSRL-GOES) based approaches provide the opportunity to evaluate smoke emission 453 
coefficients that are usually derived using many years of data. Smoke emission coefficients for 454 
PM are calculated as the slope of a reduced major axis regression with a forced zero intercept 455 
between GOES FRP time aligned to the transect sampling time versus EPM for each of the three 456 
high resolution approaches. These computations are also executed as a campaign level summary 457 
and for each fire individually. We compare our Ce from the high resolution approaches to the 458 
average FEER Ce for the western fires sampled during FIREX-AQ.  459 

3 Results and Discussion 460 

3.1 Total Carbon Emission Rates 461 
The derivation of the variables used to calculate EC using bottom-up approaches are 462 

based on assumptions that can lead to both under and overestimation, depending on the data 463 
products leveraged by a given fire emissions inventory. We uncover a significant relationship 464 
between EC per transect derived from the high-resolution bottom-up approach (Fuel2Fire) and 465 
the in situ approach as shown in Figure 2 (slope = 1.00, r = 0.82). However, there is also a non-466 
trivial level of scatter in this relationship (RMSE = 67%), and individual fires considered 467 
separately have different correlations and regression slopes.  468 

From Figure 3, we similarly find strong, linear correlations between daily fire average EC 469 
from the in situ measurement based estimates and Fuel2Fire (slope = 1.09, r = 0.92, RMSE = 470 
61%) and GFED (slope = 0.20, r = 0.87, RMSE = 132%). The daily average EC estimated using 471 
Fuel2Fire are marginally higher than estimates derived from the in situ approach, while the 472 
GFED estimates are 80% lower. The strong correlation, but significant offset between GFED and 473 
the in situ measurement based approach implies that there may be a systematic bias in one or 474 
more of the variables used to calculate the mass of biomass consumed in some traditional 475 
bottom-up inventories. In this section, we examine the assumptions and uncertainty in individual 476 
variables used to calculate EC using a bottom-up approach in an effort to understand the 477 
differences in EC estimates derived from Fuel2Fire and GFED relative to the in situ approach.  478 

3.1.1 Carbon Mass Balance 479 

The key assumption in a bottom-up approach is that all burnt carbon is volatilized and 480 
released into the atmosphere. This carbon mass balance assumption has recently been 481 
scrutinized, because not all fuel that has been thermally altered by a fire is emitted to the 482 
atmosphere (Santín et al., 2015; Surawski et al., 2016). Some of the burnt fuel remains on the 483 
ground as charred biomass. If the carbon mass balance assumption does not hold, then this could 484 
potentially cause an overestimation of carbon emissions derived from bottom-up approaches by 485 
up to 50% in temperate forests, depending on levels of combustion completeness (Santín et al., 486 
2015). Our results do not show significant evidence of bias in EC estimates from Fuel2Fire, but 487 
do show a distinct low bias in estimates from GFED. This suggests there are underlying 488 
confounding factors to disentangle before it is possible to determine if the assumptions inherent 489 
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in the carbon mass balance approach are responsible for a significant bias in bottom-up 490 
inventories.   491 

 3.1.2 Burned Area  492 
The two methods for calculating burned area using a bottom-up approach operate under 493 

specific assumptions that could cause either an over or under estimation of carbon emissions. 494 
The active fire based method has the potential to overestimate burned area, because it assumes 495 
all the area within the resolution of a single active fire detection is burned. Conversely, the 496 
burned area based method using MODIS burned area data products (MCD65A1) has been shown 497 
to underestimate burned area, because of high omission error in grid cells with smaller 498 
proportions of burned area (Boschetti et al., 2019). A recent validation study that compares 500-499 
meter resolution MODIS burned area products (MCD64A1) against 30-meter resolution Landsat 500 
data found MODIS underestimated global burned area by 54% (Boschetti et al., 2019). However, 501 
MODIS burned area products also have a non-trivial level of uncertainty, approximately 44% 502 
(Giglio et al., 2018).  503 

Fuel2Fire, calculates burned area using the active fire approach, while GFED uses 504 
MODIS burned area data products. GFED4.1s attempts to address the known small fire driven 505 
burned area underestimation from MODIS using a supplementary algorithm known as the small 506 
fire boost (Randerson et al., 2012; van der Werf et al., 2017). We compare the GFED and 507 
Fuel2Fire burned area estimates in Figure S2, which are in good agreement for the western fires 508 
sampled during FIREX-AQ (slope = 0.97, r = 0.93). This indicates that the differences in the two 509 
approaches to calculate burned area are not responsible for the low bias we see in GFED 510 
emission rate estimates.  511 

3.1.3 Combustion Completeness  512 
All state-of-the-art approaches to calculate combustion completeness rely on daily or 513 

monthly average observations, and therefore cannot accurately estimate the pronounced sub-514 
daily changes in combustion completeness that occur throughout the diurnal cycle of fire 515 
activity. Instead, these methods assume combustion completeness can be estimated using 516 
observations averaged over large areas. Combustion completeness in the Fuel2Fire inventory is 517 
based on daily fire weather indices, where higher levels of fire danger equate to higher 518 
consumption rates, while GFED relies on a biogeochemical model with a monthly time step to 519 
estimate combustion completeness.  520 

We expect GFED combustion completeness to be overestimated on days with low fire 521 
activity and underestimated on days with high fire activity as a result of the monthly averaging 522 
scheme, however that is not the observed trend (Figure 3). Instead, GFED underestimates EC for 523 
almost every fire included in this analysis. It is therefore unlikely that differences in the 524 
approaches to calculate combustion completeness strongly contribute to the systematic low bias 525 
found in GFED EC estimates. 526 

3.1.4 Fuel Loading 527 
The complexity and variability of fuel type (or land cover) and loading are difficult to 528 

accurately represent and validate. Labor intensive high spatial resolution fuel databases, such as 529 
the FCCS database used in the Fuel2Fire inventory, are derived from a compilation of previous 530 
remote sensing studies, government databases, photos, in situ measurements, and expert opinion 531 
(Ottmar et al., 2007). The spatial resolution of FCCS is 30m; however, this resolution is achieved 532 
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through the extrapolation of field-based measurements to ecosystem scales, which relies on a 533 
number of strong assumptions that infer the distribution and composition of fuels from the same, 534 
similarly-aged, spectrally-similar ecosystems are roughly spatially constant. Fuels are constantly 535 
changing in response to seasonal, environmental, and anthropogenic forcing, but the laborious 536 
effort required to develop fuel databases severely restricts the rate at which they can be updated. 537 
As a result, fuel bed databases can remain unchanged and out of date for a number of years 538 
before updates are implemented. This delay can exacerbate the uncertainty and error in fuel 539 
loading estimates. Model based estimates of fuel loading that rely on remote sensing 540 
observations of surface characteristics, like those used in GFED, are similarly challenged by the 541 
limited number of field measurements available to validate estimates. Potential bias stemming 542 
from fuel loading estimates can be negative or positive, depending on the accuracy of initial 543 
estimates and if the database or model correctly implements changes in fuel loading following 544 
ecosystem disturbance mechanisms including fire.  545 

We discover an exceptional uncertainty in GFED fuel loading (111%), however the 546 
uncertainty in the FCCS fuels database used by Fuel2Fire is estimated to be much lower (~70%) 547 
(Keane et al., 2013) (Supplementary Table S1). Combined with the lack of evidence that burned 548 
area or combustion completeness significantly contribute to GFED emission estimate bias, this 549 
implies the differences in fuel loading estimates from the model used in GFED versus the high-550 
resolution fuels database (FCCS) used in Fuel2Fire is the most likely culprit for the persistent 551 
underestimation of GFED EC estimates from Western US wildland fires. The agreement we see 552 
in EC estimates from Fuel2Fire versus the in situ based approach provides confidence for the use 553 
of high resolution fuels databases such as FCCS (Figure 2).  554 

Previous studies aimed at quantifying uncertainty in the parameters used by bottom-up 555 
inventories to calculate emissions have also identified fuel loading as a major source of 556 
uncertainty (French et al., 2004; Urbanski et al., 2011; Prichard et al., 2019). Furthermore, fuel 557 
loading uncertainty likely fluctuates considerably as a function of vegetation type, due to scarce 558 
field validation studies for certain ecosystems and/or mapping errors. Our results highlight the 559 
need for additional field validation studies to constrain fuel loading estimates.  560 

3.2 Total PM Emission Rates 561 
We find the strong relationship between Fuel2Fire and the in situ based method persists 562 

for EPM at a sub-plume scale, albeit with a similarly high level of scatter as shown in Figure 4a 563 
(slope = 0.90, r = 0.77, RMSE = 61%). We derive EFPM from the in situ FIREX-AQ 564 
measurements on a per transect basis in order to minimize the potential influence of emission 565 
factor uncertainty in Fuel2Fire EPM estimates. The high level of spread in the data is likely an 566 
artifact of the uncertainty in EC from Fuel2Fire caused by the biases and sources of uncertainty 567 
discussed in Section 3.1, most notably the impacts of fuel loading uncertainties. Additionally, 568 
this comparison is based on the assumption that the transport of fire emissions from the ground 569 
to the in-situ transect is accurately modeled in both space and time. 570 

Figure 4b shows a significant relationship between EPM calculated using HSRL-GOES 571 
and the in situ approach at a sub-plume scale (slope = 1.04, r = 0.82, RMSE = 48%). While there 572 
is a marginally lower level of scatter in this relationship as shown by the RMSE, HSRL-GOES 573 
slightly overestimates EPM on the lower end of the scale compared to the in situ approach. This 574 
overestimate implies from Equation 3 that either or both the GOES FRP and Ce for these fire 575 
transects are biased high, where it follows from Equation 12 that the latter may be influenced by 576 
a low estimate of the smoke MEE or a high estimate of the optical thickness. A high optical 577 
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thickness bias might be due to the extrapolation of HSRL extinction to the surface for cases 578 
when the laser light fully attenuates; although, we note the bias is most significant for the lower 579 
emission rates, which might discount this hypothesis.  580 

We find strong correlations between daily average EPM estimates from the in situ 581 
approach versus estimates from both of the high-resolution approaches, Fuel2Fire (slope = 1.04, 582 
r = 0.93, RMSE = 39%) and HSRL-GOES (slope = 1.18, r = 0.89, RMSE = 47%) (Figure 5). The 583 
correlation is weaker and the spread is larger between the in situ based estimates and estimates 584 
from the lower-resolution global inventories, GFED and FEER. The systematic low bias seen in 585 
GFED daily average EC estimates is also seen for daily average EPM for all but the smallest fires 586 
(slope = 0.21, r = 0.85, RMSE = 104%). FEER slightly underestimates EPM from larger fires that 587 
emit relatively more PM and overestimates EPM from smaller fires that emit relatively less PM 588 
(slope = 1.38, r = 0.64, RMSE = 55%). FEER provides no EPM estimates for the Castle fire on 589 
both days of sampling, and we exclude these zero estimates from this fire when computing the 590 
linear regression and correlation coefficient given their disproportionate weight in skewing the 591 
regression.  592 

Global fire emissions inventories are known to significantly differ on EPM estimates from 593 
temperate fires, especially in North America (Nikonovas et al., 2017; Pan et al., 2020). In the 594 
following sections we use the high resolution airborne in situ measurements of smoke plumes 595 
collected during FIREX-AQ to isolate the assumptions and variables responsible for the 596 
discrepancy and quantify their relative contributions.  597 

3.2.1 Emission Factors 598 
  Emission factors are used in bottom-up approaches to convert carbon emissions to 599 
emissions of a specific trace gas or particulate species, and emission factor estimates usually 600 
come from compilation studies that include in situ measurements from wildland fires and 601 
laboratory experiments (Akagi et al., 2011; Andreae, 2019; Andreae & Merlet, 2001; May et al., 602 
2014). The use of such emission factors relies on the assumption that the most representative 603 
value can be approximated as the mean of all previous studies. In reality, emission factors are 604 
dynamic and vary as a function of combustion completeness, which can fluctuate both spatially 605 
and temporally for a given fire. Laboratory studies struggle to represent the complexity of a 606 
wildland fire and can disagree with in situ measurements, while in situ measurements are subject 607 
to sampling bias (Hodshire et al., 2019; Yokelson et al., 2013). For example, airborne based 608 
measurements tend to be limited to daytime sampling of well-developed plumes that have risen 609 
to an altitude that is accessible by the aircraft. Consequently, these measurements may be biased 610 
towards flaming combustion because nighttime and/or smoldering emissions resulting from less 611 
energetic fire activity are not being sampled (Burling et al., 2011; Prichard et al., 2020; Wiggins 612 
et al., 2021). The suggested EFPM for temperate forests from GFED is 17.6 g kg-1, and the mean 613 
EFPM we calculated using FIREX-AQ in situ airborne measurements is 15.8 ± 4.3 g kg-1, which 614 
is well within range of the suggested EFPM from GFED. Our results suggest EFPM does not 615 
strongly contribute to bias in bottom-up emission rate estimates from Fuel2Fire or GFED for the 616 
fires sampled during FIREX-AQ. However, we acknowledge this analysis focused exclusively 617 
on fires with well-developed plumes that were sampled during the daytime, and thus may not be 618 
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subject to EFPM discrepancies that can occur as a result of under sampled smoldering 619 
combustion.  620 

3.2.2 Smoke Emission Coefficient (Ce) 621 
Smoke emission coefficients used by top-down inventories to convert FRP to EPM are 622 

typically derived using multiple years of AOD and FRP observations, but here we use high 623 
resolution measurements from FIREX-AQ to calculate Ce over a limited duration for a small 624 
number of fires. We find strong to moderate linear relationships between GOES FRP 625 
observations and the calculated emission rates from the high resolution in situ approach (Ce = 5.0 626 
gPM MW-1, r = 0.75, RMSE = 165%), Fuel2Fire (Ce = 8.2 gPM MW-1, r = 0.94, RMSE = 46%), 627 
and HSRL-GOES (Ce = 8.4 gPM MW-1, r = 0.72, RMSE = 75%) (Figure 6). Individual fires 628 
have significantly different Ce, and vary depending on which approach was used to calculate EPM 629 
(Table 3), which highlights the sensitivity and natural variability of this parameter. All three of 630 
the high resolution approaches estimate a lower Ce for the set of Western US wildland fires 631 
included in this study compared to the estimated Ce from FEER (10.6 gPM MW-1). However, the 632 
calculated Ce are within the large uncertainty (50%) of the Ce for western US fires derived from 633 
FEER, and the RMSE is substantial for the in situ approach and HSRL-GOES.  634 

Fuel2Fire temporally distributes emissions using the diurnal cycle of GOES FRP 635 
observations, which explains the exceptionally strong linearity and correlation between GOES 636 
FRP and EPM estimates in Figure 6b. HSRL-GOES EPM estimates shown in Figure 6c continue to 637 
have a slight high bias on the lower end of the scale. We find a high bias in EPM for the Castle 638 
fire in all three high resolution approaches compared to what would be expected based on the 639 
overall campaign level relationship between FRP and emission rates (Figure 6). The Castle fire 640 
had the lowest average excess PM concentrations per transect out of all the fires included in this 641 
analysis. The elevated emission rates from all three approaches indicate GOES likely missed 642 
some of the FRP, likely due to low temperature smoldering or cloud cover, which is consistent 643 
with the low fire severity measured in post-burn satellite data. 644 

FEER uses MODIS FRP observations to calculate Ce, but we use GOES FRP. There 645 
could be a potential offset between FRP observations between MODIS and GOES as a result of 646 
differences in instrument resolution and saturation levels as well as overpass time effects (Li et 647 
al., 2019; Xu et al., 2021). The coarse spatial resolution of GOES (2km) limits its capability to 648 
detect cool or small fires with low FRP, and could result in an underestimation of FRP by up to 649 
50% globally (Freeborn et al., 2008), which would explain the difference in Ce estimated using 650 
the high resolution approaches versus FEER. We use GOES FRP because of the exceptionally 651 
high time resolution (5-15 mins) over the continental US versus the twice daily temporal 652 
resolution of MODIS or VIIRS. This allows for a more direct comparison between in situ 653 
measurements and remote sensing observations. 654 

Previous studies have suggested EPM and thus Ce calculated using MODIS AOD may be 655 
systematically biased low, because of a discrepancy between observed AOD from MODIS 656 
versus AERONET and MISR (Pan et al., 2020). However, we find agreement between EPM 657 
calculated independently of MODIS AOD and EPM estimated from FEER, which relies on 658 
MODIS AOD observations. The results suggest MODIS AOD observations can be used to 659 
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accurately represent atmospheric aerosol mass loading of particulates emitted by Western US 660 
wildland fires. 661 

3.2.2.1 Mass Extinction Efficiency (MEE) 662 
The conversion of FRP to PM assumes that variability in particle extinction, and thus 663 

AOD, is driven by changes in aerosol mass concentration rather than aerosol intensive 664 
properties. Estimates of particle mass extinction efficiency (MEE) are essential to the conversion 665 
of AOD to total PM. However, aerosol extinction and other optical properties depend on particle 666 
size, morphology, and chemical composition (Seinfeld & Pandis, 2006). The characteristics of 667 
biomass burning aerosols are known to vary with fuel type and combustion completeness 668 
(McClure et al., 2020; Reid et al., 2005a; Reid et al., 2005b). Furthermore, the physical and 669 
optical properties of smoke aerosols rapidly evolve following emission as a result of 670 
photochemical aging and aerosol microphysical processes (Akagi et al., 2012; Cappa et al., 2020; 671 
Garofalo et al., 2019; Hodshire et al., 2019; May et al., 2014; Shingler et al., 2016). Particle 672 
evolution via these processes is additionally influenced by external factors, such as the fire size, 673 
rate of dilution, and background aerosol concentrations (Hodshire et al., 2019). The assumption 674 
that variability in AOD is entirely due to changes in particle concentration oversimplifies the 675 
complex interactions of smoke particle microphysical processes and photochemical aging. Some 676 
top-down inventories attempt to reconcile this discrepancy by calculating a separate Ce for each 677 
individual ecosystem. However, this is likely not sufficient to fully address the variability in 678 
smoke aerosol extinction that often occurs even in smoke plumes from fires within a single 679 
ecosystem type. 680 

Top-down inventories, including FEER, usually assume a constant MEE of 4.6 m2 g-1 681 
based on a compilation of previous studies (Ichoku & Kaufman, 2005; Reid et al., 2005b). The 682 
compilation found MEE varied between 3.4 – 5.1 m2 g-1 for biomass burning particles of all ages 683 
across a diverse set of ecosystems (Figure S3) (Reid et al., 2005b). We find MEE values vary 684 
between 2 - 6 m2 g-1 for the FIREX-AQ smoke plumes and that the MEE increases 685 
asymptotically as a function of smoke age (Figure 7). Our observations indicate MEE approaches 686 
the mean from previous studies as the smoke rapidly evolves in the early hours after emission. 687 
The rate at which MEE increases with smoke age is variable among the fires included in this 688 
analysis and does not appear to depend on the plume PM concentration. Our range of MEEs for 689 
smoke plumes from Western US wildland fires using high-resolution in situ measurements is 690 
larger than what has been observed in previous studies. Our results emphasize the variability that 691 
can occur in smoke MEE, and suggest that the top-down approach is likely more sensitive to 692 
MEE than previous studies imply. The use of a constant MEE could lead to a high bias for fires 693 
with lower excess PM concentrations and a low bias for fires with higher excess PM 694 
concentrations, which would explain the trend we see in Figure 5 where FEER underestimates 695 
fire EPM from the most actively burning fires and overestimates EPM from smaller, weaker fires. 696 

3.2.2.2 Instantaneous Observations of FRP and AOD 697 
FEER uses daytime MODIS FRP and AOD observations to derive Ce and assumes that 698 

the FRP at the time of observation is directly related to the smoke plume AOD. However, fires 699 
have a clear, ecosystem dependent diurnal cycle with the time of peak fire activity depending on 700 
the specific landcover, geographic location, elevation, slope, aspect, and type of fire (e.g., 701 
wildland, prescribed, crown, surface). FRP observations represent the instantaneous fuel 702 
consumption and corresponding emissions of a given fire, but AOD observations represent the 703 
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total mass of aerosols emitted by a fire, including the time period when the fire was active before 704 
the satellite overpass time. The variability in FRP that occurs over the course of a day has a clear 705 
impact on the total mass of smoke particles in the plume as a function of downwind distance 706 
from the fire and wind speed, but polar orbiters, like MODIS do not have the temporal resolution 707 
to quantify this relationship. As a result, Ce derived using FRP and AOD observed after the peak 708 
in diurnal fire activity are likely overestimated, while Ce derived using FRP and AOD observed 709 
prior to the peak may be slightly underestimated. The exact nature and magnitude of the potential 710 
bias would depend on a specific fire’s diurnal cycle and the age of the smoke captured in the 711 
satellite observations of AOD. With respect to the calculation of EPM using a predetermined Ce, 712 
the time offset between MODIS overpass times and peak diurnal fire activity could similarly 713 
cause a bias. EPM could potentially be biased high or low if the satellite overpass time occurred 714 
either before or after the peak in diurnal fire activity, and if the observed FRP was higher or 715 
lower than the daily average FRP.  716 

A recent study by Mota and Wooster (2018) demonstrated fire emission rates can be 717 
calculated at a high temporal and spatial resolution (hourly and 0.05° x 0.05°, respectively) using 718 
a top-down approach that relies on geostationary satellite observations of FRP from the Spinning 719 
Enhanced Visible and InfraRed Imager (SEVIRI) to avoid bias caused by inadequate sampling of 720 
a fire’s diurnal cycle. We compare geostationary satellite observations of FRP from GOES that 721 
match the overpass times of MODIS with the average of all FRP observations over the course of 722 
a day for each fire to investigate potential bias in EPM estimates from FEER. The Western US 723 
wildland fires sampled during FIREX-AQ exhibited peak fire activity from 3-6 pm local time 724 
(Pacific daylight time, UTC-7) (Wiggins et al., 2020). Meanwhile, local MODIS overpass times 725 
are ~10:30am for the Terra satellite and ~1:20pm for Aqua. We find average GOES FRP at the 726 
time of the MODIS overpasses is double the daily average FRP from GOES (Figure S4), which 727 
could be partially responsible for the overestimation in FEER EPM estimates for smaller fires that 728 
we see in Figure 5.  729 

4 Summary and Conclusions 730 
 We present a comprehensive evaluation of total carbon and aerosol emission rate 731 

estimates computed using the methodologies and assumptions that are commonly employed by 732 
global inventories used by models. These emissions inventories have the monumental task of 733 
capturing the composition, magnitude, and temporal variability of fire emissions from nearly 734 
every ecosystem on Earth. They are critical for the representation of wildland fires in large scale 735 
models, and only recently have sufficiently comprehensive observational datasets become 736 
available to evaluate their performance. One such study is the joint NASA/NOAA FIREX-AQ 737 
airborne mission that took place in 2019. Here, we extend the methods and assumptions 738 
employed by emissions inventories to develop state-of-the-art, high-resolution emission rate 739 
estimates for each of the western FIREX-AQ fires, which are based on detailed information 740 
garnered from ground, airborne, and satellite assets.  741 

We discover excellent agreement between the high-resolution emission rate estimates 742 
calculated using integrated airborne in situ and lidar observations and the high-resolution top-743 
down (HSRL-GOES) and bottom-up (Fuel2Fire) estimates at unusually high sub-plume 744 
spatiotemporal resolution. While there is considerable scatter in the one-to-one plots comparing 745 
Fuel2Fire to the airborne in situ data, the emissions rate estimates for both total carbon and PM 746 
are not consistently biased between these methodological approaches. HSRL-GOES appears to 747 
slightly overestimate EPM toward the lower end of the observed range of variability (which 748 
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appears to also scale with FRP). Emission rate estimates calculated using the lower resolution 749 
global fire emissions inventories, FEER and GFED, have a weaker relationship with the high-750 
resolution approaches and show evidence of systematic bias, which is most apparent for GFED.  751 

We discuss, in detail, the key assumptions employed by bottom-up approaches and 752 
conclude that the strong performance of the Fuel2Fire inventory stems from detailed information 753 
about fuel type and loading that are parameterized with significant uncertainty in the global 754 
inventories. In addition, we note that the high-temporal resolution of the Fuel2Fire dataset also 755 
allows it to capture the entire diurnal cycle of the fire activity, which also serves to improve its 756 
predictive skill. This hints that the high temporal resolution of geostationary satellite 757 
observations of FRP could be used to correct the bias caused by satellite overpass times. With 758 
respect to top-down approaches, we find a larger range in MEE for this small subset of Western 759 
US fires than what has been reported in a compilation of previous studies that includes MEE 760 
from fires in a diverse selection of global ecosystems. The high resolution top-down approach 761 
(HSRL-GOES) allowed for the application of variable MEE obtained from sub-plume in situ 762 
measurements. HSRL extinction measurements of the smoke plumes sampled during FIREX-AQ 763 
combined with geostationary satellite observations of FRP offered an exceptionally detailed 764 
measure of AOD and FRP associated with the smoke plume. The use of a constant MEE to 765 
convert AOD to PM in top-down approaches combined with bias from assumptions related to 766 
instantaneous observations of FRP and AOD are likely responsible for the underestimation in 767 
FEER EPM for larger fires and overestimation for smaller fires. 768 

Finally, it’s important to note that it is not yet computationally practical or feasible for 769 
global fire emissions inventories to achieve the level of complexity and detail in the high-770 
resolution approaches presented here. We use these approaches to investigate discrepancies 771 
between top-down and bottom-up EPM estimates for Western US wildland fires. However, this 772 
collection of fires represents only a small subset of the total number of fires that burn every year 773 
in the Western US and may not be a perfect representation of the complexity that can exist in fire 774 
emissions. In short, we have the luxury of evaluating the skill of the global emissions inventories 775 
for a small subset of wildland fires for which we have unprecedentedly comprehensive data, but 776 
we would be wise to remember that the goal of global emissions inventories is to represent all 777 
fires reasonably well rather than to represent a few fires perfectly. Consequently, it may be 778 
premature to adopt new values for, e.g., the smoke emission coefficient based solely on the 779 
FIREX-AQ dataset. Our analysis does emphasize areas of large uncertainty, however, that may 780 
be improved. One is the estimate of fuel type and loading that likely contributes to the scatter we 781 
see in the bottom-up emission rate estimates from GFED and Fuel2Fire. Burned area and aerosol 782 
mass emission factors do not appear to be large sources of uncertainty as there is good agreement 783 
seen for both GFED and Fuel2Fire for both of these metrics. The importance of the high-784 
temporal resolution observations of both FRP and smoke AOD afforded by the geostationary 785 
satellites currently in orbit cannot be overstated, as a lack of complete orbital coverage is also 786 
likely to be a strong contributor to the inventory emissions underestimates. The use of a constant 787 
MEE to convert AOD to PM should be revisited in light of the much higher variability we find in 788 
MEE observations for such a limited number of fires, which accentuates the need for additional 789 
measurements of this key variable. In summary, both top-down and bottom-up global fire 790 
emissions inventories suffer from assumptions that may hold true in the aggregate, but break 791 
down on an individual fire basis. The strong agreement that we show here between the high-792 
resolution approaches holds promise for future fire emissions inventories as advances in remote 793 
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sensing, improved computational efficiency, and a more complete understanding of fire behavior 794 
begin to offer opportunities to increase the accuracy and resolution of global fire inventories. 795 

Appendix: List of Variables and Common Units 796 
Note: units are included here only as examples and do not consider any unit conversions that 797 
may be necessary for the equations given in the text. 798 

α2   HSRL extinction coefficient    km-1 799 
AP,FEER  FEER pixel area     km2 800 
AP,GFED GFED pixel area     km2 801 
AOD  Aerosol optical depth     unitless 802 
β  HSRL backscatter ratio    km-1		sr-1 803 
BA  Burned area      m2 804 
CC  Combustion completeness    % 805 
Ce  Smoke emission coefficient    gPM MW-1 806 
DC  Excess mass concentration of C   µgC m-3 807 
DPM  Excess mass concentration of PM   µgPM m-3 808 
Dt  HSRL curtain pixel width     s 809 
Dz  HSRL curtain pixel height    m 810 
EC  Emission rate of total carbon    kgC s-1 811 
E/!  Area-normalized emission rate of total carbon kgC m-2 s-1 812 
EPM  Emission rate of total PM    kgPM s-1 813 
E/"#  Area-normalized emission rate of total PM  kgPM m-2 s-1 814 
EFPM  Particle mass emissions factor   gPM kg biomass consumed-1 815 
FC  Mass fraction of carbon in the fuel   gC kg biomass consumed-1 816 
FL  Fuel loading      g biomass m-2 817 
FRP  Fire radiative power     MW 818 
H  Plume vertical thickness    m 819 
MEE  Particle mass extinction efficiency   m2 g-1 820 
MEE222222  Aircraft transect-average MEE   m2 g-1 821 
PM  Particle mass concentration    µgPM m-3 822 
GS2222  Transect-average DC-8 aircraft ground speed m s-1 823 
WS2222  Aircraft transect-average wind speed   m s-1 824 
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 1191 

 1192 
 1193 
Figure 1. Conceptual image of a typical wildland fire and smoke plume observed during FIREX-1194 
AQ as well as the observational platforms and analysis approaches. The DC-8 flight track is 1195 
given in red and colored by in situ particle concentrations for the cross-sectional legs. As 1196 
described in the text, the DC-8 initially completes a longitudinal run where the nadir HSRL 1197 
measurement provides the full smoke curtain below the aircraft, which is then followed by a 1198 
series of successively downwind flight legs where the nadir- and zenith-pointing HSRL curtains 1199 
are used to contextualize the cross-sectional, in situ measurements. Image credit: NASA / Tim 1200 
Marvel. 1201 
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 1202 
Figure 2. Relationship between total carbon emission rates (EC) from the high resolution bottom-1203 
up approach, Fuel2Fire, and the in situ approach. Different markers correspond to specific fires 1204 
and repeated markers correspond to different transects of the same fire. The green line shows the 1205 
fit between EC using a reduced major axis regression with a forced zero intercept. The dashed 1206 
black line shows a perfect 1:1 relationship for reference. The slope for the linear fit, Pearson’s 1207 
correlation coefficient (r), and root mean square error (RMSE) is given in the legend. 1208 

  1209 
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 1210 

Figure 3. Relationship between daily fire average total carbon emission rates (EC) from 1211 
Fuel2Fire and GFED versus the in situ measurement based approach. Different markers 1212 
correspond to specific fires. The green line shows the fit between Fuel2Fire EC estimates versus 1213 
the in situ approach using a reduced major axis regression with a forced zero intercept. The 1214 
yellow line shows the fit between GFED EC estimates versus the in situ approach. The dashed 1215 
black line shows a perfect 1:1 relationship for reference. The slope for the linear fit, Pearson’s 1216 
correlation coefficient (r), and root mean square error (RMSE) is given in the legend.  1217 
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 1218 

Figure 4. Relationship between total PM emission rates (EPM) derived from the high-resolution 1219 
bottom-up approach (Fuel2Fire) versus in situ shown in panel a, and the same relationship 1220 
between the high resolution top-down aircraft approach (HSRL-GOES) and the in situ approach 1221 
shown in panel b. The green line shows the reduced major axis regression with a forced zero 1222 
intercept for Fuel2Fire EPM estimates versus in situ, and the blue line shows the fit for the HSRL-1223 
GOES EPM estimates versus in situ. Legend gives the slope for the linear fit, Pearson’s 1224 
correlation coefficient (r), and root mean square error (RMSE). 1225 
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 1227 
Figure 5. Daily fire average PM emission rates (EPM) from Fuel2Fire, HSRL-GOES, GFED, and 1228 
FEER compared to estimates from the in situ approach. Green markers represent estimates from 1229 
Fuel2Fire and the green line represents the reduced major axis regression with a forced zero 1230 
intercept between Fuel2Fire estimates and in situ estimates. Blue markers and line represent 1231 
HSRL-GOES estimates and regression. Purple markers and line represent FEER estimates and 1232 
regression. Orange markers and line represent GFED estimates and regression. The slope for the 1233 
linear fit, Pearson’s correlation coefficient (r), and root mean square error (RMSE) is given in the 1234 
legend. 1235 
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 1237 

 1238 
Figure 6. Relationship between GOES FRP and total PM emission rates (EPM) derived from the 1239 
in situ approach (panel a) and the same relationship for Fuel2Fire (panel b) and HSRL-GOES 1240 
(panel c). The red line shows the fit to a reduced major axis regression with a forced zero 1241 
intercept for the GOES FRP versus in situ comparison, the green line shows the fit for Fuel2Fire, 1242 
and the blue line shows the fit for HSRL-GOES. The slope of each regression is equal to the 1243 
smoke emission coefficient (Ce). The dashed grey line is the Ce derived from FEER and the grey 1244 
shading represents the corresponding uncertainty range. Legend gives the slope for the linear fit, 1245 
correlation coefficient (r), and root mean square error (RMSE %).  1246 
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 1248 
Figure 7. Mass extinction efficiency (MEE) versus smoke age per transect for each fire. Markers 1249 
are colored as a function of transect mean excess PM concentration. The constant MEE assumed 1250 
by FEER is shown as the dashed black line for reference. 1251 
  1252 
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Inventory or 
Approach 

Style Spatial 
Range 

Temporal 
Resolution 

Eqns. Input Variables Output 
Variables 

GFED4.1s Bottom-up Global  Daily 1 BA, FL, CC, FC EC 

    2 𝐄,𝐂𝐆𝐅𝐄𝐃 , EFPM, Fc, ∆𝐗GFED EPM 

FEERv1.0 Top-down Global  Daily 3 Ce (MODIS), FRP (MODIS)  EPM 

    4 𝐄,𝐏𝐌𝐅𝐄𝐄𝐑, ∆𝐗FEER EPM 

In Situ  In situ Western US 
(FIREX-AQ) 

Sub-plume 
timescale (per 
aircraft transect) 

5 CO2, CO, CH4, OC, BC, PM, H, 
WS, GS 

EC, EPM 

   6 ∆𝐳, 𝛃 H 

Fuel2Fire Bottom-up Western US 
(FIREX-AQ) 

Sub-plume 
timescale (per 
aircraft transect) 

1 BA, FL, CC, FC EC 

   7 EC, EFPM, FC EPM 

HSRL-GOES Top-down Western US 
(FIREX-AQ) 

Sub-plume 
timescale (per 
aircraft transect) 

3 Ce (Aircraft-GOES), FRP 
(GOES) 

EPM 

  8 WS, GS, MEE, FRP (GOES), 
AOT  

Ce 

  9 𝛂𝐭, ∆𝐳 AOT 

Table 1. Summary of approaches used to calculate fire carbon and PM emission rates. Note 1254 
GFED4.1s also provides data at a 3hr temporal resolution, but we use only the daily product. 1255 
  1256 
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 Fuel2Fire EPM HSRL-GOES EPM 
Fire Name Date Flown m r RMSE m r RMSE 
Shady 07/25 0.13 0.44 13% 1.69 0.53 67% 
North Hills 07/29 1.69 0.45 58% 6.27 0.55 30% 
Tucker 07/29 0.10 0.61 39% 1.59 0.66 107% 
Williams Flats 08/03 1.13 0.89 15% 1.07 0.84 149% 
Williams Flats 08/06 0.59 0.07 116% 5.76 0.33 37% 
Horsefly 08/06 1.70 0.63 627% 1.92 0.89 15% 
Williams Flats 08/07 0.88 0.63 45% 0.94 0.69 87% 
Castle 08/12 1.10 0.56 29% 3.54 0.73 18% 
Castle 08/13 1.15 0.53 232% 4.48 0.71 232% 
Sheridan 08/16 0.41 0.77 1529% 0.93 0.69 276% 

Table 2. Reduced major axis regression slope (m), Pearson’s correlation coefficient (r), and root 1257 
mean square error (RMSE) for PM emission rates (EPM) from Fuel2Fire and HSRL-GOES versus 1258 
the in situ based approach per fire. Fire name is given in the far left panel, followed by date 1259 
flown.  1260 
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 In Situ  Fuel2Fire  HSRL-GOES  
Fire Name Date Flown m r RMSE m r RMSE m r RMSE 
Shady 07/25 0.0022 0.53 85% 0.001 0.80 148% 0.012 0.44 78% 
North Hills 07/29 0.0011 0.77 57% 0.014 0.95 46% 0.015 0.61 40% 
Tucker 07/29 0.0076 0.49 74% 0.003 0.89 55% 0.033 0.60 63% 
Williams Flats 08/03 0.0039 0.69 934% 0.010 0.91 71% 0.011 0.69 139% 
Williams Flats 08/06 0.0039 0.70 6% 0.010 0.96 491% 0.057 0.63 69% 
Horsefly 08/06 0.0012 0.61 292% 0.008 0.84 311% 0.012 0.69 118% 
Williams Flats 08/07 0.0040 0.67 21% 0.009 0.90 1% 0.008 0.45 18% 
Castle 08/12 0.0060 0.58 4531% 0.027 0.68 209% 0.060 0.86 111% 
Castle 08/13 0.0646 0.61 57% 0.204 0.65 147% 0.555 0.55 81% 
Sheridan 08/16 0.0017 0.68 3154% 0.002 0.84 1199% 0.005 0.66 274% 

Table 3. Reduced major axis regression slope (m), Pearson’s correlation coefficient (r), and root 1262 
mean square error (RMSE) for GOES FRP versus total PM emission rates (EPM) for the in situ 1263 
approach, Fuel2Fire, and HSRL-GOES per individual fire. The slope is equal to the smoke 1264 
emission coefficient (Ce). 1265 
 1266 
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Figure S1. Relationship between two different methods to calculate plume thickness per 
transect for each fire. X-axis shows plume thickness calculated using equation 6 and y-
axis shows plume thickness calculated as a function of the backscatter coefficient 
distribution throughout the HSRL curtain. Blue line shows the fit to a reduced major axis 
regression with a forced zero intercept. Pearson’s correlation coefficient (r) and root 
mean square error (RMSE) are given in the legend. 
 
 
 
 



 

 

 
 
Figure S2. Total daily burned area per fire from Fuel2Fire versus GFED4.1s. The brown 
line shows the fit to a reduced major axis regression with a forced zero intercept. The 
slope and correlation coefficient are given in the legend. The black dashed line shows a 
perfect 1:1 relationship for reference. 
  



 

 

 
Figure S3. Mass extinction efficiency (MEE) calculated using in situ aircraft 
measurements for each fire per transect versus smoke age. Colored lines represent 
ecosystem average mass extinction efficiency for biomass burning particles taken from 
Reid et al. (2005b). Solid lines show MEE from fresh smoke (less than one day old) and 
dashed lines show MEE calculated using aged smoke (older than one day). The assumed 
MEE used by FEER is shown as the black dashed line. 
  



 

 

 
 
Figure S4. Daily average GOES FRP observations per fire versus average GOES FRP 
observations within 30 mins of the overpass times for MODIS onboard both Aqua and 
Terra per fire. The teal line shows reduced major axis regression line with the slope and 
correlation coefficient given in the legend. The black dashed line shows a perfect 1:1 
relationship for reference.   
  



 

 

 
Approach Variable Relative Error µ ± s IQR Reference 

GFED dEPM = 126% 
dEC = 
120% 

dBA = 44% - - Giglio et al. (2018) 
dFL = 111% 75 ± 83 130 Van Leeuwen et al. (2014) 
dCC = 11% 79 ± 9 14.0 Van Leeuwen et al. (2014) 
dFC = 10% 500 ± 5 - Akagi et al. (2011) 

dEFPM = 36% 17.6 ± 6.4 7 van der Werf et al. (2017) 

FEER dEPM = 78% dCe = 73% 0.011 ± 0.008 0.008 Ichoku and Ellison (2014) 
dFRP = 27% - - Freeborn et al. (2014) 

In Situ dEC = 66% 
dEPM = 75% 

dWS = 17% 6 ± 1 4 

FIREX-AQ Observations 
 

dGS = 3% 154 ± 5 16 
dHt = 28% 2121 ± 594 593 
dDC = 56% 0.009 ± 0.005 0.009 
dDPM = 67% 0.0006 ± 0.0004 0.001 

Fuel2Fire dEPM = 67% dEC = 55% 1322  ± 729 510 Fuel2Fire (Internal) 
dEFPM = 38% 16 ± 6 7 FIREX-AQ Observations 

HSRL-
GOES dEPM = 78% dCe = 67% 0.006 ± 0.004 0.005 FIREX-AQ Observations 

dFRP = 40% - - Li et al. (2020) 

Table S1. Relative uncertainty (d) given as a percentage for EPM and EC (when available) 
derived using GFED, FEER, in situ measurements, Fuel2Fire, and HSRL-GOES. From left to 
right the dependent variables are broken down into the individual independent variables 
required for their calculation. Relative uncertainty for each independent variable is 
calculated as the standard deviation (s) divided by the mean (µ), and relative uncertainty 
for each dependent variable is computed by error propagation through the equation by 
which they are defined. If the mean and standard deviation are not available, the relative 
uncertainty for a variable is taken directly from the corresponding reference. Mean, 
standard deviation, and interquartile range (IQR) are derived from aircraft observations 
during smoke plume transects and averaged over all the Western US wildland fires 
included in this study or calculated based on data from previous studies when available. 
 
 
 


