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Abstract

The three-component model is often used to invert the phytoplankton size class (PSC) concentration globally, especially in

open oceans. Limited by the three-component model’s assumption, new efforts were made to explore PSC in different water

environments. Mass global cruise data sets were gathered and classified into coastal, mixed, and open ocean data sets depending

on the variation in bathymetric depth. A new power three-component model was established for coastal water samples (<50

m), where the determination coefficient (R2) were 0.99, 0.51, and 0.38 for micro- (Micro), nano- (Nano), and picophytoplankton

(Pico), respectively. We also updated the coefficients of the exponential three-component model in open ocean (>200 m) and

found that the PSC verification results performed better in the north of -40°N oceans (R2: 0.83, 0.70, and 0.64, respectively). A

smooth function for the samples in mixed ocean waters (50–200 m) was designed to obtain PSC by different weights between the

power and exponential three-component models with relatively low accuracy (R2: 0.84, 0.37, and 0.14, respectively), indicative

of the complex conditions in these regions. We assessed the published models’ performance in coastal and open ocean samples

and found an apparent underestimation of the Nano and Pico chlorophyll concentrations when their concentrations were larger

than 0.2 mg m-3. The PSC proportion distribution was consistent with existing knowledge. This study evaluated the preliminary

consideration of the assumption of the exponential three-component model and found that it may fail in the South Ocean, based

on the global open ocean data set.
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Abstract 17 

The three-component model is often used to invert the phytoplankton size class (PSC) 18 

concentration globally, especially in open oceans. Limited by the three-component model's 19 

assumption, new efforts were made to explore PSC in different water environments. Mass 20 

global cruise data sets were gathered and classified into coastal, mixed, and open ocean data 21 

sets depending on the variation in bathymetric depth. A new power three-component model 22 

was established for coastal water samples (<50 m), where the determination coefficient (R2) 23 

were 0.99, 0.51, and 0.38 for micro- (Micro), nano- (Nano), and picophytoplankton (Pico), 24 

respectively. We also updated the coefficients of the exponential three-component model in 25 

open ocean (>200 m) and found that the PSC verification results performed better in the north 26 

of −40°N oceans (R2: 0.83, 0.70, and 0.64, respectively). A smooth function for the samples in 27 

mixed ocean waters (50–200 m) was designed to obtain PSC by different weights between the 28 

power and exponential three-component models with relatively low accuracy (R2: 0.84, 0.37, 29 

and 0.14, respectively), indicative of the complex conditions in these regions. We assessed the 30 

published models' performance in coastal and open ocean samples and found an apparent 31 

underestimation of the Nano and Pico chlorophyll concentrations when their concentrations 32 

were larger than 0.2 mg m-3. The PSC proportion distribution was consistent with existing 33 

knowledge. This study evaluated the preliminary consideration of the assumption of the 34 

exponential three-component model and found that it may fail in the South Ocean, based on 35 

the global open ocean data set. 36 

Plain Language Summary 37 

Phytoplankton with different cell sizes has an essential effect in understanding some 38 

biochemical processes, such as the phytoplankton function groups and primary ocean 39 

productivity. The current topic had gone through some valuable researches and obtained 40 

significant achievements to some extent. The three-component model is a popular one to 41 

retrieve the phytoplankton size structure and has many different versions, which were all based 42 

on the assumption between size structure and total chlorophyll-a concentration. However, the 43 

assumption was less prominent in coastal waters and would thus cause a certain deviation. The 44 

present study aims to discuss this relationship in different water environments divided by 45 

bathymetric depth, build corresponding models to improve the deviation, evaluate existing 46 

models' performance, and analyze the underlying mechanisms for those variations. We found 47 

that the new model performs better than previous models, especially in coastal water, which 48 

avoided the underestimation of nano- and picoplankton. Also, it showed that the size structure 49 

in the South Ocean seems to be unstable. We suggest that the assumption in the three-50 

component model should be verified first in specific waters and then inverse the phytoplankton 51 

size structure.  52 

1 Introduction 53 

Phytoplankton are fundamental elements of ocean water environments and contribute 54 

significantly to global primary productivity (Behrenfeld et al., 2001; Gong et al., 2003; IOCCG, 55 

2014; Lee et al., 2015; Svendsen et al., 1995). Phytoplankton of different size structures have 56 

different rates of energy translation compared to organisms lower in the food chain and higher-57 

level consumers (Hilligsøe et al., 2011) and show variations in their bio-optical characteristics, 58 
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including their specific absorption spectra, chlorophyll concentration, and pigment package 59 

effect (Bricaud et al., 2004; Huan et al., 2021; Uitz et al., 2015; Vidussi et al., 2001; S. Wang 60 

et al., 2015). Usually, three phytoplankton size classes (PSCs) are determined, including pico- 61 

(0.2–2 μm, Pico), nano- (2–20 μm, Nano), and microphytoplankton (20–200 μm, Micro) 62 

(Sieburth et al., 1978). In recent years, diagnostic pigment analysis (DPA) has been widely 63 

used to determine the chlorophyll concentration of each size class based on in situ pigment data 64 

sets, measured by high performance liquid chromatography (HPLC) (Uitz et al., 2006; Vidussi 65 

et al., 2001). Many studies have established different PSC remote sensing algorithms based on 66 

DPA results (Brewin et al., 2014; Brewin et al., 2015; Devred et al., 2006; D. Sun et al., 2019; 67 

Uitz et al., 2006; Uitz et al., 2008). 68 

In the context of PSC algorithms, the exponential three-component model is widely 69 

applied in different ocean waters, including the marginal seas of China (D. Sun et al., 2019; X. 70 

Sun et al., 2018), the Atlantic Ocean (Brewin et al., 2010; Brewin et al., 2014; Brewin et al., 71 

2017; Devred et al., 2011), the Indian Ocean (Robert et al., 2012), and other global oceans 72 

(Brewin et al., 2011; Brewin et al., 2015). This model has the advantage of a concise format 73 

and making reasonable assumptions. It assumes that the total chlorophyll-a concentration (C) 74 

comprises two parts, one of which can grow to a high value with increasing C but contributes 75 

less at low C, while the other dominating the chlorophyll concentration in low C is unable to 76 

grow beyond a specific value. This assumption is first used to separate the Micro (Cm) and the 77 

combined Nano and Pico (Cn,p) chlorophyll concentration from C and is then used to retrieve 78 

the Nano (Cn) and Pico (Cp) chlorophyll concentrations. Therefore, the applicability of this 79 

assumption is the key to this model. Many studies have successfully applied this model and 80 

achieved good inversion results (Brewin et al., 2015; Devred et al., 2011; Lin et al., 2014). 81 

However, D. Sun et al. (2019) found that the assumption could not be satisfied within Cn,p and 82 

Cp against C in the marginal seas of China. Furthermore, previous studies had underestimated 83 

chlorophyll concentrations of Cn and Cp using the exponential three-component model, 84 

especially Cp in C>0.2 mg m-3. Brewin et al. (2017) modified the model to account for the 85 

influence of sea surface temperature and achieved a certain improvement. Therefore, there is a 86 

need to focus on the assumptions of this model. 87 

The primary assumption stated above seems to be more highlighted in open ocean water 88 

than in coastal waters. Thus, classifying the ocean waters into several types may be an effective 89 

way to determine the differences in this assumption. However, there is currently no widely 90 

accepted method to evaluate water types as the distinction between different water bodies 91 

cannot be classified by the chlorophyll concentration or location alone (Yan et al., 2019). In a 92 

previous study, Bricaud et al. (1987) used remote sensing reflectance at 550 nm (Rrs(550)) with 93 

a limit value of Rrs(550) (Rrs,lim(550)) for a particular pigment concentration to differentiate 94 

between water bodies, which they classified as Case I waters when Rrs(550) < Rrs,lim(550) and 95 

Case II waters when Rrs(550) > Rrs,lim(550). However, although this method worked in open 96 

ocean waters (Case I), it was not suitable for turbid waters (Case II) with highly colored 97 

dissolved organic matter (CDOM). In a subsequent study, Zhang et al. (2005) developed a 98 

convenient method to classify Case I and Case II waters based on the ratio of Rrs(510) and 99 

Rrs(412), where waters were classified Case I when Rrs(510)/Rrs(412) < 1.5 and Case II when 100 

Rrs(510)/Rrs(412) > 1.5. Although the Rrs method facilitates the classification of Case I and Case 101 

II waters, in situ measured Rrs data sets (visible light bands, 400–700 nm) obtained by cruises 102 
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are scarce and would be fewer still after matching the pigment data sets, especially for global 103 

ocean cruises. Thus, there is a need for another method to approximate the different water types 104 

for further PSC model analysis.  105 

Case I waters are usually distributed in deep bathymetric depth, while Case II waters 106 

are located in coastal areas, where the water depth would be shallower. Therefore, bathymetric 107 

depth may be a potential index to identify different water types. The continental shelf is defined 108 

as flat land extending from the subtidal line to the edge, whose slope gradient significantly 109 

increases, with a water depth from 50 m to 500 m (Xu et al., 1999). Shepard (1973) processed 110 

mass data sets and concluded that the mean bathymetric depth of the continental shelf edge was 111 

130 m. There is usually a 200 m isobath in the marine map, which is regarded as the depth of 112 

the continental shelf edge. In other words, within 200 m, the continental shelf is called the 113 

shallow continental shelf, and above 200 m, it is known as the deep continental shelf (Xu et al., 114 

1999). Kuenen (1950) simulated a swell with a wavelength of 180 m and amplitude of 6 m and 115 

found that it could not drive fine sand at 200 m. On the other hand, areas within 50 m water 116 

depth could be considered the interior part of the shallow continental shelf, with the region in 117 

the range of 50–200 m as the outer part. S. Liu et al. (2015) drew suspended particulate matter 118 

(SPM) from the East China Sea and found that the mass concentration isobath of SPM was 119 

more serried within the 50 m-isobath than in other areas, and nearly less than 0.5 mg l-1 in the 120 

whole water layers. This phenomenon had also been observed in the Kara Sea (Kravchishina 121 

et al., 2013), the southern North Sea (Eleveld et al., 2008), and the northwest Aegean Sea 122 

(Karageorgis et al., 2003). Therefore, the 50 m-isobath roughly represents the line of turbid 123 

coastal waters.  124 

The present study represented coastal and open ocean waters by their bathymetric depth 125 

(D), classified as open ocean waters when D > 200 m and coastal waters when D < 50 m. The 126 

water area within 50–200 m was seen as the mixed area, wherein the inherent optical properties 127 

are controlled by phytoplankton and other SPMs (such as silt). This study is the first to treat 128 

each water environment separately, i.e., shallow coastal waters (< 30 m) (Brewin et al., 2015). 129 

We aimed to: (1) gather different sub-data sets for different water types, (2) verify the feasibility 130 

of the assumption of the exponential three-component model and create robust PSC remote 131 

sensing models for the global ocean, and (3) evaluate the PSC concentration inversion between 132 

existing models and analyze the underlying mechanisms for those variations.  133 

2 Data and methods 134 

2.1 In situ data set 135 

Mass samples covering the global ocean were collected from different cruises and used 136 

to identify the pigment data using HPLC. In this study, the total chlorophyll-a concentration 137 

(C) and seven typical pigments, expressed as fucoxanthin (Fuco), peridinin (Per), 19’-138 

hexanoyloxyfucoxanthin (19’-Hex), 19’-butanoyloxyfucoxanthin (19’-But), alloxanthin (Allo), 139 

chlorophyll-b and divinyl chlorophyll-b (TChlb), and zeaxanthin (Zea), were used for further 140 

analysis. The entire data set was subjected to quality control to exclude uncertainty, which may 141 

be caused by the experimental method and unknown errors, from the data itself. We used 142 

several criteria to pretreat the entire data set: (1) samples collected within the top 10 m of the 143 
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water column; (2) C ≥ 0.001 mg m-3 (Uitz et al., 2006);  (3) the exclusion of samples with 144 

more than three inapparent diagnostic pigments (concentration is less than 0.001 mg m-3). A 145 

total of 5372 samples were left after applying the criteria. The geographical distribution of 146 

these samples is shown in Figure 1. 147 

ETOPO1 is a 1 arc-minute global relief model of the Earth's surface that integrates land 148 

topography and ocean bathymetry (Amante et al., 2009) and downloaded from 149 

http://www.ngdc.noaa.gov/mgg/global/. In this study, the grid-registered version of ETOPO1 150 

was used to describe the bathymetric depth at the location of each sample using a minimum 151 

spatial (latitude and longitude) difference match-up code. First, the positive value, standing for 152 

land, was set to nan (a constant defined in MATLAB, meaning not a number), while the 153 

negative value represented the water depth. Samples with a bathymetric depth >200 m were 154 

used to compile the open ocean sample data set (Data set A, 40.1%), which represents Case I 155 

waters, while samples with a bathymetric depth <50 m were used to compile the coastal data 156 

set (Data set B, 27.7%), representing Case II waters. The remaining samples, located within 157 

50–200 m, were used to compile a third data set, Data set C (32.2%), for the mixed water 158 

conditions controlled by inorganic and organic particulate matter. 159 

 160 

Figure 1. Locations of in situ data (≤10 m depth) used in this study. The letters denote the 161 

source of data, and the number in parenthesis denotes the number of samples. Sources of the 162 

data are as follows: A-B denotes data in the marginal seas of China (D. Sun et al., 2019) and 163 

South Korea; C denotes data in the southeastern South China Sea (Bracher et al., 2014); D-X: 164 

denotes data around the Australian (IMOS and GO-SHIP cruises, https://marlin.csiro.au/); Y-165 

AA: denotes data in the India Ocean (including I06S_2019, I07N_2018, and i8si9n cruises); 166 

AB-AP: denotes data in the Atlantic Ocean (including ANT series, AMT28, BATS, ECOA-1, 167 

CV series, LOBO_2009, MOVE series, NASA_3Rivers, malina_admundsen_leg2, 168 

icescape2010, icescape2011, msm18-3, and naames_4 cruises, and NOMAD data set); AQ-AR: 169 

http://www.ngdc.noaa.gov/mgg/global/
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denotes data in the Gulf of Mexico (ch-12-10 and JUN17GOM cruises); AS-BA: denotes data 170 

in the eastern Pacific Ocean [including ACIDD_2017, EXPORTSNP, KM14-16, L'Atalante 171 

(Moutin et al., 2013), ICESCAPE2011, KM14-16, p06_2017_leg2, P16N, and pb1–311 172 

cruises]; BB-BG: denotes data around Antarctica (including BEAGLE, p16s, i89si9, io6s, 173 

NAAMES_1, p188, s04p, JR18005, KY1804, P18, PS117 cruises). The total number of 174 

samples used was 5372. The cruises without citation can be obtained on the Seabass website 175 

(https://seabass.gsfc.nasa.gov/cruise/) 176 

2.2 Satellite data 177 

The visible and infrared imager/radiometer suite (VIIRS) is a multi-disciplinary 178 

instrument that flows on the Joint Polar Satellite System (JPSS) series. The JPSS-1 satellite 179 

was launched in November 2017. VIIRS is designed as the successor to MODIS for Earth 180 

science data product generation, which has 22 spectral bands ranging from 412 nm to 12 µm. 181 

In this study, the annual total chlorophyll-a concentration product at a resolution of 9 km in 182 

2020 was downloaded from the NASA Ocean Color data website 183 

(https://oceandata.sci.gsfc.nasa.gov/VIIRS-JPSS1/Mapped/Annual/9km/chl_ocx/). The total 184 

chlorophyll-a concentration was derived from the OCX algorithm (Chl_ocx, mg m-3) (O'Reilly 185 

et al., 2000). 186 

2.3 Phytoplankton size classes quantification 187 

2.3.1 Diagnostic pigment analysis  188 

Diagnostic pigment analysis (DPA) is an effective method for estimating the 189 

chlorophyll fraction of different phytoplankton size structures based on pigment data (Brewin 190 

et al., 2015; Uitz et al., 2006; Vidussi et al., 2001). In the three sub-datasets (Data sets A, B, 191 

and C), the weighted chlorophyll-a concentration, Cw, was defined as the sum of the products 192 

between seven weights of seven diagnostic pigments and corresponding concentration, shown 193 

as: 194 

7

w 1 i ii
C Wc

=
=                 (1) 195 

where Wi is the weight of the i-th pigment, and ci is the i-th pigment concentration (the order 196 

is shown in Table 1). Initially, 2/3 samples were selected from increasing ranked samples in 197 

each sub-data set to conduct DPA, and 1/3 were used to compare the performance with that in 198 

published works. We then deduced the weights in each sub-dataset using multiple regression 199 

analysis, as listed in Table 1. The regression in different sub-datasets is highly significant, with 200 

R2 values of 98.1%, 96.2%, and 97.4% for the open ocean, coastal, and mixed water samples, 201 

respectively (p<0.001). The weight of Allo is consistent with H. Liu et al. (2021), which is 202 

based on the data set in the marginal seas of China. 203 

For deducing the chlorophyll-a fraction of the three size classes from remote sensing, 204 

the method described by Devred et al. (2011) and Brewin et al. (2015) was used because of the 205 

intersection contribution of Fuco, 19’-Hex, and 19’-But on the Micro and Nano size classes. 206 

The picophytoplankton fraction (Fp) was estimated as follows: 207 

https://seabass.gsfc.nasa.gov/cruise/
https://oceandata.sci.gsfc.nasa.gov/VIIRS-JPSS1/Mapped/Annual/9km/chl_ocx/
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The nanophytoplankton fraction (Fn) was estimated as follows: 209 
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        (3) 210 

where c1,n refers to the part of the Fuco pigment (c1) contributed by nanophytoplankton, which 211 

was estimated by the concentration of 19’-Hex (c3) and 19’-But (c4) as follows (Brewin et al., 212 

2015; Devred et al., 2011): 213 

 1 10 3 2 10 4log ( ) log ( )

1,n 10
q c q c

c
+

=               (4) 214 

where the parameters, q1 and q2, are 0.356 and 1.190, respectively (Devred et al., 2011; Werdell et 215 

al., 2005; Werdell et al., 2013). Lastly, the microphytoplankton fraction (Fm) was estimated as 216 

follows: 217 

2

1 1,1
m

w

i i ni
W P W P

F
C

=
−

=


               (5) 218 

The chlorophyll concentration of each size class was obtained by multiplying C as 219 

follows: 220 

m m

n n

p p

n,p n p

C F C

C F C

C F C

C C C

= 

= 

= 

= +

                (6) 221 

where subscripts m, n, and p represent Micro, Nano-, and Pico, respectively, and the "p,n" 222 

refers to the combined part of the Pico and Nano. 223 

Table 1. Diagnostic pigments used as biomarkers and their taxonomic significance 224 

Diagnostic pigments Abbreviations 
Taxonomic 

group 

Size 

class 

Weights of Data set 

p 

A B C 

Fucoxanthin (c1) Fuco Diatoms M/N 1.84 1.66 1.83 <0.01 

Peridinin (c2) Perid Dinoflagellates M 0.22 0.61 1.60 <0.01 

19’-Hexanoyloxyfucoxanthin (c3) 19’-Hex Prymnesiophytes M/N 0.66 0.44 1.31 <0.01 

19’-Butanoyloxyfucoxanthin (c4) 19’-But Pelagophytes N 0.62 0.75 1.42 <0.01 
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Alloxanthin (c5) Allo Cryptophytes N 3.16 3.97 6.24 <0.01 

Total chlorophyll-b (c6) TChlb 
Chlorophytes, 

Prochlorophytes 
P 1.78 2.04 0.65 <0.01 

Zeaxanthin (c7) Zea 
Cyanobacteria, 

Prochlorophytes 
P 1.23 1.36 1.15 <0.02 

2.3.2 Three-component model 225 

The exponential three-component model is based on the assumption that the total 226 

chlorophyll concentration contains two parts: one that contributes less in low chlorophyll 227 

concentration but can grow to a high value with increasing C, including Micro (Cm) and 228 

nanophytoplankton (Cn), and another that dominates low C and cannot grow above an upper 229 

limit value, including the combined nano- and picophytoplankton (Cn,p) and picophytoplankton 230 

(Cp) (Brewin et al., 2011; Brewin et al., 2014; Brewin et al., 2015; Devred et al., 2011; 231 

Sathyendranath et al., 2001; X. Sun et al., 2018). The three-component model was first used to 232 

inverse Cm and Cn,p, and then used again to divide Cn and Cp. The exponential equations are as 233 

follows: 234 

( )

( )

m

n,p n,p n,p

m

p p p

n n,p p

m n,p

1 exp

1 exp

C C S C

C C S C

C C C

C C C

 = − −
 

 = − −
 

= −

= −

              (7) 235 

where Cn,p
m and Cp

m are the upper limit values of the combined Nano and Pico, and Pico. Sn,p 236 

and Sp determine the chlorophyll increase in the two size classes with increasing total 237 

chlorophyll (C). In published models, the products Cn,p
m×Sp,n and Cp

m×Sp had been deduced as 238 

constants. In this study, we had defined these values (0.94 and 0.8, respectively) as reported by 239 

Brewin et al. (2015) for the same study area.  240 

D. Sun et al. (2019) developed a power function three-component model to deduce the 241 

PSCs chlorophyll concentration for coastal waters. However, they also adopted the exponential 242 

model to inverse Cm and Cn,p in the first step, and then used the power function as shown below: 243 

p

n

b

d

C aC

C cC

=

=
                 (8) 244 

where a, b, c, and d are coefficients. A schematic representation of the primary processes used in this 245 

study is provided in Figure 2, including data pretreatment, model development, and the final satellite 246 

application. 247 
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 248 

Figure 2. Schematic flow chart showing the data pretreatment, model development, and 249 

satellite application processes of phytoplankton size classes from measured HPLC data. 250 

2.4 Performance matrix  251 

Data processing, including data pretreatment, DPA processes, model development, and 252 

satellite application, was performed using MATLAB software (R2018b) (MathWorks Inc., 253 

Natick, MA). Several indicators were used to assess the performance of the DPA methods and 254 

the models developed in this study, including the root-mean-square error (RMSE), mean 255 

absolute percentage error (MAPE), determination coefficient (R2), and mean ratio (MR). These 256 

metrics were calculated as follows: 257 

( )
2

1

1
RMSE

n

i ii
x y

n =
= −              (9) 258 

1

1
MAPE 100%

n i i

i
i

x y

n x=

−
=              (10) 259 

1

1
Mean ratio

n i

i
i

y

n x=

 
=  

 
              (11) 260 

where n is the number of samples, xi is the measured value, and yi is the estimated value. 261 

3 Results 262 

3.1 Characteristics of three sub-datasets 263 

The three sub-datasets, shown as Data sets A, B, and C for the open ocean, coastal, and 264 

mixed areas, respectively, exhibited wide variations in terms of pigment concentration. The 265 

total chlorophyll concentration (C) showed markedly different features in Data set A (Figure 266 

3A), ranging from 0.01–10 mg m-3, with a maximum frequency (96.5%) within 0.04–2 mg m-267 
3. This threshold value is the same as the upper limit of the chlorophyll-a concentration in Case 268 

I waters reported by Morel (1988). The ranges of Data set B (Figure 3C) and C (Figure 3B) 269 

were 0.07–60 and 0.04–30 mg m-3, and the majority (97.4% and 99.5% for Data sets B and C) 270 

fell within a similar section, 0.1–30 mg m-3. 271 
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The ratios of the seven diagnostic pigment concentrations to C were shown in Figure 272 

3D-J. Although the three sub-datasets were determined by bathymetric depth, the distribution 273 

of the ratios revealed variable patterns in different water environments. For example, the TChlb 274 

(Figure 3I) and Zea (Figure 3J), which appeared most in the cyanobacteria cells (Kramer et al., 275 

2019), the dominant group in Case I waters, had both the highest ratio at low C and a decreasing 276 

trend with increasing C, whereas the percentage of Fuco showed a positive trend. Fuco and 277 

Perid were often found in diatoms and dinoflagellates, often regarded as large cells and 278 

typically found in coastal waters (Bricaud et al., 2004; Devred et al., 2006; IOCCG, 2014; D. 279 

Sun et al., 2019; Uitz et al., 2006; S. Wang et al., 2015). Generally, the coverage areas of Data 280 

sets A and B are separated, while those of mixed areas (Data set C, green scatters in Figure 3D-281 

J) tend to overlap. Some diagnostic pigment ratios of Data set C are closer to open ocean 282 

samples (such as Allo and Zea), while others are closer to the coastal samples (such as Fuco 283 

and 19’-But). Thus, despite being a rough and biased method to obtain the three sub-datasets, 284 

the biological characteristics at least partially reveal the characteristics of Case I, Case II, and 285 

mixed water environments. 286 

 287 

Figure 3. Pigment information of the three sub-datasets. A-C: The frequency distribution of in 288 

situ C in the different sub-datasets. The red line is a log-normally distributed fitting curve. D-289 

J: Variations of the diagnosis pigments to C ratios as a function of C. The blue circle denotes 290 

the sample in open ocean waters, green in mixed areas, and red in coastal waters. 291 

3.2 Validation results of several DPA weights 292 

The accuracy validation of C and Cw was conducted as shown in Figure 4, together with 293 

the results from weights reported in five previous studies (Brewin et al., 2014; Brewin et al., 294 



manuscript submitted to Journal of Geophysical Research: Oceans 

 

 

2015; D. Sun et al., 2019; Uitz et al., 2006; Uitz et al., 2008) based on the validation samples 295 

in the three sub-datasets (see section 2.3.1). The left y-axis denotes R2 and MR, and it would 296 

be more accurate when the two indicators are closer to 1, while the lowest error of RMSE and 297 

MAPE (right y-axis) is 0. Therefore, in the open ocean samples, the DPA weights in this study 298 

showed the best performance (R2=0.95, RMSE=0.14 mg m-3, MR=1.02, and MAPE=19.15%), 299 

and the second-best was that reported by Brewin et al. (2015), which was slightly better than 300 

Brewin et al. (2014) (Figure 4A). The situation in the coastal area is nearly the same as that in 301 

Figure 4A, whereas our new DPA weights performed best (R2=0.94, RMSE=0.17 mg m-3, 302 

MR=1.02, and MAPE=19.70%) (Figure 4B). Notably, although the study by D. Sun et al. (2019) 303 

focused on the coastal water in the China marginal seas, the performance of DPA weights did 304 

not have a satisfactory result. It differed in the mixed water area, where the weights reported 305 

by D. Sun et al. (2019) had the best estimation of Cw (R2=0.97, RMSE=0.59 mg m-3, MR=1.05, 306 

and MAPE=15.5%) compared to the other studies, with the accuracy of the present study as 307 

the second-highest (R2=0.96, RMSE=0.61 mg m-3, MR=0.86, and MAPE=17.2%) (Figure 4C). 308 

Uitz et al. (2006) and Uitz et al. (2008)performed well in the open ocean and coastal waters but 309 

did not work well in mixed waters, related directly to the original data set in each study. 310 

 311 

Figure 4. Error indexes of the validation between C and Cw. Different DPA weights (referred 312 

to studies in the x-axis) deduced the Cw based on Eq. 1.  313 

3.3 Model optimization 314 

This study aims to update and improve the remote sensing algorithms for PSCs in global 315 

oceans, especially in coastal and mixed waters. We considered DPA-deduced PSCs as the actual 316 

value to enhance the new remote sensing models. In open oceans, the three-component model 317 

is widely applied to retrieve PSCs, achieved by repeating the application of the model 318 

assumption. It assumes that the total chlorophyll concentration can be divided into two 319 

dominant parts: one that grows to a high concentration with increasing C but is not dominant 320 

at low C, and one that dominates the chlorophyll concentration at low C and is incapable of 321 

growing beyond a specific concentration (Sathyendranath et al., 2001). In the three-component 322 

model, the assumption above was applied first to divide C into Cm and Cn,p (Cn+Cp). However, 323 

this may not be apparent when the scatters of Cp and Cn,p were plotted as a function of C (Figure 324 

5), especially in the coastal data set (Figure 5B). Therefore, there is an urgent need to address 325 

the effective retrieval of PSCs by further study.  326 
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 327 

Figure 5. The chlorophyll concentrations of different size structures (Cn,p and Cp) as a function 328 

of total chlorophyll-a concentration (C) in different sub-datasets based on the DPA weights in 329 

this study. The black line is the 1:1 line. 330 

3.3.1 Coastal samples 331 

According to the Cn,p and Cp distributions against C in Figure 5B, these can grow to a 332 

high value with increasing C, with trends closer to a power function distribution. Thus, we 333 

designed the power function definition of Cn,p and Cp as follows: 334 
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where a, b, c, d, e, and f are the coefficients of each function and deduced by the fmincon 336 

function in MATLAB, which can find a constrained minimum of a function of several variables 337 

with a cost function (Eq. 13): 338 
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where ˆ
iC  and PSC,iC  are the estimated and measured chlorophyll concentrations of the i-th points 340 

under the same size structures, and N is the sample number. The coefficients for a, b, c, d, e, 341 

and f are 0.434, 0.627, 0.514, 0.920, 0.388, and 1.145, respectively. We also reconstructed Cn,p 342 

as an exponential function based on the format of the two-component model, while Cp and Cn 343 

were the power functions in Eq. 12. The PSC retrievals of the two versions were shown in 344 

Figure 6. The inversion results of Cm both showed high consistency with the measured values 345 

for large chlorophyll concentrations. However, differences were observed in inverse (Cm < 1 346 

mg m-3, approximately) (Figure 6A). The Cm scatters nearly all located around the 1:1 line 347 

(Figure 6A), whereas the RMSE values were 0.55 and 0.46 mg m-3, and MAPE values were 348 

54% and 65% for exponential and power functions. As expected, Cn,p from the new power 349 

function-based model had a better fit than the exponential function-based model, with more 350 

data clustered approximately 1:1 around the line, especially at high chlorophyll concentrations 351 
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(Figure 6B). The R2 of the power function-based model was 0.54, and the RMSE was 0.46 mg 352 

m-3, which was better than that of the exponential function-based model (R2=0.38 and 353 

RMSE=0.55 mg m-3). Meanwhile, the estimated Cn and Cp were also compared with the in situ 354 

values in Figure 6C-D, while the power function-based model was found to perform better than 355 

the exponential function-based model. 356 

We also deduced the new coefficients of the exponential three-component model and 357 

retrieved the PSC concentration based on the coastal samples. The results showed good 358 

performance at low concentrations but were dispersed once these reached their upper limit. The 359 

RMSE, R2, and MAPE values were 0.28 mg m-3, 0.45, and 295% for Cn and 0.36 mg m-3, 0.16, 360 

and 230% for Cp, respectively (figure not shown). 361 

 362 

Figure 6. Comparison between modeled and measured PSCs in coastal areas based on the 363 

validation data set (n=577). Red stars are from Cn,p based on the exponential model, and blue 364 

circles represent the PSCs from the new power function model (Eq. 12).  365 

3.3.2 Open ocean samples 366 

The exponential three-component model is still applicable in open ocean waters; 367 

therefore, we refitted the model coefficient and tested its accuracy (Figure 7). The PSC majority 368 

of the validation samples was found along the 1:1 lines (dashed lines in Figure 7). However, 369 

some disperse points increased the error and resulted in overestimation. Cm had the highest R2 370 

(0.95) and a high MAPE (334%), indicating the total deviation between the modeled and 371 

measured values (Figure 7A). The MAPE and MR in the Cp (Figure 7C) may be affected by 372 

the discrete points. If these points are removed, the error indices will perform better. On the 373 

other hand, owing to the structure of the three-component model, the upper limits of the 374 

modeled concentration in Cn,p, Cn, and Cp were still visible at high chlorophyll concentrations 375 
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(Figure 7B-C). 376 

 377 

Figure 7. PSC inversions based on the three-component model in open ocean areas based on 378 

the validation data set (n=718). Red stars denote Cn, and blue stars denote Cp. 379 

3.3.3 Model development for the intermediate region (50–200 m) 380 

Figure 8A-D showed the retrieval of PSCs based on the new coastal and open ocean 381 

models against the validation data set of sub-dataset C (n=465). The sub-dataset C represents 382 

bathymetric depths from 50 to 200 m, which are primarily located on the continental shelf, 383 

mainly affected by turbid coastal waters and open ocean clear waters. Therefore, we assumed 384 

that the coastal and open ocean waters all had a particular contribution to the phytoplankton 385 

size structure in this area. The microphytoplankton concentration from the open ocean model 386 

performed slightly better than the coastal model, where R2, MAPE, and MR for the former 387 

were 0.87, 42.7%, and 1.16, respectively. Similar to Cm, the open ocean model also performed 388 

slightly better than the coastal model in Cn inversion (Figure 8C). However, the coastal model 389 

held an advantage in estimating Cn,p (Figure 8B) due to eliminating the upper limit 390 

concentration. The R2 of Cn,p from the open ocean and coastal models was 0.06 and 0.31 (Figure 391 

8B), while Cp was 0.002 and 0.17 (Figure 8D), respectively. Compared with other size classes, 392 

the inversion of Cp was considerably overestimated in both models, indicating that the 393 

phytoplankton conditions may be more complex. Further study will be needed to explore this 394 

inaccuracy. 395 

Considering the performance of the two models, we decided to use a smooth function 396 

(α and β) to retrieve the PSC concentration in the range of 50–200 m, as described by (Hu et 397 

al., 2012). In general, the bathymetric depth indicates the weight of the PSC concentration; that 398 

is, the coastal model would contribute more when the points are closer to 50 m, while the open 399 

ocean model would contribute more closer to 200 m. A detailed format of the calculations was 400 

given in Eq. 14-15, and new PSC inversion in mixed water areas was shown in Figure 8E-F, 401 

and the performance of PSCs improved to some extent. However, this represents a weighted 402 

average of the coastal and open ocean models, where the picophytoplankton remained 403 

overestimated. 404 
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where PSCM50, PSCM50–200, and PSCM200 stand for the PSC model in coastal waters, mixed and 406 

open ocean area, respectively. Smooth indexes, α and β, are defined as: 407 
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where D is the water depth.  409 

 410 

Figure 8. Results of the inversion of the PSC concentration in the validation data set of mixed 411 

waters (n=465). A-D: PSCs performance of the coastal model (red stars) and open ocean model 412 

(blue circles). E-H: PSC inversions based on Eq. 14–15.  413 

3.4 Spatial distribution of PSCs 414 

To visualize the distribution of the PSC proportions around the global oceans, we 415 

applied the new models to the VIIRS satellite data, as shown in Figure 9. The satellite data was 416 

the annual total chlorophyll concentration for the 2020 year. Another local region, the northwest 417 

Pacific Ocean (90°E – 180°E, 0–60°N), was also chosen for detailed information on the 418 

continental shelf (Figure 9E-H). 419 

The general size structure spatial distribution feature agreed with that reported in the 420 

literature (Brewin et al., 2015; Hirawake et al., 2011; Mouw et al., 2010; Uitz et al., 2006), but 421 

also showed some variation. As expected, microphytoplankton (Fm) dominated the nearshore 422 

area, especially in the middle and high latitude area in the Northern Hemisphere (Figure 9A) 423 

and also appeared in the great calcite belt (-45°N), a region of elevated upper ocean calcite 424 

concentration in spring and summer in the Southern Ocean derived from coccolithophores (W. 425 

M. Balch et al., 2005; Smith et al., 2017). This zone is also known for its diatom predominance 426 

(William M. Balch et al., 2016; Rosengard et al., 2015; Smith et al., 2017). The distribution in 427 

Figure 9E showed a similar feature to that of the global oceans. However, although the 428 
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bathymetric depth in the eastern region of the Kuril Islands can be up to 4,000–6,000 m, Fm 429 

still occupies approximately 50% of the phytoplankton bloom in those areas. 430 

The combined proportion of nano- and picophytoplankton (Fn,p, Figure 9B) showed an 431 

inverse characteristic with Fm. The Nano proportion (Fn) was more stable in the whole area but 432 

was relatively higher (about 30%–40%) in mid-to-high latitudes and lower in the subtropical 433 

gyres (approximately 10%) (Figure 9C). In comparison, picoplankton (Fp) dominated the 434 

subtropical regions (60%–70%) and contributed more (50%–60%) to the total chlorophyll-a 435 

concentration in the south of ‒40°N than the middle and high-latitude (30%–50%) in the 436 

Northern Hemisphere (Figure 9D). The Fn in Figure 9G was slightly lower than that reported 437 

in previous studies (Brewin et al., 2015; Roy et al., 2013). G. Wang et al. (2013) reported that 438 

the Fn was approximately 35% and 10% for summer and winter in the northern South China 439 

Sea, respectively, while Fp was 60% and 80% in the same region. Compared with the 440 

distribution shown here, the results reported by G. Wang et al. (2013) are consistent with our 441 

results in Figure 9G-H. 442 

 443 

Figure 9. Annual averages of PSCs proportions (Fm, Fn,p, Fn, and Fp) in 2020 based on the new 444 

model in the global oceans (A-D), together with that in the northwest Pacific Ocean (E-H). 445 
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4 Discussion 446 

4.1 Performance of three-component models 447 

This study aims to assess the usability of three-component models and update the 448 

coefficients of those models based on different water types. Three-component models in the 449 

exponential format rely on assumptions that limit their inversion accuracy. In this study, we 450 

assessed the applicability of the performance of published models in coastal and open ocean 451 

data sets. In total, 10 series coefficients of the exponential three-component models were 452 

collected in this study (Table 2).  453 

Table 2. Parameter values for Eq. 7 derived in other studies. 454 

Study 
Parameters 

Location n 
Cn,p

m Sn,p Cp
m Sp 

Brewin et al. (2010) 1.060 0.849 0.110 6.636 Atlantic 1935 

Brewin et al. (2011) 0.780 1.141 0.150 5.000 Global 256 

Devred et al. (2011) 0.550 1.818 0.150 6.667 NW Atlantic 733 

Robert et al. (2012) 0.940 1.032 0.170 4.824 Indian Ocean 712 

Brotas et al. (2013) 0.360 2.556 0.070 11.000 NE Atlantic 1100 

Brewin et al. (2014) 1.790 0.525 0.370 1.784 Atlantic Ocean 816 

Lin et al. (2014) 0.950 0.990 0.260 3.500 South China Sea 166 

Brewin et al. (2015) 0.770 1.221 0.130 6.154 Global 5841 

X. Sun et al. (2018) 0.329 3.040 0.052 17.577 marginal seas of China 180 

D. Sun et al. (2019) 1.692 0.591 / / marginal seas of China 246 

The coastal data set was collected from bathymetric depths <50 m, which previous 455 

studies may not consider (Brewin et al., 2010; Brewin et al., 2015; Devred et al., 2011). These 456 

nearshore waters usually contain abundant inorganic suspended particulate matter and large 457 

phytoplankton, complicating the bio-optical conditions and thus bringing greater uncertainty 458 

to size structure inversion (D. Sun et al., 2017; D. Sun et al., 2019). The PSC fraction inversion 459 

was plotted in Figure 12 based on the coefficients in Table 2, together with their error indices 460 

in the coastal samples. Generally, the inversion of microphytoplankton chlorophyll 461 

concentration performed better than the other two size classes, indicating that the model 462 

assumption for dividing Cm and Cn,p was effective. The coefficients reported by Brewin et al. 463 

(2014) and D. Sun et al. (2019) had nearly the same or higher accuracy in retrieving Cm than 464 

other studies, where RMSE was about 0.89 mg m-3, MAPE was 80.6%, and MR was about 1.1 465 

(Figure 10J). The error of nano- and picophytoplankton retrieval increased to a high range, 466 

especially for Cp. The mean R2 in Figure 10K was approximately 0.24, and MAPE is almost 467 

240%, whereas Cp is 0.73 mg m-3, 0.07, and 77% for RMSE, R2, and MAPE, respectively, 468 

shown in Figure 10L. Note that D. Sun et al. (2019) developed their coefficients based on the 469 

coastal samples in the marginal seas of China and thus had relatively better results in Cp 470 

(R2=0.19, RMSE=0.63 mg m-3, MAPE=94%). This may indicate that the method reported by 471 

D. Sun et al. (2019) is feasible for PSC chlorophyll concentration inversion in coastal waters. 472 

This method was developed in the present study and showed better results. 473 
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The exponential three-component model was much better retrieval in the open ocean 474 

data set (Figure 11). Surprisingly, D. Sun et al. (2019) reported the best Cm inversion, and the 475 

second-best was from Brewin et al. (2014). The Cn inversion showed a significant improvement 476 

in the open ocean data set (Figure 11D-F) with a mean R2, RMSE, and MAPE of 0.49, 0.12 mg 477 

m-3, and 108%, respectively. Lin et al. (2014) reported the best estimation, followed by Devred 478 

et al. (2011). Notably, the chlorophyll range of Cn was approximately 0.001–2 mg m-3, which 479 

was smaller than that in the coastal area (0.005–10 mg m-3) (Figure 10D-F), and the upper limit 480 

was less apparent in open ocean waters. Meanwhile, the Cp also performed better , with a mean 481 

R2, RMSE, and MAPE of 0.24, 0.11 mg m-3, and 231%, respectively. Unlike the coastal area, 482 

the low picophytoplankton chlorophyll (0.01–0.1 mg m-3) was highly consistent with the values 483 

measured in open ocean waters (Figure 11G-I), close to the 1:1 line, with an upper limit that 484 

would still be evident at increasing concentrations. This phenomenon has also been reported in 485 

previous studies (Brewin et al., 2015; X. Sun et al., 2018). Therefore, the successful application 486 

of these exponential three-component models indicates the reasonableness of the primary 487 

hypothesis in clear open ocean waters. 488 

 489 

Figure 10. Modeled chlorophyll plotted against in situ chlorophyll in coastal samples, and the 490 

error indexes for each of the size fractions based on PSCs remote sensing models (three-491 

component model) in several studies. The x-axis value in A-I is deduced from the DPA 492 

coefficients based on Data set A. The number 1–10 in the x-axis of J-L denotes the studies from 493 

left to right in Legend A. 494 
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 495 

Figure 11. Modeled chlorophyll plotted against in situ chlorophyll in open ocean samples. 496 

Other information is the same as in Figure 10. 497 

4.2. Limitation of the three-component model 498 

The hypothesis played a vital role in the exponential three-component model. However, 499 

Cn,p and Cp were found to increase to a wide range as C increased, as shown in Figure 5A; in 500 

other words, there was no fixed upper limit of Cn,p (Cn,p
m) and Cp (Cp

m) for the exponential 501 

three-component models in coastal waters. For this reason, PSC retrieval would not always 502 

work, especially in Cn,p and Cp. Thus, we further selected the samples at deeper bathymetric 503 

depth (>1000 m) from the open ocean data set (Data set A) and refined the samples in four 504 

bathymetric depth ranges, including 1000–2000 m, 2000–3000 m, 3000–4000 m, and >4000 505 

m. As a result, there were no noticeable features that could be used to distinguish the wide Cn,p 506 

and Cp ranges.  507 

Next, we classified the samples in different locations. The four main ocean areas were 508 

divided approximately according to their accepted sites: the eastern Pacific Ocean (-180°E – -509 

70°E), the Atlantic Ocean (-70°E – -15°E), the Indian Ocean (-15°E – 110°E), and the western 510 

Pacific Ocean (110°E – 180°E). Then, the north-south dividing line in each area was 511 

determined according to the Cn,p and Cp distributions against C. The Cn,p and Cp distributions 512 

in the Middle East–Pacific, North Atlantic, North Indian Ocean, and Northwest–Pacific were 513 

found to match the exponential three-component models well, as shown in Figure 12A-B, and 514 

the stray points in Figure 12C-D were mainly gathered in the South and Northeast Pacific. 515 

Finally, the four main ocean areas were divided into two or three sections: north, middle, and 516 

south areas, as shown in Figure 12E. As a result, we found that the boundary in the four main 517 
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oceans was consistent at approximately 40°S–30°S. This phenomenon was unexpected and 518 

indicates that different pigment information needs to be further considered in the South Ocean. 519 

The new open ocean models (section 3.3.2) were applied again to the middle and north areas 520 

(not including the North Pacific area in Figure 12E), and the PSC chlorophyll concentration 521 

was plotted in Figure 12F-G. The inversion accuracy had a noticeable improvement, in 522 

particular for Cn and Cp, where RMSE, R2, and MPAE were 0.1 mg m-3, 0.7, and 47.3% for Cn 523 

and 0.06 mg m-3, 0.64, and 26.2% for Cp. 524 

 525 

Figure 12. A-D: The combined nano- and picophytoplankton concentrations (Cn,p, A and C) 526 

and picophytoplankton chlorophyll concentration (Cp, B and D) against the total chlorophyll-a 527 

concentration in the samples at a bathymetric depth >1000 m. E: Area classification of the 528 

global oceans. F-G: PSC concentration inversion of the samples in subplots A and B. 529 

4.3. Implications for future research work 530 

The current exponential three-component model for PSCs remains the mainstream 531 

model for the study of phytoplankton in the world oceans. Compared with other retrieval 532 

methods, the advantage of the three-component model lies in assumptions based on in situ 533 

measured pigment data sets and its simple format. The analysis above shows that the 534 

progressive maximum value in the hypothesis (Cn,p
m and Cp

m) may be variable in different 535 

ocean areas, as reported by previous studies (Table 2). Therefore, the mechanism by which 536 

these important parameters are distributed worldwide deserves further investigation, and the 537 

present study provides a foundation for future work in this regard. Furthermore, the accuracy 538 

of the estimation of Cp was low in mixed ocean waters and will also require further study. 539 

Although different methods were applied to deduce Cp, few improvements were obtained (data 540 

not shown). 541 

5 Conclusions 542 

The development of the three-component models for PSC inversion at different spatial 543 

scales could provide novel insights into the relationship between phytoplankton and ocean 544 

environment variability. The current exponential three-component model is designed for Case 545 

I waters, and further work is required to determine whether the model parameters or the primary 546 
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relationship between PSC concentration and chlorophyll-a concentration remain unchanged. 547 

This study divided global ocean data sets into three parts with different pigment distribution 548 

features by bathymetric depth (D): coastal water when D < 50 m, open ocean water when D > 549 

200 m, and mixed areas when D = 50–200 m. We analyzed the relationship in each part and 550 

built three individual models. The verification results showed that most PSC scatters were 551 

distributed along the 1:1 line, where the mean R2 values were 0.89, 0.53, and 0.39 for Micro, 552 

Nano, and Pico, respectively. The assessment of the other ten exponential models indicated that 553 

the power three-component model performed better than the exponential model in coastal data 554 

sets. An underestimation for the Nano and Pico chlorophyll concentrations was apparent, 555 

mainly when the Pico concentration was larger than 0.2 mg m-3 in the open ocean samples. We 556 

further classified the DPA-derived PSC concentration distribution in the open ocean samples 557 

(D > 1000 m) and found that the Nano and Pico concentrations south of ‒40°N presented a 558 

highly dispersive state, especially in Pico, but consistent with the assumption in the north of 559 

−40°N. The results in mixed areas showed less stability in the Pico inversion, which may be 560 

caused by its complex water conditions. The separate discussions of the PSC models provide a 561 

comprehensive understanding of the phytoplankton size structures found in different water 562 

environments. These findings provide a basis for related studies on phytoplankton, including 563 

those on the characteristics of the pigment package effect, the primary production proportion 564 

of varying size structures, and the response of phytoplankton to climate change. 565 
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