Microplastic Deposition and its Response to Extreme Flood Events: A Case Study of Yangtze Estuary, China

Hongyu Chen¹, Yu Cheng¹, Ying Wang¹, Yongcheng Ding¹, Chenglong Wang¹, Xuguang Feng², Qinya Fan¹, Feng Yuan¹, Guanghe Fu¹, and Xinqing Zou¹

¹Nanjing University ²Collaborative Innovation Center of South China Sea Studies, Nanjing University

November 24, 2022

Abstract

Microplastics are ubiquitously found in the environment; however, our knowledge about their storage and mechanism in the burial record is scarce. We selected a core (CCYY1) in the tidal flat of the Yangtze Estuary and investigated its microplastic pollution and sediment grain size. Both plastic production and sediment grain size were significantly positively correlated with microplastic abundance, revealing that the distribution of microplastics in the core was mutually affected by plastic production and extreme flood events. Moreover, the sedimentary record increased rapidly in microplastic abundance and microplastic diversity during the historic extreme flood. The resuspension of upstream microplastics and erosion of land-based microplastics by heavy rain may be responsible for the increase during flood events. Microplastic abundance had a significant period of 8 a and 22 a, indicating the influence of El Niño-Southern Oscillation and solar activity. This study also proposed microplastics as a proxy index for palaeo-flooding.

Hosted file

essoar.10507731.1.docx available at https://authorea.com/users/547045/articles/602623microplastic-deposition-and-its-response-to-extreme-flood-events-a-case-study-ofyangtze-estuary-china Hongyu Chen $^{1,2},$ Yu Cheng $^{1,4},$ Ying Wang $^{1,2},$ Yong
cheng Ding $^{1,2},$ Chenglong Wang $^{1,2,3},$ Xugu
ang Feng $^{1,5},$ Qinya Fan $^{1,2},$ Feng Yuan
 $^{1,2},$ Guanghe Fu $^{1,2},$ Xinqing Zou 1,2,3,*

 1 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China

 2 Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China

 3 Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China

⁴ Geological Survey of Jiangsu Province, Nanjing, 210018, China

⁵ Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China

Corresponding author: Xinqing Zou (zouxq@nju.edu.cn)

Key Points:

- Plastic production and flood events jointly affect microplastic distribution in the burial record of the Yangtze Estuary.
- The increase of microplastic abundance and diversity in the estuary is caused by the erosion of upstream and land-based during flood.
- Microplastic abundance corresponds well to historic extreme floods and the hydrological cycle of the Yangtze River (8 a and 22 a).

Abstract

Microplastics are ubiquitously found in the environment; however, our knowledge about their storage and mechanism in the burial record is scarce. We selected a core (CCYY1) in the tidal flat of the Yangtze Estuary and investigated its microplastic pollution and sediment grain size. Both plastic production and sediment grain size were significantly positively correlated with microplastic abundance, revealing that the distribution of microplastics in the core was mutually affected by plastic production and extreme flood events. Moreover, the sedimentary record increased rapidly in microplastic abundance and microplastic diversity during the historic extreme flood. The resuspension of upstream microplastics and erosion of land-based microplastics by heavy rain may be responsible for the increase during flood events. Microplastic abundance had a significant period of 8 a and 22 a, indicating the influence of El Niño-Southern Oscillation and solar activity. This study also proposed microplastics as a proxy index for palaeo-flooding.

Plain Language Summary

Microplastics have become ubiquitous in the environment and sediment is a major sink for microplastics. Therefore, the microplastic pollution history would be documented in the sediment, but the burial record of microplastics is poorly known in current study. We choose a core in a tidal flat of the Yangtze Estuary to explore how and why microplastics in sedimentary record are distributed. The results exhibited increasing fluctuations of microplastic abundance and polymer types over time. This is basically affected by the exponential growth of plastic production. Surprisingly, we found that the high microplastic abundance is related to coarse sediment grain size, which may indicate the influence of the flood events. We verify this viewpoint by comparing microplastic records and historic extreme floods as well as the hydrological period of the Yangtze River. The microplastics was scoured seriously in land and resuspended in upstream river during flood events, causing a rapid increase of microplastics in the estuary. Our study revealed the relationship between microplastics and flood events in the long term, which is beneficial to understand the geophysical process of microplastics.

1 Introduction

Global plastic production has been consistently growing since the 1950s, reaching 368 million tonnes in 2019 (Plastics Europe, 2020). Rivers act as major pathways for land-based plastics debris to enter the ocean, the final sink of plastics and microplastics, with 91% of land-based plastic waste transported to the ocean via rivers (Lebreton & Andrady, 2019). However, the estimated amount of floating plastic debris on the surface of global oceans (7000 35000 tonnes) is markedly less than riverine plastic outflow $(0.057\ 12.7\ \text{million tonnes})$ (Cózar et al., 2014; Jambeck et al., 2015; Mai et al., 2020), suggesting the fragmentation and deposition of unaccounted plastics. Following fragmentation by physical and chemical processes (Laxague et al., 2018; C. Wang et al., 2021), plastics measuring less than 5 mm were classified as microplastics (Arthur et al., 2009). They have become omnipresent in environmental matrices, including water, sediment, atmosphere, ice, and organisms (Amélineau et al., 2016; Besseling et al., 2017; Ding et al., 2021; Veerasingam et al., 2016). When ingested by an organism, microplastics could pose a potential threat to the organism itself and to human health via the food web (Wright et al., 2013). Several factors affect microplastic penetration into the sediment, such as density, biofilm formation (Lobelle & Michael, 2011), and combination with marine snow or animal excrement (Katija et al., 2017; Long et al., 2015). Meteorologically induced hydrological conditions play an important role in this process: floods, storms, rain, and typhoons can significantly change the sediment distribution and storage of microplastics. Therefore, it is necessary to clarify the fluvial and depositional processes of microplastics entering sediment to better understand the transportation of microplastics into the ocean.

The estuary system represents a transition zone of the river and offshore, and it is regarded as a hot spot area of pollution research (Chapman & Wang, 2001; Sun et al., 2012). The river flow becomes slow when entering the estuary zone, and a large amount of sediments and pollutants carried by the river are deposited in this area (Dai et al., 2018). Therefore, the pollution of the whole basin can be reflected in the estuarine pollution (Ridgway & Shimmield, 2002). Meanwhile, the estuarine delta is the most densely populated area globally, and the pollution in the estuary zone poses significant threat to the health of the population in the estuarine delta. Previously, the study of estuarine microplastic pollution was focused on the microplastics in the surface water and sediment (Gray et al., 2018; S. Zhao et al., 2015); however, few studies have focused on the burial records of microplastics.

Microplastics in the sedimentary core reflect the microplastic storage and longterm changes in an area. Martin et al. (2020) estimated that approximately 160 tonnes of microplastics were deposited in the mangrove sediment of the Red Sea and Arabian Gulf. In most areas affected by an increase in plastic production, the microplastic abundance generally increases from the bottom to the surface of the core (Brandon et al., 2019; Chen et al., 2020). Moreover, the changes in land use can influence the vertical distribution of microplastics (Dahl et al., 2021). However, the effect of other factors (such as the flood event) on microplastic storage is to be determined. The Yangtze River Delta is the first region to produce and consume plastics in China (Y. Jiang & Jiang, 2013); therefore, the analysis of the core in Yangtze River can provide a complete record of microplastic pollution in China. A better understanding of the vertical distribution, influencing factors, and mechanism of microplastics in the core is helpful in providing new insights into microplastic management.

According to many plastic transport models, the Yangtze River is considered the largest plastic-export waterway globally because of its dense surrounding population (Lebreton et al., 2017; Mai et al., 2020; Schmidt et al., 2017). Herein, we selected a gravity core (CCYY1) in the North Branch of the Yangtze River and investigated its microplastic and sedimentary sequence. The aim of the study was to determine the depositional characteristics of microplastics, major factors affecting the vertical distribution of microplastics, and mechanisms through which microplastic deposition responds to extreme flood events in the Yangtze River.

2 Materials and Methods

2.1 Sampling

Core CCYY1 (121°55'42.4" E, 31°41'57.95" N) was collected from a tidal flat in the North Branch of Yangtze Estuary, Yuantuo Point, using a gravity corer and polyvinyl chloride (PVC) tube in the summer of 2019 (Figure S1 and Text S1). The 103-cm long core (174 cm if considering compaction rate) was sectioned at 1-cm intervals and then dried at 60 °C.

2.2 Microplastic analysis

The density flotation and separation method was used to extract microplastics from the sediment. The method used in this study was modified from that reported by Thompson et al. (2004) and Nuelle et al. (2014), with a recovery rate of 91%–99%. The collected particles were analysed using a stereomicroscope (Leica, MC190, Germany) and micro-Fourier transformed infrared spectroscopy

(Thermo Fisher, USA) to determine the shape, colour, size and polymer type. Detailed description of microplastic analysis and quality control measures was provided in Text S2. Finally, 859 microplastics were identified.

Although we attempted to identify all suspected particles, some of them were lost during the transfer process, which was considered an uncertainty of the experiment. Such particles were identified through visual interpretation to determine whether they were microplastics, and the number of uncertain microplastics are shown individually in the results.

2.3 Grain-size analysis

The sediment grain size was analysed at 1-cm intervals using the Malvern Mastersizer 2000 (Malvern, UK), which has a measurement range of 0.02 2000 m and relative error within 3% for replicated measurements. The moment method (McManus, 1988) and Folk and Ward (1957) methods were used to calculate the particle size, including the mean grain size and the content of clay (<4 m), silt (4 63 m), and sand (>63 m). Three parallel samples were set in the experiment, and the average value of the parallels was considered the final result.

2.4^{210} Pb dating

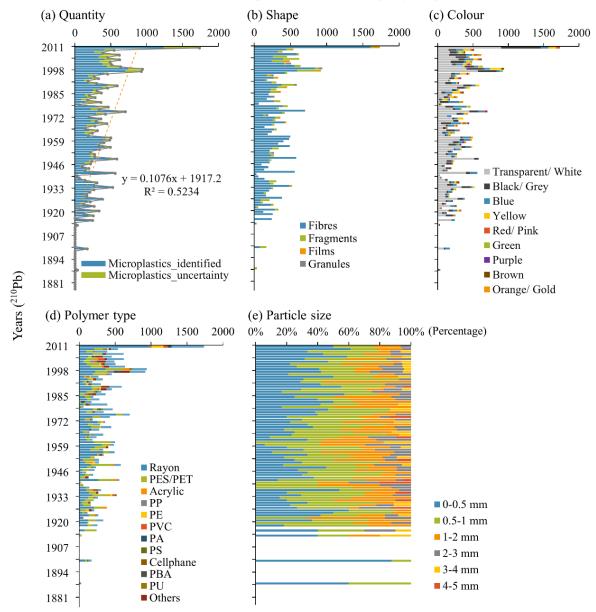
The ²¹⁰Pb dating method is widely used to date the sediment age on a centennial scale (Andersen et al., 2000; Arias-Ortiz et al., 2018). The dating experiment was performed at the Nanjing Institute of Geography and Limnology, China Academy of Science. The activity of radiometric ²¹⁰Pb was measured by direct gamma spectrometry using Ortec HPGe GWL series, well-type, coaxial, low background, intrinsic germanium detectors (Oetec, USA). The dating method was described in detailed in Text S3.

2.5 Statistical analysis

A Spearman correlation analysis was applied to analyse the relationships between plastic production parameters, sediment grain size, and microplastic abundance (IBM SPSS Statistics, USA). Microplastic diversity was calculated based on the Simpson's diversity index (D) proposed by Simpson (1949). Moreover, the period of microplastic abundance was measured using Software Past 4.03 in wavelet analysis (Hammer et al., 2001). The statistical method is detailed in Text S4.

3 Results

3.1 Age depth chronology


The profile of excess ²¹⁰Pb is shown in Figure S2. Excess ²¹⁰Pb decreases in moderate volatility with increasing depth, and the determination coefficient of the logarithmic fitting is $R^2 = 0.772$. The ²¹⁰Pb dating determined an accumulation rate of 1.23 cm/year for CCYY1 (CIC dating model), demonstrating that the core had a chronology of 1878 2011.

3.2 Microplastic abundance and characteristics

In total, 1080 microplastics were found in the samples. The microplastic abundance in the depositional record ranged from 0 to 1734.675 n/kg (dw), and the maximum concentration appeared in the surface sediment. Microplastic abundance decreased in the downcore fluctuations, with a linear fitting of $R^2 = 0.523$ (Figure 1a). There has been a rapid increase in microplastic abundance in the strata starting in the 1950s.

The microplastics found were analysed for their shape, colour, polymer type, and size. Fibres accounted for 89% of all microplastics detected, and they dominated all the sedimentary layers. Fragments, films, and granules primarily appeared after 1964 and were more common in the upper core than the downcore (Figure 1b and Figure S3a). Transparent/white was the most prevalent colour in the core, accounting for 52% of the microplastics (Figure S3b). Up to seven colours could be found in layers at depths of 14 cm (2007), 16 cm (2002), and 64 cm(1969) (Figure 1c). In terms of polymer types, up to 28 types of microplastics were found in the samples. Rayon and polyester (PES)/polyethylene terephthalate (PET) accounted for the highest percentage of microplastics in the core (48% and 33%, respectively), followed by acrylic (4%), polypropylene (PP), and polyethylene (PE) (Figure. S3c). The vertical distribution of microplastic types revealed that the types of microplastics in the upper layer were more abundant than those in the deeper layers (Figure 1d). We estimated the microplastic polymer type diversity (D polymer) and mean microplastic diversity of shape, colour, and polymer type (D mean). The results showed that microplastic diversity increased gradually and was relatively high during some years (Figure S4).

According to the particle size distribution curve, the lengths of most of the microplastics were in the range of 0.2 mm (87%) (Figure S3d). In the core, the quantity of plastics of large particle size was significantly lower than that of plastics of small particle size, which is consistent with our hypothesis and previous research (Y. Wang et al., 2020; C. Zhang et al., 2019). However, the number of microplastics that were < 0.3 mm was not the highest, which may be a result of the limitation of visual selection of microplastics. The proportion of small particles first decreased downcore from 2011 to the 1950s and then increased with increasing depth until 1878 as shown in Figure 1e.

Microplastic abundance (n/kg, dry weight)

Figure 1. Vertical profile of the (a) quantity, (b) shape, (c) colour, (d) polymer type, and (e) particle size characteristics of microplastics from 1878 to 2011 in CCYY1.

3.3 Grain size characteristics of the cores

Grain size is an efficient and common index for identifying past flood events (Zhao et al., 2016). The sediment in CCYY1 was primarily silty sand and sandy silt, with a mean grain size of 96.986 ± 20.086 m, and the clay content was low (Figure 2). The content of sand (38% 93%) and silt (7% 61%) varied in the core, whereas the clay content (0% 2%) did not change significantly. The core could be divided into three stages according to the mean grain size and sand, silt, and clay content: (1) Stage 1 (138 174 cm) represented 1878 1906. The mean grain size decreased from 118.2 m to the minimum of the core in approximately 30 years, caused by a decrease in sand content and an increase in silt content. (2) Stage 2 (77 138 cm) referred to 1906 1956. The mean grain size fluctuated around the average grain size (107.193 m) during this period. Two peaks with a sudden coarser grain size indicated the occurrence of extreme events. (3) Stage 3 (0 77 cm) corresponded to 1956 2019. The grain size decreased gradually and then stabilised with increasing silt content and decreasing sand content.

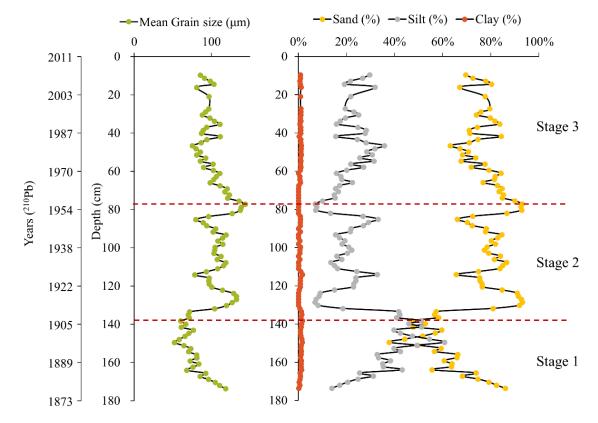


Figure 2. Grain size and sand, silt, and clay content variations in CCYY1. The dashed red line shows the diversion of the core into 3 stages according to grain size characteristics.

3.4 Result of correlation analysis and wavelet analysis

Spearman correlation analysis results showed that microplastic abundance was positively correlated with global plastic production (R = 0.429, p = 0.002, n = 48) and Chinese plastic production (R = 0.420, p = 0.004, n = 45) but was not significantly correlated with Yangtze basin plastic production (n = 10) (Figure 3a). Interestingly, there was a significant correlation between microplastic abundance and sediment mean grain size (R = 0.310, p = 0.002, n = 97). The wavelet analysis demonstrated that there were significant periodicities of 8 a and 22 a of microplastic abundance with a confidence level of 95% (Figure 3b).

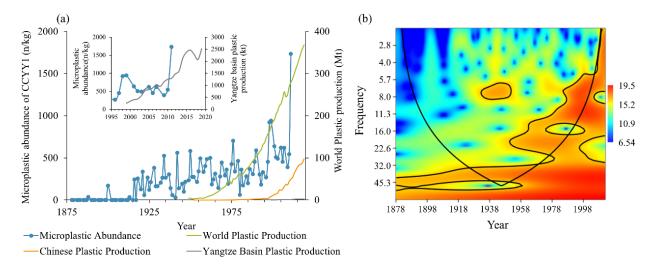


Figure 3. (a) Relationship between microplastic abundance in CCYY1 and plastic production in the world, China, and Yangtze Basin. The data source of plastic production was illustrated in Text S4. (b) Time-frequency graph of wavelet analysis for microplastic abundance in CCYY1. The colour bar on the right side demonstrates the amplitude of a particular frequency at a particular time, and high values represent substantially high amplitudes. The high amplitude value area within the solid black line implies that the significance level (p) is > 0.05.

4 Discussion

4.1 Microplastics concentration of surface sediments compared to previous research

Microplastic abundance in different studies exhibited significant variability even when the sample sites were in the Yangtze Estuary (Table S1). The abundance of microplastics in the tidal flat was markedly higher than that in the river channel because sedimentary dynamics affect the redistribution of microplastics (Zhu et al., 2018). In the Yangtze Estuary, the river channel is in an erosional state with high velocity, whereas the tidal flat is in a depositional state with low velocity (Gao et al., 2017; Y. Zhao et al., 2015). Therefore, the variation in microplastic concentrations in the same area with different dynamics should be considered in a comparison or discussion.

4.2 Factors affecting concentration and vertical distribution of microplastics

The change of microplastic abundance in the sedimentary record showed a synchronic trend with plastic production. The positive correlation between microplastic abundance in CCYY1 and plastic production of the world and China suggests that microplastic vertical distribution was affected by plastic production. No significant correlation was observed between microplastics and Yangtze basin plastic production, which may be due to the small sample capacity (n=10). Furthermore, the relationship between microplastic abundance in cores and plastic production has been reported in other well-deposited cores (Brandon et al., 2019; Dong et al., 2020). Microplastic abundance and sediment mean grain size had no direct causal relationship, although there was a significantly positive correlation between them, indicating that they may be affected by common factors, such as floods. Sediment grain size contains considerable sedimentary environmental information, and suddenly coarsened sediment may indicate highenergy events, including floods, storms, and tsunamis (Kochel & Baker, 1982; Kortekaas & Dawson, 2007). Among these disasters, floods are one of the most widespread natural disasters in the Yangtze Estuary and are frequently preserved in the sedimentary records (M. Wang et al., 2011; Wei et al., 2021); accordingly, we primarily considered the influence of floods in this study.

Notably, microplastics were found deep in the core, even at the layer of ²¹⁰Pb dating before the 1930s. This phenomenon has also been observed in Beibu Bay, China (Xue et al., 2020) and Santa Barbara Basin, America (Brandon et al., 2019). Although the first type of microplastics was invented in 1862 (Crawford & Quinn, 2016), most of the commonly used plastics were invented and commercially produced after the 1930s, including PVC, PS, PE, and PA (Zalasiewicz et al., 2016). Therefore, theoretically, no microplastics should be detected before the 1930s. Bioturbation and experimental pollution were used to explain the phenomenon of microplastics in deep layers (Brandon et al., 2019; Xue et al., 2020). However, after subtracting the experimental pollution, some microplastics were observed at the bottom of the core, which should not have been detected but could be attributed to bioturbation. Therefore, the extreme flood before 1930 was not discussed in this study.

4.3 Response of microplastics to extreme flood events

Flood events can significantly change the river deposition process of microplastics (Ralston et al., 2013), thereby affecting the vertical distribution of microplastics in the core. The vertical variation in microplastic abundance and mean grain size was used for comparison (Figure 4). The peak of microplastic abundance corresponded to the peak of mean grain size, which was consistent with the historic flood record in the Yangtze River compiled by Shi et al. (2004) and Wei et al. (2021). We identified nine flood layers with ²¹⁰Pb-determined ages of 1931 1934, 1941,1949, 1953 1956, 1969, 1975, 1990, 1998 1999, and 2011, which corresponded to the extreme flood records of 1931, 1945, 1949, 1954, 1969, 1980. 1991,1998, 1999, and 2010. The rapidly increasing runoff and flow velocity of flood events have sufficient energy to transport large amounts of terrigenous coarse particles, contributing to increased sand content and mean grain size (Zhao et al., 2016). The flood could also transport more microplastics to the estuary zone than usual. Land-based microplastics were accelerated to converge into the river and ocean system under heavy rain and severe flood, resulting in the increase in microplastic abundance in estuary and coastal areas after the flood (Gündoğdu et al., 2018; Veerasingam et al., 2015). In addition, microplastics deposited in the upstream sediments were released into the water and re-entered the transport system. Hurley et al. (2018) reported that microplastic concentration had decreased at most of the Irwell and Mersey river catchment sites and calculated that approximately 70% of the microplastic load fixed in the river bed was exported from the river channel. Ockelford et al. (2020) confirmed that river sediment changed from sink to source of microplastics during the flood period using the flume experiment. However, there were exceptions in the ²¹⁰Pb dating age of 1950, and the microplastic abundance was relatively high, while the mean grain size was relatively low.

The microplastic characteristics exhibited a significant difference following floods. Microplastic diversity was relatively high during the flood events in our study. In our study, the average diversity of microplastic polymer types of flood event layers (0.63) was slightly higher than that of the non-flood event layers (0.59) from 1931 to 2011. This is because the heavy rain in flood events enables a large amount of microplastics to enter the estuary and offshore zone from multipoint sources (Gündoğdu et al., 2018). Gündoğdu et al. (2018) also found that eight new types of microplastics were added to sediment post-flood and that the abundance of propylene/acrylic acid copolymer and styrene/allyl alcohol copolymer increased significantly.

The microplastic index (including microplastic abundance and diversity), together with grain size and other indicators, could reasonably identify flood events in the sedimentary record. At present, the proxy index of palaeo-flood events includes the grain size, organic matter (e.g., total organic carbon), geochemical elements (e.g., Zr/Rb), and pollen (Jones et al., 2012; Kochel & Baker, 1982; M. Wang et al., 2011). Their behaviours vary greatly between flood and non-flood periods because of the deposition of a large amount of coarse terrigenous particulate matter during flood periods. Grain size is the most sensitive and widely used indicator. However, with the declining trend of the diversion ratio of the North Branch, the abundance of coarse particles carried by runoff has been gradually reduced (You et al., 2018) and the mean grain size decreased from 1954, which does not sufficiently reflect the extreme floods of the Yangtze River in the record of grain size (Figure 4). Combined with the microplastic index, the flood events since the 1950s could be identified effectively, particularly the catastrophic floods in 1954, 1998 1999, and 2010, which caused substantial economic losses and casualties. Although the history of microplastics is short. they have the potential to be used as a supplementary indicator to reconstruct

flood events in recent history.

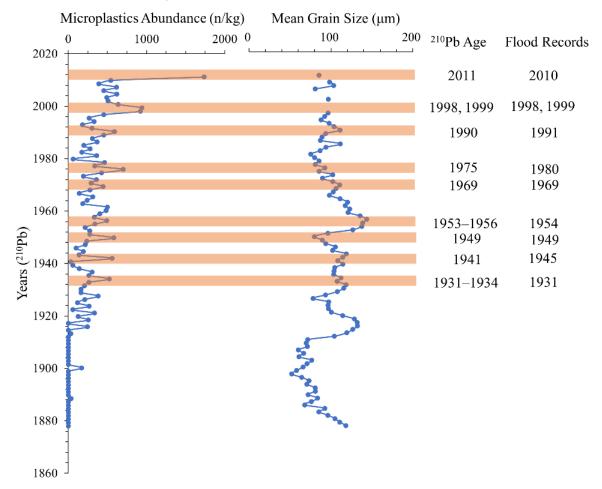


Figure 4. Extreme flood events in the middle and lower Yangtze River identified by microplastic abundance and grain size index. Extreme flood events are marked with orange blocks, corresponding ²¹⁰Pb dating age, and actual date of the floods.

4.4 Response of microplastics to the hydrology of the Yangtze River

Periodic changes in microplastic abundance and environmental elements of the Yangtze Estuary were evaluated to explore the relationship between microplastic abundance and extreme floods. The periodicities of 8 a and 22 a of microplastics abundance in CCYY1 was consistent with that of hydrological elements (e.g., streamflow and baseflow) (Qian et al., 2012; Wan et al., 2018) in the Yangtze River. In addition, periods of 8 a and 22 a have been commonly reported in studies on meteorological elements (e.g., precipitation, temperature, and evaporation) (Miao & Lin, 2003; Qian et al., 2014) and sedimentary records (e.g.,

grain size) (Zhao et al., 2016) in the Yangtze River. The two periods indicate the influence of the El Niño-Southern Oscillation (ENSO) and solar activity, respectively (Moy et al., 2002; Usoskin & Mursula, 2003).

Extreme floods are associated with river flow and precipitation in the Yangtze Estuary and are highly influenced by ENSO and solar activity (Peña et al., 2015; Q. Zhang et al., 2007). The response of floods to ENSO is a result of ENSO affecting the position and strength of the Western Pacific Subtropical High (T. Jiang et al., 2006), causing changes in precipitation and river flow and leading to an increased occurrence of floods. Some catastrophic flood events in the Yangtze Estuary, including the floods of 1936,1954, 1983, and 1998, have been shown to be related to the occurrence of strong El Niño years (Wei et al., 2021; W. Zhang et al., 2016), resulting in a rapid increase in grain size and microplastic abundance.

5 Conclusions

We investigated the vertical distribution and characteristics of microplastics in a core of the Yangtze Estuary and explored their relationships with plastic production and extreme floods. In addition, the relationship between microplastics and floods was further elaborated from the perspective of flood records and periods. The main conclusions are as follows:

- 1. Microplastic abundance and polymer types exhibited increasing fluctuations over time in CCYY1 (Yuantuo Point) in the Yangtze Estuary.
- 2. The distribution of the core is primarily affected by plastic production and extreme floods. Microplastic abundance was significantly positively correlated with global and Chinese plastic production as well as grain size of sediments. Large amounts of terrigenous microplastics, resuspended microplastics, and coarse sediment in river channels were transported to the estuary zone during flood events, leading to a synchronous increase in microplastic abundance and mean grain size of sediments.
- 3. The peak values of microplastic abundance, microplastic diversity, and mean grain size of sediment were consistent with flood records in the middle and lower reaches of the Yangtze River, particularly in the catastrophic floods of the whole basin in 1931, 1954, and 1998 1999. This indicates that microplastics can be developed as a proxy index for palaeo-flood events. The periods of 8 a and 22 a were significantly detected while analysing the microplastic abundance, hydrology, and meteorology of the Yangtze River, which was related to ENSO and solar activity.

Acknowledgments

This study was supported by Geological Survey Program of the China Geological Survey (DD20190043), Natural Resources Development Special Fund of Jiangsu Province [JSZRHYKJ202001], and Central Financial Funds: Research on the dynamic monitoring network of fishery resources in the East China Sea and the improvement of marine fishing gear management system.

Data Availability Statement

The data used in our study was archived in an appropriate repository, which is available at https://zenodo.org/record/5168122#.YQ335T_iuUk.

References

Amélineau, F., Bonnet, D., Heitz, O., Mortreux, V., Harding, A. M. A., Karnovsky, N., et al. (2016). Microplastic pollution in the Greenland Sea: Background levels and selective contamination of plank-tivorous diving seabirds. *Environmental Pollution*, 219, 1131-1139. https://doi.org/10.1016/j.envpol.2016.09.017

Andersen, T. J., Mikkelsen, O. A., Moller, A. L., & Morten, P. (2000). Deposition and mixing depths on some European intertidal mudflats based on 210 Pb and 137 Cs activities. *Continental Shelf Research*, 20(12-13), 1569-1591. https://doi.org/10.1016/S0278-4343(00)00038-8

Arias-Ortiz, A., Pere, M., Garcia-Orellana, J., Serrano, O., & Inés, M. (2018). Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight. *Biogeosciences Discussions*, 15, 6791-6818. https://doi.org/10.5194/bg-15-6791-2018

Arthur, C., Baker, J. E., & Bamford, H. A. (2009). Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. Tacoma, WA: University of Washington Tacoma. Retrieved from https://repository.library.noaa.gov/view/noaa/2509

Besseling, E., Quik, J. T. K., Sun, M., & Koelmans, A. A. (2017). Fate of nano- and microplastic in freshwater systems: A modeling study. *Environmental Pollution*, 220, 540-548. https://doi.org/10.1016/j.envpol.2016.10.001

Brandon, J., Jones, W., & Ohman, M. (2019). Multidecadal increase in plastic particles in coastal ocean sediments. *Science Advances*, 5, eaax0587. https://doi.org/10.1126/sciadv.aax0587

Chapman, P. M., & Wang, F. (2001). Assessing sediment contamination in estuaries. *Environmental Toxicology and Chemistry: An International Journal*, 20(1), 3-22. https://doi.org/10.1002/etc.5620200102

Chen, M., Du, M., Jin, A., Chen, S., Dasgupta, S., Li, J., et al. (2020). Forty-year pollution history of microplastics in the largest marginal sea of the western Pacific. *Geochemical Perspectives Letters*, 13, 42-47. https://doi.org/10.7185/geochemlet.2012

Cózar, A., Echevarría, F., González-Gordillo, J. I., Irigoien, X., Úbeda, B., Hernández-León, S., et al. (2014). Plastic debris in the open ocean. *Proceedings of the National Academy of Sciences*, 111(28), 10239. http://www.pnas.org/content/111/28/10239.abstract

Crawford, C. B., & Quinn, B. (2016). Microplastic Pollutants. Elsevier Limited.

Dahl, M., Bergman, S., Björk, M., Diaz-Almela, E., Granberg, M., Gullström, M., et al. (2021). A temporal record of microplastic pollution in Mediterranean seagrass soils. *Environmental Pollution*, 273, 116451. https://doi.org/10.1016/j.envpol.2021.116451

Dai, Z., Mei, X., Darby, S. E., Lou, Y., & Li, W. (2018). Fluvial sediment transfer in the Changjiang (Yangtze) river-estuary depositional system. *Journal of Hydrology*, 566, 719-734. https://doi.org/10.1016/j.jhydrol.2018.09.019

Ding, Y., Zou, X., Wang, C., Feng, Z., Wang, Y., Fan, Q., & Chen, H. (2021). The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall. *Atmospheric Environment*, 253, 118389. https://doi.org/10.1016/j.atmosenv.2021.118389

Dong, M., Luo, Z., Jiang, Q., Xing, X., Zhang, Q., & Sun, Y. (2020). The rapid increases in microplastics in urban lake sediments. *Scientific Reports*, 10(1), 848. https://doi.org/10.1038/s41598-020-57933-8

Folk, R. L., & Ward, W. C. (1957). Brazos River bar [Texas]; a study in the significance of grain size parameters. *Journal of Sedimentary Research*, 27(1), 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

Gao, J. H., Jia, J., Sheng, H., Yu, R., Li, G. C., Wang, Y. P., et al. (2017). Variations in the transport, distribution, and budget of 210Pb in sediment over the estuarine and inner shelf areas of the East China Sea due to Changjiang catchment changes. *Journal of Geophysical Research: Earth Surface*, 122(1), 235-247. https://doi.org/10.1002/2016JF004130

Gray, A. D., Wertz, H., Leads, R. R., & Weinstein, J. E. (2018). Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition. *Marine Pollution Bulletin*, 128, 223-233. https://doi.org/10.1016/j.marpolbul.2018.01.030

Gündoğdu, S., Çevik, C., Ayat, B., Aydoğan, B., & Karaca, S. (2018). How microplastics quantities increase with flood events? An example from Mersin Bay NE Levantine coast of Turkey. *Environmental Pollution*, 239, 342-350. https://doi.org/10.1016/j.envpol.2018.04.042

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. *Palaeontologia Electronica*, 4(1), 1-9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hurley, R., Woodward, J., & Rothwell, J. J. (2018). Microplastic contamination of river beds significantly reduced by catchment-wide flooding. *Nature Geoscience*, 11(4), 251-257. https://doi.org/10.1038/s41561-018-0080-1

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., et al. (2015). Plastic waste inputs from land into the ocean. *Science*, 347(6223), 768-771. https://doi.org/10.1126/science.1260352

Jiang, T., Zhang, Q., Zhu, D., & Wu, Y. (2006). Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470–2003). *Quaternary*

International, 144(1), 29-37. https://doi.org/10.1016/j.quaint.2005.05.010

Jiang, Y., & Jiang, M. (2013). Plastics: The Discovery in the World and Development in China. *Advanced Materials Research*, 750, 811-815. https://doi.org/10.4028/www.scientific.net/amr.750-752.811

Jones, A. F., Macklin, M. G., & Brewer, P. A. (2012). A geochemical record of flooding on the upper River Severn, UK, during the last 3750 years. *Geomorphology*, 179, 89-105. https://doi.org/10.1016/j.geomorph.2012.08.003

Katija, K., Choy, C. A., Sherlock, R. E., Sherman, A. D., & Robison, B. H. (2017). From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea. *Science Advances*, 3(8), e1700715. https://doi.org/10.1126/sciadv.1700715

Kochel, R. C., & Baker, V. R. (1982). Paleoflood hydrology. *Science*, 215(4531), 353-361. https://doi.org/10.1126/science.215.4531.353

Kortekaas, S., & Dawson, A. G. (2007). Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. *Sedimentary Geology*, 200(3-4), 208-221. https://doi.org/10.1016/j.sedgeo.2007.01.004

Laxague, N. J. M., Özgökmen, T. M., Haus, B. K., Novelli, G., Shcherbina, A., Sutherland, P., et al. (2018). Observations of near-surface current shear help describe oceanic oil and plastic transport. *Geophysical Research Letters*, 45(1), 245-249. https://doi.org/10.1002/2017GL075891

Lebreton, L., & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. *Palgrave Communications*, 5(1), 6. https://doi.org/10.1057/s41599-018-0212-7

Lebreton, L., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., & Reisser, J. (2017). River plastic emissions to the world's oceans. *Nature Communications*, 8(1), 15611. https://doi.org/10.1038/ncomms15611

Lobelle, D., & Michael, C. (2011). Early microbial biofilm formation on marine plastic debris. *Marine Pollution Bulletin*, 62(1), 197-200. https://doi.org/10.1016/j.marpolbul.2010.10.013

Long, M., Moriceau, B., Gallinari, M., Lambert, C., Huvet, A., Raffray, J., & Soudant, P. (2015). Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. *Marine Chemistry*, 175, 39-46. https://doi.org/10.1016/j.marchem.2015.04.003

Mai, L., Sun, X. F., Xia, L. L., Bao, L. J., Liu, L. Y., & Zeng, E. Y. (2020). Global Riverine Plastic Outflows. *Environmental Science and Technology*, 54(16), 10049-10056. https://doi.org/10.1021/acs.est.0c02273

Martin, C., Baalkhuyur, F., Valluzzi, L., Saderne, V., Cusack, M., Almahasheer, H., et al. (2020). Exponential increase of plastic burial in mangrove sediments as a major plastic sink. *Science Advances*, 6(44), eaaz5593. https://doi.org/10.1126/sciadv.aaz5593

McManus, J. (1988). Grain size determination and interpretation. *Techniques*, in Sedimentology, 63-85. https://ci.nii.ac.jp/naid/10003977077/en/

Miao, J., & Lin, Z. (2003). Study on the characteristics of the precipitation of nine regions in China and their physical causes. *Journal of Tropical Meteorology*, 19(4), 377-388. https://doi.org/10.3969/j.issn.1004-4965.2003.04.005

Moy, C. M., Seltzer, G. O., Rodbell, D. T., & Anderson, D. M. (2002). Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. *Nature*, 420(6912), 162-165. https://doi.org/10.1038/nature01194

Nuelle, M.-T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. *Environmental Pollution*, 184, 161-169. https://doi.org/10.1016/j.envpol.2013.07.027

Ockelford, A., Cundy, A., & Ebdon, J. E. (2020). Storm Response of Fluvial Sedimentary Microplastics. Scientific Reports, 10(1), 1865. https://doi.org/10.1038/s41598-020-58765-2

Peña, J. C., Schulte, L., Badoux, A., Barriendos, M., & Barrera-Escoda, A. (2015). Influence of solar forcing, climate variability and modes of low-frequency atmospheric variability on summer floods in Switzerland. *Hydrology and Earth System Sciences*, 19(9), 3807-3827. https://doi.org/10.5194/hess-19-3807-2015

Plastics- the facts 2020 -An analysis of European plastics production, demand and waste data. Brussels: Plastic Europe (2020). Retrieved from https://www.plasticseurope.org/application/files/3416/2270/7211/Plastics_the_facts-WEB-2020_versionJun21_final.pdf

Qian, K., Wan, L., Wang, X., Lv, J., & Liang, S. (2012). Periodical characteristics of baseflow in the source region of the Yangtze River. *Journal of Arid Land*, 4(2), 113-122. https://doi.org/10.3724/SP.J.1227.2012.00113

Qian, K., Wang, X., Lv, J., & Wan, L. (2014). The wavelet correlative analysis of climatic impacts on runoff in the source region of Yangtze River, in China. *International Journal of Climatology*, 34(6), 2019-2032. https://doi.org/10.1002/joc.3818

Ralston, D. K., Warner, J. C., Geyer, W. R., & Wall, G. R. (2013). Sediment transport due to extreme events: The Hudson River estuary after tropical storms Irene and Lee. *Geophysical Research Letters*, 40(20), 5451-5455. https://doi.org/10.1002/2013GL057906

Ridgway, J., & Shimmield, G. (2002). Estuaries as repositories of historical contamination and their impact on shelf seas. *Estuarine, Coastal and Shelf Science*, 55(6), 903-928. https://doi.org/10.1006/ecss.2002.1035

Schmidt, C., Krauth, T., & Wagner, S. (2017). Export of Plastic Debris by Rivers into the Sea. *Environmental Science and Technology*, 51(21), 12246-12253. https://doi.org/10.1021/acs.est.7b02368

Shi, Y. F., Jiang, T., Su, B., Chen, J. Q., & Qin, N. X. (2004). Preliminary analysis on the relation between the evolution of heavy flood in the Yangtze River catchment and the climate changes since 1840. *Journal of lake sciences*, 16(4), 289-297. https://doi.org/10.18307/2004.0401

Simpson, E. H. (1949). Measurement of Diversity. *Nature*, 163(4148), 688-688. https://doi.org/10.1038/163688a0

Sun, J., Wang, M.-H., & Ho, Y.-S. (2012). A historical review and bibliometric analysis of research on estuary pollution. *Marine Pollution Bulletin*, 64(1), 13-21. https://doi.org/10.1016/j.marpolbul.2011.10.034

Thompson, R. C., Olson, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., et al. (2004). Lost at Sea: Where Is All the Plastic? *Science*, 304(5672), 838. https://doi.org/10.1126/science.1094559

Usoskin, I. G., & Mursula, K. (2003). Long-Term Solar Cycle Evolution: Review of Recent Developments. *Solar Physics*, *218*(1), 319-343. https://doi.org/10.1023/B:SOLA.0000013049.27106.07

Veerasingam, S., Mugilarasan, M., Venkatachalapathy, R., & Vethamony, P. (2015). Influence of 2015 flood on the distribution and occurrence of microplastic pellets along the Chennai coast, India. *Marine Pollution Bulletin, 109*, 196-204. https://doi.org/10.1016/j.marpolbul.2016.05.082

Veerasingam, S., Saha, M., Suneel, V., Vethamony, P., Rodrigues, A. C., Bhattacharyya, S., & Naik, B. G. (2016). Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India. *Chemosphere*, 159, 496-505. https://doi.org/10.1016/j.chemosphere.2016.06.056

Wan, Z. W., lian, L. C., Jia, Y. L., Hong, W. J., & Jiang, M. X. (2018). Trend phases and periodic changes of discharges from Yangtze River in past 150 years. *Bullein of Soil and Water Conservation*, 38(2), 14-18. https://doi.org/10.13961/j.cnki.stbctb.2018.02.003

Wang, C., Zhao, J., & Xing, B. (2021). Environmental source, fate, and toxicity of microplastics. *Journal of Hazardous Materials*, 407, 124357. Review. https://doi.org/10.1016/j.jhazmat.2020.124357

Wang, M., Zheng, H., Xie, X., Fan, D., Yang, S., Zhao, Q., & Wang, K. (2011). A 600-year flood history in the Yangtze River drainage: comparison between a subaqueous delta and historical records. *Chinese Science Bulletin*, 56(2), 188-195. https://doi.org/10.1007/s11434-010-4212-2

Wang, Y., Zou, X., Peng, C., Qiao, S., Wang, T., Yu, W., et al. (2020). Occurrence and distribution of microplastics in surface sediments from the Gulf of Thailand. *Marine Pollution Bulletin*, 152, 110916. https://doi.org/10.1016/j.marpolbul.2020.110916

Wei, L., Fan, D., Wu, Y., & Ren, F. (2021). High resolution flood records in the

Yangtze subaqueous delta during the past century and control mechanism. *Geological Bulletin of China*, 40(5), 707-720. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=202

Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. *Environmental Pollution 178*, 483-492. Review. https://doi.org/10.1016/j.envpol.2013.02.031

Xue, B., Zhang, L., Li, R., Wang, Y., Guo, J., Yu, K., & Wang, S. (2020). Underestimated Microplastic Pollution Derived from Fishery Activities and "Hidden" in Deep Sediment. *Environmental Science and Technology*, 54(4), 2210-2217. https://doi.org/10.1021/acs.est.9b04850

You, B. W., Zhang, G. A., Li, Y. M., & Li, Z. H. (2018). Sediment Characteristics and Transport Trend in North Branch and Offshore Area of Yangtze Estuary in the Last 30 Years. *Resources and Environment in the Yangtze Basin*, 27(10), 2328-2338.

Zalasiewicz, J., Waters, C. N., Sul, J. I. D., Corcoran, P. L., & Yasmin, Y. (2016). The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. *Anthropocene*, 13, 4-17. https://doi.org/10.1016/j.ancene.2016.01.002

Zhang, C., Zhou, H., Cui, Y., Wang, C., Li, Y., & Zhang, D. (2019). Microplastics in offshore sediment in the yellow Sea and east China Sea, China. *Environmental Pollution*, 244, 827-833. https://doi.org/10.1016/j.envpol.2018.10.102

Zhang, Q., Xu, C.-Y., Jiang, T., & Wu, Y. (2007). Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China. *Journal of Hydrology*, 333(2-4), 265-274. https://doi.org/10.1016/j.jhydrol.2006.08.010

Zhang, W., Jin, F. F., Stuecker, M. F., Wittenberg, A. T., Timmermann, A., Ren, H. L., et al. (2016). Unraveling El Niño's impact on the East Asian monsoon and Yangtze River summer flooding. *Geophysical Research Letters*, 43(21), 11-375. https://doi.org/10.1002/2016GL071190

Zhao, S., Zhu, L., & Li, D. (2015). Microplastic in three urban estuaries, China. Environmental Pollution, 206, 597-604. https://doi.org/10.1016/j.envpol.2015.08.027

Zhao, Y., Zou, X., Gao, J., & Wang, C. (2016). Recent sedimentary record of storms and floods within the estuarine-inner shelf region of the East China Sea. *Holocene*, 27(3), 439-449. https://doi.org/10.1177/0959683616660165

Zhao, Y., Zou, X., Gao, J., Xu, X., Wang, C., Tang, D., et al. (2015). Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River, China. *Science of The Total Environment, 536*, 803-812. https://doi.org/10.1016/j.scitotenv.2015.07.119

Zhu, X. T., Yi, J., Qiang, L. Y., & Cheng, J. P. (2018). Distribution and Settlement of Microplastics in the Surface Sediment of Yangtze Estuary. *Huanjing* *Kexue/Environmental Science*, 39(5), 2067-2074. https://doi.org/10.13227/j.hjkx.201709032

Figure 1. Vertical profile of the (a) quantity, (b) shape, (c) colour, (d) polymer type, and (e) particle size characteristics of microplastics from 1878 to 2011 in CCYY1.

Figure 2. Grain size and sand, silt, and clay content variations in CCYY1. The dashed red line shows the diversion of the core into 3 stages according to grain size characteristics.

Figure 3. (a) Relationship between microplastic abundance in CCYY1 and plastic production in the world, China, and Yangtze Basin. The data source of plastic production was illustrated in Text S4. (b) Time-frequency graph of wavelet analysis for microplastic abundance in CCYY1. The colour bar on the right side demonstrates the amplitude of a particular frequency at a particular time, and high values represent substantially high amplitudes. The high amplitude value area within the solid black line implies that the significance level (p) is > 0.05.

Figure 4. Extreme flood events in the middle and lower Yangtze River identified by microplastic abundance and grain size index. Extreme flood events are marked with orange blocks, corresponding ²¹⁰Pb dating age, and actual date of the floods.

AGU PUBLICATIONS

Geophysical Research Letters

Supporting Information for

Microplastic Deposition and its Response to Extreme Flood Events: A Case Study of Yangtze Estuary, China

Hongyu Chen ^{1,2}, Yu Cheng ^{1,4}, Ying Wang ^{1,2}, Yongcheng Ding ^{1,2}, Chenglong Wang ^{1,2,3}, Xuguang Feng ^{1,5}, Qinya Fan ^{1,2}, Feng Yuan ^{1,2}, Guanghe Fu ^{1,2}, Xinqing Zou ^{1,2,3,*}

¹ School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China

² Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China

³ Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China

⁴ Geological Survey of Jiangsu Province, Nanjing, 210018, China

⁵ Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China

Corresponding author: Xinqing Zou (zouxq@nju.edu.cn)

Contents of this file

Text S1 to S4 Figures S1 to S4 Tables S1

Additional Supporting Information (Files uploaded separately)

Captions for Datasets S1 to S2

Introduction

The supplementary information provided here was to supplement the article's information and assist readers in understanding our research. Text S1 introduced the natural and economic characteristics of the study area, the Yangtze Estuary and Yangtze River. Text S2-S4 provided the detailed analytical procedure in this study. Figure S1 showed the location of the sampling core. Figure S2 displayed the excess ²¹⁰Pb-depth relationship of CCYY1. Fig S3 showed the overview of microplastic characteristics in CCYY1, and Fig S4 showed the vertical distribution of microplastic abundance, diversity and sediment grain size. Table S1 compared the microplastic abundance of surface sediment with other research in Yangtze Estuary.

Text S1. Study Area

The Yangtze Estuary, the estuary of the main stream of the Yangtze River, is in the Middle–Lower Yangtze Plain and flows into the East China Sea. The tidal current in this area is dominated by regular semidiurnal tides. Chongming Island divides the Yangtze Estuary into the North Branch and South Branch (Fig. 1). The North Branch has historically been the main channel of the Yangtze River; however, its diversion ratio has been markedly declining since 1958, and recently, this ratio has decreased by 2-3% (J. Li et al., 2019). Covering an area of 1.8×10^6 km², the Yangtze River has a water discharge of 900 km³/year (globally ranking fifth) and a sediment discharge of 480 million tonnes/year (globally ranking fourth) (Milliman & Farnsworth, 2013). Owing to the enormous sediment supply, a wide tidal flat exists near the Yangtze Estuary (Wang et al., 2017). Driven by the monsoon climate, water and sediment transport is more concentrated during the flood season (May to October), occasionally causing extreme floods (Zhao et al., 2015). The main stream of the Yangtze River flows through 11 provinces of China, some of which include the Yangtze River Delta, the earliest industrialised and most developed area of China. The production of primary form plastics in these 11 provinces reached 25.19 Mt in 2019, accounting for 25.8% of the total plastic production in China (National Bureau of Statistics of China, https://data.stats.gov.cn/easyquery.htm?cn=E0103).

Text S2. Procedures of microplastic analysis

Pretreatment and identification. Samples weighing 20–30 g (dry weight, dw) were placed in a 500-mL glass beaker. The heavy liquid was then used to float the microplastics three times. Subsequently, 300 mL of saturated sodium chloride (ρ :1.2 g·cm–3) was added into the beaker for the first and second time, and saturated potassium iodide (ρ :1.66 g·cm–3) was added for the third time to improve the recovery rate. The turbid liquid was stirred for at least 1 min, and after 6 h, the supernatant was filtered through a filter membrane with a pore size of 20 µm. Finally, the filter membrane was air-dried before microscopic observation. The collected particles were analysed using a stereomicroscope (Leica, MC190, Germany) connected to a camera and image analysis software (LAS V4.12, Germany) to measure and record length (longest axis), shape, and colour. All the suspected microplastic particles were selected according to the criteria proposed by Nor and Obbard (2014). The selected particles were analysed using micro-Fourier transformed infrared spectroscopy (μ -FT-IR, Thermo Nicolet iN 10, Thermo Fisher, USA) in transmission mode to determine the polymer type. The obtained spectrum of selected particles was compared with the standard plastic spectrum in the reference polymer spectral library, and samples with a matching rate >70% were accepted as microplastics.

Quality Control. Measures were undertaken to minimise potential microplastic contamination in the experimental processes. All the glass beakers and equipment were ultrasonicated and carefully rinsed three times in Milli-Q water before use. The saturated solution used in the experiment was first filtered through a 20-µm filter membrane. The equipment was covered with aluminium foil when not in use, and the operators wore cotton laboratory coats during the experiment. Laboratory blanks were analysed to estimate the background contamination in the process of microplastic extraction and identification, and the blank result (4.286 n/layer) was removed from the final microplastic statistical results. We excluded white fragments similar to PVC debris caused by core splitting to avoid pollution as much as possible.

Text S3. ²¹⁰Pb dating method

The specific activity of ²¹⁰Pb was obtained at 46.5 keV, and ²²⁶Ra was measured at 351.9 keV emitted by its daughter isotope ²¹⁴Pb by direct gamma spectrometry (Wan et al., 1987). The activity of ²¹⁰Pb_{ex} (unsupported ²¹⁰Pb) was calculated by subtracting the activity of ²²⁶Ra from the total activity of ²¹⁰Pb. Radiometric ²¹⁰Pb dates were calculated using a constant initial concentration dating model (CIC) (Appleby, 2002). The model can be expressed as follows:

$$N_H = N_0 e^{-\lambda t}$$

where *t* is the age in years at depth H, λ is the decay constant for ²¹⁰Pb (0.031/a), *N*₀ is the activity of ²¹⁰Pb_{ex} at the surface sediment (Bq/kg), and *N*_H is the activity of ²¹⁰Pb_{ex} at depth H.

Text S4. Statistical analyses

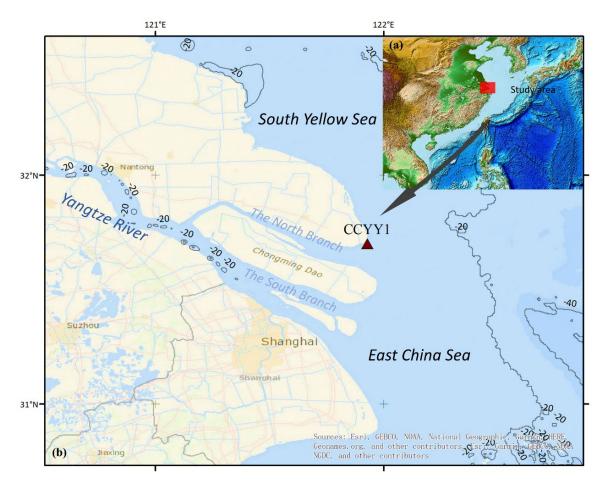
Correlation between microplastic abundance and plastic production. Statistical analyses were performed using IBM SPSS Statistics, version 19 (IBM, USA). The variables were tested for normality using the Shapiro–Wilk test and the Kolmogorov–Smirnov test to determine whether to select a parametric or non-parametric analysis. Moreover, the Spearman correlation analysis, a non-parametric method, was applied to analyse the relationships between plastic production parameters, sediment grain size, and microplastic abundance. Statistical significance was set at p<0.05. The plastic production data of China and the Yangtze River basin were collected from the study by F. Wang et al. (2018) (1951–2000) and the National Bureau of Statistics of China (https://data.stats.gov.cn/easyquery.htm?cn=C01, 2001–2019). Plastic production in the Yangtze River basin was estimated by totalling the annual plastic production of the 11 provinces along the main stream of the Yangtze River, including Qinghai, Tibet (no data), Sichuan, Yunnan, Chongqing, Hubei, Hunan, Jiangxi, Anhui, Jiangsu, and Shanghai. Global plastic production data were obtained from Plastics Europe (https://www.plasticseurope.org/en/resources/market-data).

Calculation of microplastic diversity. Microplastic diversity was calculated based on the Simpson's diversity index (D) proposed by Simpson (1949), which was first used to judge the species diversity of an ecological community. The following formula was used:

$$D = 1 - \sum_{i=1}^{S} \left(\frac{n_i}{N}\right)^2,$$

where *i* represents the type of microplastics, n_i is the amount of the *i*-th microplastic, N is the total number of microplastics, and S is the quantity of microplastic types (T. Wang et al., 2018).

Introduction of wavelet analysis. Wavelet analysis is a widely used method for evaluating localised variations in power within a time series (Torrence & Compo, 1998), particularly in earth science, such as the cycle of the El Nino-Southern Oscillation (Torrence & Webster, 1999) and glacial and interglacial periods (Debret et al., 2007).


The period of microplastic abundance was measured using Software Past 4.03 in wavelet analysis (Hammer et al., 2001).

References

- Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J. F., Massei, N., et al. (2007). The origin of the 1500-year climate cycles in holocene north-atlantic records. *Climate of the Past*, 3(4), 569-575. https://doi.org/10.5194/cp-3-569-2007
- Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. *Palaeontologia Electronica*, 4(1), 1-9. http://palaeo-electronica.org/2001 1/past/issue1 01.htm
- Li, J., Jiang, C., Liu, Q., & Zhao, J. (2019). *Water and sediment discharge and riverbed evolution in the Yangtze Estuary*. Beijing: The Science Publishing Company.
- Milliman, J. D., & Farnsworth, K. L. (2013). *River discharge to the coastal ocean: a global synthesis*. New York: Cambridge University Press.
- Nor, N. H. M., & Obbard, J. P. (2014). Microplastics in Singapore's coastal mangrove ecosystems. *Marine Pollution Bulletin*, 79(1-2), 278-283. https://doi.org/10.1016/j.marpolbul.2013.11.025
- Simpson, E. H. (1949). Measurement of Diversity. *Nature*, *163*(4148), 688-688. https://doi.org/10.1038/163688a0
- Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
- Torrence, C., & Webster, P. J. (1999). Interdecadal changes in the ENSO-monsoon system. *Journal of Climate, 12*(8 PART 2), 2679-2690. https://doi.org/10.1175/1520-0442(1999)012<2679:icitem>2.0.co;2
- Wan, G. J., Santschi, P. H., Sturm, M., Farrenkothen, K., Lueck, A., Werth, E., & Schuler, C. (1987). Natural (²¹⁰Pb, ⁷Be) and fallout (¹³⁷Cs, ^{239,240} Pu, ⁹⁰Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland. *Chemical geology*, 63(3-4), 181-196. https://doi.org/10.1016/0009-2541(87)90162-8
- Wang, C., Zhao, Y., Zou, X., Xu, X., & Ge, C. (2017). Recent changing patterns of the Changjiang (Yangtze River) Estuary caused by human activities. Acta

Oceanologica Sinica, 36(4), 87-96. https://doi.org/10.1007/s13131-017-1017-z

- Wang, F., Nian, X., Wang, J., Zhang, W., Peng, G., Ge, C., et al. (2018). Multiple dating approaches applied to the recent sediments in the Yangtze River (Changjiang) subaqueous delta. *Holocene*, 28(6), 858-866. https://doi.org/10.1177/0959683617752847
- Wang, T., Zou, X., Li, B., Yao, Y., Zang, Z., Li, Y., et al. (2018). Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example. *Environmental Pollution*, 245, 965-974. https://doi.org/10.1016/j.envpol.2018.10.110
- Zhao, Y., Zou, X., Gao, J., Xu, X., Wang, C., Tang, D., et al. (2015). Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River, China. Science of The Total Environment, 536, 803-812. https://doi.org/10.1016/j.scitotenv.2015.07.119

Figure S1. Map of the study area. (a) Schematic map of the coastal zone of China, with the Yangtze Estuary marked in red. (b) Yangtze Estuary and the location of CCYY1. The base map is derived from ERIS. The blue lines represent the waterway, the orange lines represent the roads, and urban areas are depicted in yellow.

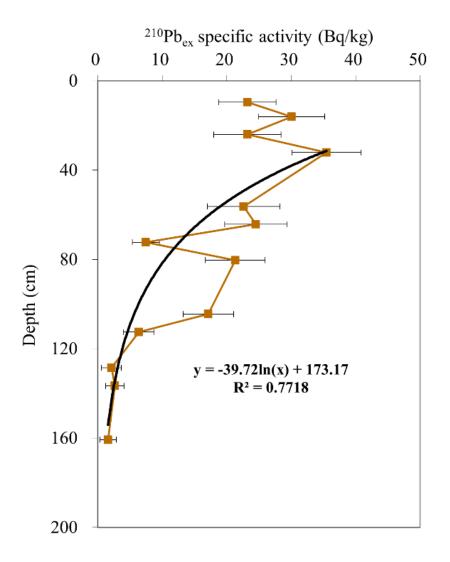
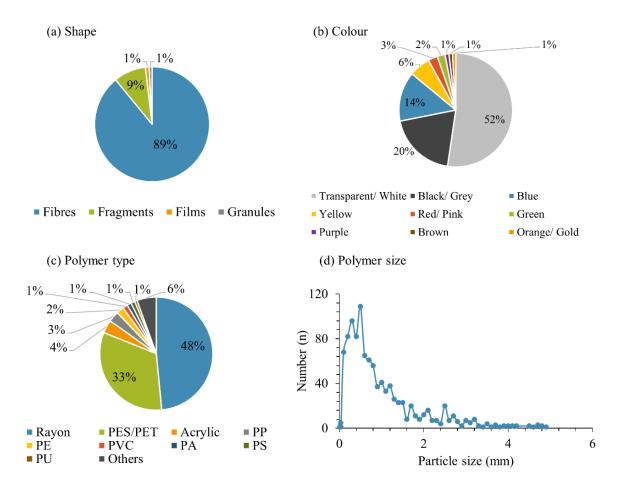
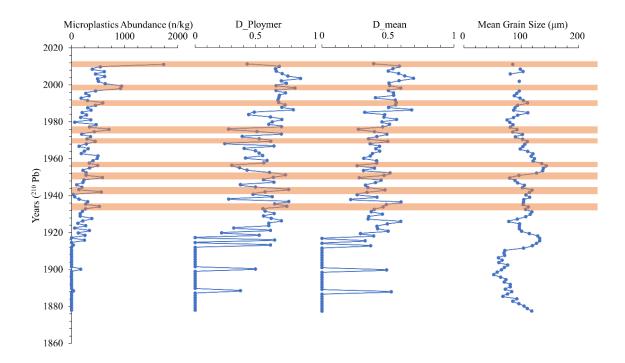




Figure S2. Vertical distribution of excess ²¹⁰Pb activity of CCYY1

Figure S3. Summary of the (a) shape, (b) colour, (c) polymer type and (d) particle size characteristics of microplastics (all layers combined).

Figure S4. Extreme flood events identified by microplastic index (including microplastic abundance, polymer type diversity (D_Ploymer) and mean diversity (D_mean)) and grain size index. Mean diversity is the average of shape diversity, colour diversity and polymer type diversity. Extreme flood events are marked with orange blocks.

Location	Location type	Microplastic	Reference
		abundance of surface	
		sediment	
South Branch of the	Tidal flat	3420±1.31 n/kg (dw)	(Zhu et al., 2018)
Yangtze Estuary			
North Branch of the	Tidal flat	1734.675 n/kg (dw)	This study
Yangtze Estuary			
A cruise along the	River course	121±9 n/kg (dw)	(Peng et al., 2017)
Yangtze Estuary			
Yangtze Estuary -	River course	Flooding season:	(Xu et al., 2019)
Hangzhou Bay		111.2±10.75 n/kg	
		(dw); Dry season:	
		200±17.3 n/kg (dw)	
Nanhui tidal flat in	Tidal flat	143±0.3 n/kg (dw)	(Wu et al., 2020)
the South Branch of			
the Yangtze Estuary			
South Branch of the	/	~80 n/kg (dw)	(Su et al., 2018)
Yangtze Estuary			
Chongming Island	Shore of	10-60 n/kg (dw)	(Y. Li et al., 2020)
	inland river		
	and Yangtze		
	River shore		

Table S1. Comparison of microplastic abundance in surface sediment across the Yangtze

 Estuary

Reference

Li, Y., Lu, Z., Zheng, H., Wang, J., & Chen, C. (2020). Microplastics in surface water and sediments of Chongming Island in the Yangtze Estuary, China. *Environmental Sciences Europe*, 32(15), 1-12. https://doi.org/10.1186/s12302-020-0297-7

Peng, G., Zhu, B., Yang, D., Su, L., Shi, H., & Li, D. (2017). Microplastics in sediments of the Changjiang Estuary, China. *Environmental Pollution*, 225, 283-290. https://doi.org/10.1016/j.envpol.2016.12.064

- Su, L., Cai, H., Kolandhasamy, P., Wu, C., Rochman, C. M., & Shi, H. (2018). Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. *Environmental Pollution*, 234, 347-355. https://doi.org/10.1016/j.envpol.2017.11.075
- Wu, F., Pennings, S. C., Tong, C., & Xu, Y. (2020). Variation in microplastics composition at small spatial and temporal scales in a tidal flat of the Yangtze Estuary, China. *Science of The Total Environment, 699*, 134252. https://doi.org/10.1016/j.scitotenv.2019.134252
- Xu, P., Peng, G. Y., Zhu, L. X., Bai, M. Y., & Li, D. J. (2019). Spatial-temporal distribution and pollution load of microplastics in the Changjiang Estuary. *Zhongguo Huanjing Kexue/China Environmental Science*, 39(5), 2071-2077. https://doi.org/10.19674/j.cnki.issn1000-6923.2019.0248
- Zhu, X. T., Yi, J., Qiang, L. Y., & Cheng, J. P. (2018). Distribution and Settlement of Microplastics in the Surface Sediment of Yangtze Estuary. *Huanjing Kexue/Environmental* Science, 39(5), 2067-2074. https://doi.org/10.13227/j.hjkx.201709032

Data Set S1. Microplastic properties

Data Set S2. Sediment grain size