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Abstract

The North Atlantic phytoplankton bloom depends on a confluence of environmental factors that drive transient periods of

exponential phytoplankton growth and interannual variability in bloom magnitude. I analyze interannual bloom variability

in the North Atlantic via extreme value theory where the Generalized Extreme Value Distribution (GEVD) is fitted spatially

to annual maxima of satellite-measured surface chlorophyll. I find excellent agreement between the observed distribution of

interannual bloom maxima and those predicted from the GEVD. The spatial distribution of fitted GEVD parameters closely

follows basin bathymetry where the largest extremes and heaviest distribution tails are found on the continental shelves and

slopes. Trend analyses suggest weak evidence for changes in GEVD parameters, despite regional trends in mean chlorophyll

levels and sea surface temperature. These results provide a framework to quantify interannual bloom variability and call for

further work examining how extreme blooms propagate through food webs and contribute to carbon export.
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 8 
Scientific Significance Statement: The North Atlantic phytoplankton bloom helps fuel the 9 
marine food web, impacts fisheries recruitment, contributes to carbon export, and is predicted to 10 
change with climate warming. Understanding interannual bloom variability is thus of central 11 
oceanographic importance. This study provides a framework for quantifying interannual bloom 12 
variability via statistical extreme value theory. I characterize the spatial distribution of extreme 13 
value parameters using satellite chlorophyll observations and test whether the distribution of 14 
chlorophyll extremes has changed over time in relation to trends in background chlorophyll 15 
levels and sea surface temperature.  16 
 17 
Abstract 18 
 19 
The North Atlantic phytoplankton bloom depends on a confluence of environmental factors that 20 
drive transient periods of exponential phytoplankton growth and interannual variability in bloom 21 
magnitude. I analyze interannual bloom variability in the North Atlantic via extreme value theory 22 
where the Generalized Extreme Value Distribution (GEVD) is fitted spatially to annual maxima 23 
of satellite-measured surface chlorophyll. I find excellent agreement between the observed 24 
distribution of interannual bloom maxima and those predicted from the GEVD. The spatial 25 
distribution of fitted GEVD parameters closely follows basin bathymetry where the largest 26 
extremes and heaviest distribution tails are found on the continental shelves and slopes. Trend 27 
analyses suggest weak evidence for changes in GEVD parameters, despite regional trends in 28 
mean chlorophyll levels and sea surface temperature. These results provide a framework to 29 
quantify interannual bloom variability and call for further work examining how extreme blooms 30 
propagate through food webs and contribute to carbon export. 31 
 32 
Introduction 33 
 34 
Phytoplankton form the base of the marine food web (Falkowski et al. 2003) and play a major 35 
role in the global carbon cycle (Falkowski et al. 1998; Ito and Follows 2005). At mid and high-36 
latitudes, the seasonality of phytoplankton is characterized by a large seasonal bloom where 37 
phytoplankton experience a transient period of exponential growth and biomass concentrations 38 
reach an annual maximum (Behrenfeld and Boss 2014). The bloom is important for sustaining 39 
higher trophic levels, including species whose annual migrations are timed to coincide with the 40 
bloom (Visser et al. 2011). Blooms also contribute to carbon export and are often associated with 41 
large export pulses to depth (Briggs et al. 2011). 42 
 43 
Several biophysical mechanisms are thought to control bloom initiation and development 44 
(Behrenfeld and Boss 2014, 2018). For example, the critical depth hypothesis predicts that bloom 45 
initiation can only begin when mixed layer light levels exceed the threshold of respiration rates, 46 
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allowing phytoplankton biomass to increase if division rates exceed other losses (Behrenfeld and 47 
Boss 2014, 2018). The critical turbulence hypothesis assumes the same threshold as the critical 48 
depth hypothesis but focuses on division rates in the actively mixing turbulent layer (Huisman et 49 
al. 1999; Taylor and Ferrari 2011). The dilution-recovery hypothesis suggests a more general 50 
balance between phytoplankton division and loss rates (often driven by grazing) allowing blooms 51 
to develop when division rates are declining so long as loss rates decline below division rates; for 52 
example, with dilution via mixed layer deepening (Evans et al. 1985; Behrenfeld 2010). Across 53 
proposed mechanisms, the population-level phenomena of blooms arise due to transient positive 54 
imbalances between division and loss rates (driven by variations in division, loss, or both) such 55 
that the net exponential growth rate 𝑟(𝑡) is positive, i.e.  56 
 57 

𝑑𝑐
𝑑𝑡 =

(𝜇(𝑡) − 𝑙(𝑡))𝑐 = 𝑟(𝑡)𝑐, 58 

 59 
with 𝜇(𝑡) − 𝑙(𝑡) = 𝑟(𝑡) > 0 prior to the bloom, where 𝜇(𝑡) is the division rate and 𝑙(𝑡) is the 60 
total loss rate. Days to weeks post-bloom, losses increase to match and exceed division, most 61 
often because of increased grazer abundance supported by the elevated phytoplankton biomass 62 
(Behrenfeld and Boss 2014, 2018). The magnitude and duration of the transient exponential 63 
growth period determines the magnitude of the bloom biomass maximum. We hereafter refer to a 64 
‘bloom’ as the period of positive net exponential growth and ‘bloom magnitude’ as the 65 
concentration maximum achieved over this period (see Behrenfeld and Boss 2018 for a 66 
discussion of bloom definitions).  67 
 68 
The North Atlantic basin exhibits one of the largest and well-studied seasonal blooms across the 69 
global ocean. Deep winter mixing and rapid re-stratification creates ideal conditions for 70 
exponential phytoplankton growth, with bloom initiation following a northward progression as 71 
re-stratification occurs earliest at low latitude (Dutkiewicz et al. 2001; Siegel et al. 2002). 72 
Meteorological variability then modulates the precise timing and magnitude of the bloom 73 
according to the impacts on local mixing dynamics (Dutkiewicz et al. 2001; Follows and 74 
Dutkiewicz 2002). Importantly, variability in bloom timing and magnitude has been linked to the 75 
magnitude of carbon export (Briggs et al. 2011) and to fisheries productivity via the ‘match-76 
mismatch hypothesis’ (Platt et al. 2003). Climate change is expected to alter North Atlantic 77 
bloom dynamics via a range of factors, including changes in seasonal mixing depths, nutrient 78 
fluxes, and the metabolic impacts of warmer temperatures (Sommer and Lengfellner 2008). 79 
Quantifying the dynamics of the North Atlantic spring bloom is thus of central importance for 80 
understanding the relevant oceanographic and ecological processes and will aid in tracking the 81 
associated impacts of climate change.  82 
 83 
Viewing interannual bloom magnitudes as extreme values in observed phytoplankton time series 84 
brings to bear the statistical theory of extreme values. Under the Fisher-Tippet-Gnedenko 85 
theorem, the maximum of a sequences of random variables converges in distribution to the 86 
Generalized Extreme Value Distribution (GEVD), itself a generalization of the Gumbel, Frechet, 87 
and Weibull distributions (Coles 2001). The theorem yields a three-parameter probability density 88 
function describing the limiting distribution of maximum values generated from samples of a 89 
stochastic process, analogous to the central limit theorem for the mean of a distribution (Coles 90 
2001; described below). Like the lognormal or chi-square distribution, the GEVD can exhibit a 91 
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strong right skew; however, the GEVD has the advantage of being derived specifically for 92 
stochastic maxima. While the GEVD is increasingly applied to geophysical and climate studies 93 
(Easterling et al. 2000; Katz 2010; Aghakouchak et al. 2020) there have been fewer applications 94 
to biological time series (Batt et al. 2017; but see interesting exceptions, e.g. Gaines and Denny 95 
1993; Benedetti-Cecchi et al. 2015; Butitta et al. 2017). Consistent with the exponential nature of 96 
biological growth, Batt et al. (2017) found that biological time series exhibit consistently heavier 97 
tails in their extreme value distributions relative to chemical and geophysical time series. These 98 
findings suggest North Atlantic bloom magnitudes as an ideal target of extreme value analysis, 99 
due to its annually repeating cycle of transient and variable exponential growth.  100 
 101 
Here I analyzed the North Atlantic satellite chlorophyll record to quantify seasonal 102 
phytoplankton bloom variability via extreme value analysis. I estimated GEVD parameters at a 103 
¼° latitude-longitude scale. I mapped the fitted parameters spatially and evaluated the GEVD 104 
goodness-of-fit to the chlorophyll time series. I correlated the fitted parameters to bathymetric 105 
properties of the North Atlantic basin. I further evaluated evidence for non-stationarity (i.e., 106 
time-variability) in GEVD parameters in the context of satellite-observed chlorophyll and 107 
temperature trends across the basin. Results of this study will provide a statistical framework to 108 
describe interannual bloom variability and allow us to test an important hypothesis with respect 109 
to basin-scale environmental change. 110 
 111 
Methods 112 
 113 
Observations 114 
 115 
I analyzed two sets of basin-scale satellite chlorophyll observations. First, I used chlorophyll 116 
estimates from the Moderate-resolution Imaging Spectroradiometer-Aqua (MODIS-Aqua) 117 
sensor, as used in standard net primary productivity products, spanning years 2002-2021 from 118 
the Oregon State University Ocean Productivity database 119 
(https://sites.science.oregonstate.edu/ocean.productivity/). Temporal resolution of the satellite 120 
images was eight days per image. Eighteen complete time series years yielded eighteen annual 121 
maxima observations for fitting GEVDs. Associated inherent optical properties were estimated 122 
using the Garver-Siegel-Maritorena (GSM) algorithm (Maritorena and Siegel 2005). MODIS-123 
Aqua based chlorophyll estimates were gap-filled for missing observations due to clouds 124 
according to the algorithm described at http://orca.science.oregonstate.edu/gap_fill.php. While 125 
gap-filling can alter the underlying chlorophyll distribution, it is not expected to affect the 126 
annually measured maximum value as the method calculates a temporal average over observed 127 
time points and would not generally exceed observed magnitudes. Secondly, I used the Ocean 128 
Colour Climate Change Initiative (OC-CCI) chlorophyll product (Sathyendranath et al. 2019) 129 
covering the same time period as the MODIS-Aqua dataset, accessed from 130 
www.oceancolour.org. The same time period was chosen to be consistent between the two 131 
analysis and compare results. OC-CCI chlorophyll is a synthetic product generated by combining 132 
information from multiple sensors, including SeaWiFS (Sea-viewing Wide-Field-of-view 133 
Sensor), MODIS-Aqua, MERIS (Medium spectral Resolution Imaging Spectrometer) and VIIRS 134 
(Visible and Infrared Imaging Radiometer Suite). OC-CCI was not gap-filled and therefore 135 
contained missing values due to clouds. I grided both sets of chlorophyll observations to ¼° 136 
latitude-longitude resolution. Wintertime satellite chlorophyll observations were not available for 137 
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higher latitudes due to light limitation and were replaced with a value of zero concentration 138 
which did not affect the extreme value analysis. Sea surface temperature data from the MODIS-139 
Aqua sensor were obtained from the Oregon State University Ocean Productivity Database site 140 
cited above. Bathymetric depth data were obtained from 141 
https://www.gebco.net/data_and_products/gridded_bathymetry_data/. I analyzed chlorophyll 142 
observations as a proxy for phytoplankton carbon biomass, noting that chlorophyll and carbon 143 
can decouple due to photoacclimation processes, particularly at low light (Behrenfeld et al. 2005; 144 
Sathyendranath et al. 2020). Despite this, chlorophyll is generally estimated with lower 145 
uncertainty than carbon (Sathyendranath et al. 2020) and plays a central role in rates of primary 146 
production. Carbon biomass estimates may also be used in future work with the analytical 147 
framework presented here.  148 
 149 
Extreme Value Analysis 150 
 151 
Given a time series of chlorophyll observations at an individual location, I estimated the 152 
parameters of the GEVD via the block maxima approach (Gilleland and Katz 2016), taking time 153 
series blocks as individual years. I define 𝑥 = max(𝑦!, 𝑦", … , 𝑦#) as the maximum chlorophyll 154 
measurement in a single year of 𝑛 measurements. Over 𝑚 years I have 𝑚 yearly maxima, thus 155 
defining the observed annual maxima time series 𝑥!, 𝑥", … , 𝑥$ (the map showing the month 156 
when the maxima most frequently occurred is displayed in Supplementary Figure 1). For an 157 
annual maximum 𝑥, the GEVD has a probability density function given by 158 
 159 

𝑝(𝑥) =
1
𝜎 𝑡
(𝑥)%&!𝑒'((*) 160 

with  161 

𝑡(𝑥) =

⎩
⎨

⎧
=1 + 𝜉 @

𝑥 − 𝜇
𝜎 AB

'!%
, 𝜉 ≠ 0,

𝑒'
*',
- 																								, 𝜉 = 0,

 162 

 163 
where 𝜇, 𝜎, and 𝜉 are the location, scale, and shape parameters, respectively. The location 164 
parameter shifts the GEVD along the 𝑥 axis, the scale parameter controls the spread, and the 165 
shape parameter controls the peaked-ness of the mode and heaviness of the distribution tail. 166 
Examples of how 𝜇, 𝜎, and 𝜉 modulate the GEVD are given in Supplementary Figure 2. 167 
Formulas for the expected value, variance, and mode of the GEVD are given in Appendix A. 168 
For the satellite observations, m=18 for years 2002-2021 and n=46, on average, due to eight day 169 
spacing through the year. Goodness of fit was evaluated by quantile-quantile plots where the 170 
empirical quantiles of the observations are correlated against the theoretical quantiles predicted 171 
from the fitted GEVD distributions.  172 
 173 
In addition to the three-parameter GEVD described above, I also apply a nonstationary extension 174 
where the parameters are described as simple linear functions of time (Gilleland and Katz 2016) 175 
of the form 176 
 177 

𝜃(𝑡) = 𝜃. + 𝜃!𝑡, 178 
 179 
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where 𝜃 is one of the GEVD parameters, 𝜃. is the intercept of the linear relationship, and 𝜃! is 180 
the slope, i.e. the rate of change with respect to time.  181 
 182 
The log-likelihood for the GEVD parameters (Gilleland and Katz 2016) is given by 183 
 184 

𝑙(𝜇, 𝜎, 𝜉|𝑥!, 𝑥", … , 𝑥$) = −𝑚 ln𝜎 − @1 + !
%
A∑ ln J1 + 𝜉 @*!',

-
AK − ∑ J1 + 𝜉 @*!',

-
AK

!/%
$
01!

$
01! . 185 

 186 
I maximized the log-likelihood function with respect to the parameters to obtain empirical 187 
estimates. I maximized with respect to 𝜇, 𝜎, and 𝜉 in the case of stationary GEVDs, and with 188 
respect to the intercept and slope in the case of nonstationary GEVDs. I restricted the analysis to 189 
estimating one nonstationary parameter at a time due to data restrictions and weak identifiability 190 
when multiple parameters are allowed to vary. I only considered linear functions of time and 191 
suggest nonlinear functions for future work. I used numerical optimization routines implemented 192 
in the extRemes library within the R programming language (Gilleland and Katz 2016). I 193 
compared stationary and nonstationary fits according to the Bayesian Information Criterion 194 
(BIC), given by BIC = −2𝑙P�̂�, 𝜎R, 𝜉ST − 𝑘 log 𝑛, where 𝑙P�̂�, 𝜎R, 𝜉ST is the maximized likelihood at 195 
empirical estimates �̂�, 𝜎R, and 𝜉S. 𝑘 is the number of parameters in the GEVD (three for stationary 196 
GEVDs, four for nonstationary GEVDs), and 𝑛 is the number of yearly maxima used in the fit. A 197 
GEVD was fit to chlorophyll time series in each ¼° pixel. The parameters were mapped spatially 198 
and correlated with basin bathymetry. Parameter uncertainty was derived by taking the square-199 
root of the inverse Hessian matrix evaluated at the maximum likelihood estimates.   200 
 201 
Results 202 
 203 
The distributions of annual chlorophyll maxima showed excellent agreement with those 204 
predicted from the GEVD. Across the Atlantic basin, observed distribution quantiles correlated 205 
with those from the fitted GEVDs at 𝑟 = 0.97 on the arithmetic scale (Supplementary Figure 206 
3a) and 𝑟 = 0.98 on the log scale (Supplementary Figure 3b). The spatial distribution of the 207 
quantile-quantile correlation was also consistent across the basin, with no apparent relationship 208 
with latitude or distance from the coast (Supplementary Figure 3c). The region of largest 209 
disagreement occurred off the southwest coast of Europe, yet correlations were still above 𝑟 = 210 
0.7 and remained so across the basin.  211 
 212 
When fitted GEVD parameters were mapped spatially I found that parameter magnitude closely 213 
followed basin bathymetry (Figures 1-2). Location, scale, and shape parameters were 214 
consistently elevated on the shelf and adjacent waters (<700m depth; Figure 1; Figure 2a-c). 215 
Location parameters were elevated by over fivefold, scale parameters elevated approximately 216 
twofold, and shape parameters elevated over threefold in waters shallower than 700m. The 217 
distinction in magnitude between shelf and open ocean water was strongest for location and 218 
shape parameters, and weaker for scale parameters, demonstrating a correlation between the 219 
mean interannual bloom magnitude and the ‘heaviness’ of the underlying distribution tail. This 220 
pattern appeared on the eastern and western sides of the basin. Deeper slope waters off the coast 221 
of Greenland also showed elevated location and shape parameters. The largest parameter 222 
magnitudes were found in the shallow Baltic Sea (Figure 1c,d; Figure 2a,c). The scale 223 
parameter showed a different pattern with bathymetry where parameter magnitude was modestly 224 
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elevated in shelf waters but also showed a step-change decrease in the deepest waters (>4000m; 225 
Figure 1b; Figure 2b). However, the aerial distribution of shelf vs. deep water is markedly 226 
different, with deep waters limited to the southern half of the basin around the Mid-Atlantic ridge 227 
while shelf seas are widely distributed. Parameter uncertainty weakly correlated with parameter 228 
magnitude for location and shape parameters, particularly around the Greenland slope, but had 229 
no consistent relationship across the basin (Supplementary Figure 4). Scale parameter 230 
uncertainty was elevated in deeper water (Supplementary Figure 4). The area-weighted average 231 
of the parameter coefficients of variation (the standard deviation of the parameter uncertainty 232 
divided by the fitted mean parameter) was 0.11, 0.38, 0.24 for location, scale, and shape 233 
parameters, meaning the 1𝜎 uncertainty was 11%, 23.5%, and 24% of the mean, respectively 234 
(Supplementary Figure 4). I repeated the uncertainty analysis by artificially halving and 235 
doubling the number of observations to diagnose the impact of sample size on estimation 236 
uncertainty. Area-weighted coefficients of variation increased to 14%, 26.3%, and 34.9% when 237 
sample size was halved, and decreased to 8%, 16.6%, and 17.0% when sample size was doubled, 238 
respectively (Supplementary Figure 5).   239 
 240 
I quantified the correlation between fitted GEVDs parameters using linear relationships (Figure 241 
2d-f). Bivariate relationships between parameters were well described by a linear intercept and 242 
positive slope, indicating strong positive scaling relationships. The strongest relationship was 243 
found between fitted location and shape parameters, reflecting that GEVD distributions increase 244 
in magnitude and heavy tailed-ness with decreasing bathymetric depth. I visually characterized 245 
how the GEVD changes from deep to shelf waters using the fitted linear relationships (Figure 246 
2g-h), noting that this characterization represents the basin-averaged relationships so may not 247 
necessarily be representative of individual regions. The empirical pattern underlying positive 248 
scaling between location, scale, and shape parameters is reflected in the extreme value time 249 
series where the mean and median of the annual extremes are positively related to the extreme 250 
variance (Supplementary Figures 6-7).      251 
 252 
Using a nonstationary GEVD analysis, I found weak evidence for temporal trends in GEVD 253 
parameters, despite significant trends in chlorophyll levels and sea surface temperature across the 254 
North Atlantic (Figure 3). Nonstationary parameters were favored in 34.3%, 29.9%, and 36.3% 255 
of basin area for location, scale, and shape parameters, respectively (Figures 3a-c). Where non-256 
stationary parameters were favored, trends in the location parameter positively correlated with 257 
background chlorophyll trends (r=0.70; Figure 3, Supplementary Figure 8). However, trends in 258 
the scale and shape parameters did not correlate with chlorophyll nor sea surface temperature 259 
trends (Supplementary Figure 8; r<0.1 in all cases). The weakest evidence for nonstationary 260 
parameters was found in the area with the strongest sea surface temperature trends, specifically 261 
the warming-cooling dipole pattern on the western side of the basin caused in-part by a 262 
slowdown of the Atlantic overturning circulation and associated northward heat transport (i.e. the 263 
North Atlantic ‘warming hole’; Keil et al. 2020). I also examined parameter variability at the 264 
level of Longhurst biogeochemical provinces but found no consistent pattern, with high inter- 265 
and intra-province variability (Supplementary Figure 9).   266 
 267 
I repeated the GEVD parameter estimation using the OC-CCI chlorophyll product and found 268 
consistent results to those based on MODIS observations presented above. Quantile-quantile 269 
correlations showed a similarly good fit between observed OC-CCI quantiles and those predicted 270 
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from the fitted GEVDs with a correlation of 𝑟 = 0.98 in arithmetic space and 𝑟 = 0.98 in log 271 
space (Supplementary Figure 10-11). Spatial patterns in fitted GEVD parameters were 272 
consistent across parameters estimated using the two datasets, despite some evidence for slightly 273 
reduced scale parameter magnitudes using OC-CCI chlorophyll (Supplementary Figure 10), 274 
which may be due to reduced variance in the synthetic multi-sensor OC-CCI dataset. Finally, I 275 
examined the annually observed extremes for autocorrelation and found weak evidence across 276 
the basin (Supplementary Figure 12).  277 
  278 
Discussion 279 
 280 
Our analysis demonstrates that annual chlorophyll maxima are well-described by the GEVD 281 
based on the statistical theory of extreme values. I achieved a high goodness-of-fit and 282 
interpretable spatial patterns across the North Atlantic basin. A clear pattern emerged in the 283 
correlation between GEVD parameters and bathymetric depth, with the magnitude and tailed-284 
ness of chlorophyll extremes increasing in shelf and slope environments. The mechanism for this 285 
pattern is unclear and will require a further understanding of how nutrients, shelf stratification 286 
dynamics, grazing, and other factors interact to generate extreme chlorophyll concentrations. The 287 
heavy distribution tail on the shelf may be related to variability in bloom timing which has been 288 
shown to impact interannual variability in shelf bloom magnitude (Friedland et al. 2015). 289 
However, the observed relationships may also be a more general phenomenon where the tailed-290 
ness of the chlorophyll distribution is a function of background concentrations which are 291 
coincidentally elevated in shelf environments. I suggest further work examining the potential 292 
mechanisms that could explain different extreme value distributions under contrasting 293 
oceanographic environments. Classical models of phytoplankton blooms (e.g. Behrenfeld and 294 
Boss 2014) may be extended to include stochastic forcing and generate statistical distributions of 295 
bloom interannual magnitude. Targeted sensitivity analyses of annual maxima distributions to 296 
different underlying forcing and background chlorophyll levels may uncover mechanisms for 297 
changes in distribution parameters.   298 
 299 
Results of the nonstationary analysis suggested weak evidence for changes in GEVD parameters 300 
over time. The lack of correlation with observed trends in background chlorophyll and sea 301 
surface temperature suggests that climate-related drivers are playing a limited role in modulating 302 
interannual bloom magnitude, despite the North Atlantic showing significant climate change 303 
(Keil et al. 2020). I note, however, that the current nonstationary analysis is limited by time 304 
series length, here applied to eighteen years of observed annual maxima. Uncertainty in the 305 
chlorophyll satellite record is also introduced via missing values due to clouds which partly 306 
obscures the distribution of maxima. Here I found that gap-filling the missing observations had 307 
no appreciable effect on the estimated extreme value parameters when comparing the gap-filled 308 
and non-gap-filled chlorophyll datasets. Continued studies will be required to monitor changes in 309 
bloom magnitude over time. An extended satellite record will provide greater statistical power to 310 
detect climate-driven trends. An extended record will also constrain more complicated functions 311 
describing the variation of parameters with time and their statistical association with 312 
environmental factors. Biogeochemical general circulation models may also be analyzed to gain 313 
insight into the distribution and generating mechanisms of annual maxima.  314 
 315 
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Ecologically, interesting questions arise about how extreme blooms propagate through food 316 
webs, contribute to carbon export, and impact ecological processes more broadly. For example, 317 
annual fisheries recruitment is often characterized by heavy-tailed distributions where individual 318 
years exhibit extremely large cohorts, often fueling the fishery for years (Saetre et al. 2002). 319 
Extreme bloom years may increase the probability of strong cohorts via the match-mismatch 320 
mechanism (Platt et al. 2003), perhaps with temporal lags between blooms and recruitment 321 
modulated by trophic transfer. With respect to carbon export, I expect extreme blooms to 322 
contribute disproportionately to interannual carbon fluxes due to the commonly-observed 323 
positive effect of phytoplankton productivity on carbon export efficiency (Britten and Primeau 324 
2016) and observed carbon fluxes associated with blooms in the North Atlantic (Briggs et al. 325 
2011). The observed positive relationship between location and shape parameters may be of 326 
particular interest where the frequency and intensity of extreme blooms scales with the 327 
background chlorophyll levels. Databases of carbon flux observations may be used to test these 328 
relationships at the basin and global scales (Mouw et al. 2016). Beyond fisheries and carbon 329 
export, I envision extreme value distributions to be broadly useful in characterizing the response 330 
of ecological processes to environmental extremes. The increase in applications of extreme value 331 
theory to environmental processes (Aghakouchak et al. 2020) naturally leads to questions of how 332 
environmental extremes impact ecology. The GEVD is one extreme value analysis tool that is 333 
theoretically motivated when considering block maxima (which was particularly appropriate here 334 
to describe the maxima of a repeating annual cycle) however other statistical descriptions of 335 
ecological heavy tailed-ness can also be useful in this context, for example the lognormal 336 
distribution (e.g. Anderson et al. 2017).  337 
 338 
In summary, the GEVD provided a useful statistical description of bloom variability and a 339 
general framework to quantify the spatiotemporal statistics of interannual bloom maxima. I hope 340 
this study spawns further analysis of marine ecosystem variability using extreme value theory to 341 
better understand how environmental conditions give rise to ecological extreme events, how 342 
extreme blooms contribute to fisheries productivity and carbon export, and how these processes 343 
may change with climate.  344 
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Figures  439 
 440 
 441 

 442 
Figure 1. Spatial distribution of fitted GEVD parameters and basin bathymetry. Panels a, b, c 443 
give the estimated location, scale, and shape parameters, respectively. Bathymetry contours are 444 
overlaid with a contour interval of 500 meters. 445 

446 
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 447 
 448 
Figure 2. Relationships between fitted GEVD parameter and bathymetric depth. Panels a-c give 449 
the basin-averaged relationship between the fitted parameters and bathymetric depth with 95% 450 
intervals. Panels d-f give the inter-relationships among fitted parameters with the least squares 451 
regression line and equation. Panels g and h give the basin-averaged change of the GEVD with 452 
bathymetric depth. Panel h zooms in on the distribution tail in g (note horizontal axis limits).  453 
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 454 
Figure 3. Trends in GEVD parameters in the context of basin-scale trends in chlorophyll and sea 455 
surface temperature. Panels a, b, and c give the estimated parameter rate of change for location, 456 
scale, and shape parameters, respectively. Rates of change are only shown where model selection 457 
favored the nonstationary distribution (see text for details). Panels d and e give the linear trend in 458 
surface chlorophyll and sea surface temperature, respectively, estimated from MODIS 459 
observations since 2002.   460 
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Appendix A 461 
 462 
The expected value of the GEVD is given by 463 
 464 

𝐄[𝑥] = [
𝜇 + (𝑔(1) − 1)

𝜎
𝜉 			𝑖𝑓	𝜉 ≠ 0, 𝜉 < 1

𝜇 + 𝜎𝛾																							𝑖𝑓	𝜉 = 0												
∞																																𝑖𝑓	𝜉 ≥ 1												

 465 

 466 
where 𝑔(𝑘) = Γ(1 − 𝑘𝜉), Γ(𝑟) is the gamma function, and 𝛾 is Euler’s constant (𝛾 ≅ 0.5772). 467 
The variance of the GEVD is 468 
 469 

𝐕𝐚𝐫[𝑥] =

⎩
⎪⎪
⎨

⎪⎪
⎧(𝑔(2) − 𝑔(1)")

𝜎"

𝜉"
		𝑖𝑓	𝜉 ≠ 0, 𝜉 <

1
2

𝜎"𝜋"

6 																										𝑖𝑓	𝜉 = 0												

∞																																𝑖𝑓	𝜉 >
1
2
												

 470 

 471 
The mode of the GEVD is 472 
  473 

𝐌𝐨𝐝𝐞[𝑥] = [
𝜇 +

𝜎
𝜉
((1 + 𝜉)'% − 1)		𝑖𝑓	𝜉 ≠ 0													

𝜇																																									𝑖𝑓	𝜉 = 0														
				

 474 

 475 
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Supplementary Figure 1. The most frequent month when the annual maxima occurred calculated 
using MODIS observations. January is month #1.   
  



 
 
 

 
 
Supplementary Figure 2. Examples of the GEVD distribution for different values of the location 
(a), scale (b), and shape (c) parameters. 
 
  



 
 
Supplementary Figure 3. Observed quantiles of North Atlantic annual bloom extremes vs. those 
predicted from the fitted GEVDs. Panel a gives the relationship in arithmetic space; panel b 
gives the relationship in log (base ten) space. A random sample of 5000 quantiles were drawn in 
order to visualize the relationship in a and b. The correlations in a and b are 0.97 and 0.98, 
respectively. Panel c gives the spatial distribution of quantile-quantile correlations. Note the 
correlation color bar extends from 0.7 to 1.0. 
 
  



 

 
 
Supplementary Figure 4. Uncertainty in fitted GEVD parameters expressed as the coefficient of 
variation (CV). The CV is calculated as the ratio of the uncertainty standard deviation divided by 
the mean of the fitted parameter.   
  



 
 
Supplementary Figure 5. Effect of sample size on parameter uncertainty. Top row (a-c) gives the 
coefficients of variation as in Supplementary Figure 4. Second (d-f) and third (g-i) rows give the 
coefficients of variation when the number of observations was halved and doubled, respectively. 
The first nine years were used when halving the observations. The time series was doubled by 
repeating the time series a second time after the last observed year.  
   



 
 
Supplementary Figure 6. Maps giving the means (a), medians (b), and standard deviation (c) of 
the observed extremes.  
  



 
 

 
 
Supplementary Figure 7. Scaling relationships between the mean extreme, median extreme, and 
standard deviation of the extremes across the North Atlantic basin.  
 
 
 
  



 
 

 
 
Supplementary Figure 8. Scatterplot relationships derived from results of Figure 3 in the main 
text. Top row gives the estimated trend in location, scale, and shape parameters vs. the trend in 
background chlorophyll concentrations. Bottom row gives the estimated trend in location, scale, 
and shape parameters vs. the trend in SST. Correlation coefficient for each relationship is given 
in the top left of each panel. Trends are only shown were ΔBIC > 2 for the nonstationary 
relationships.   
  



 
 

 
 
Supplementary Figure 9. Figure 3 of the main text with Longhurst biogeochemical provinces 
overlaid.  
  



 
Supplementary Figure 10. As in Figure 1 of the main text but using OC-CCI chlorophyll 
estimates. 
  



 

 
 
Supplementary Figure 11. As in Supplementary Figure 3 but using OC-CCI chlorophyll 
estimates. 
 
  



 
 

 
 
Supplementary Figure 12. Lag one autocorrelation coefficient for the extreme time series. Panel 
(a) gives all estimated coefficients. Panel (b) gives those that are considered statistically 
significant at the 95% confidence level, found by solving the t statistic equation 1.96 = !√#$%	

√'$!!
.  
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