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Abstract

Existing tools for sewer network modelling are accurate but too slow for a range of modern applications such as optimisation

or uncertainty analysis. Reduced complexity sewer network models have been developed as a response to this, however,

current applications are slow to set up and still require high-fidelity models to be run for calibration. In this study, we

compare and develop graph partitioning techniques to automatically group sections of sewer network into semi-distributed

compartments. These compartments can then be simulated without calibration in the integrated modelling framework, CityWat-

SemiDistributed (CWSD), which has been developed for application to sewer network modelling as part of this study. We

find that combining graph partitioning with CWSD can produce accurate simulations 100-1,000x more quickly than existing

high-fidelity modelling. We compare a range of graph partitioning techniques to enable users to specify the level of spatial

aggregation of the partitioned network, also enabling them to preserve key locations for simulation. We test the impact of

temporal resolution, finding that accurate simulations can be produced with timesteps up to one hour. Our experiments show

a log-log relationship between temporal/spatial resolution and simulation time, which would enable a user to pre-specify the

speed and accuracy needed for their application. We expect that the speed and flexibility of the approach presented in this

work may facilitate a variety of novel applications of sewer network models ranging from continuous simulations for long-term

planning to spatial optimisation of network design.
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1 Introduction 33 

Hydraulically based models are used to simulate how sewer networks of urban catchments will 34 

respond to precipitation events (Salvadore et al., 2015). These models enable planners to design 35 

interventions that might resolve current network issues, and to plan for changes in the urban 36 

catchment. However, the models also require the network and catchment to be represented at high 37 

spatial and temporal resolution, resulting in accurate simulations but lengthy simulation times. As 38 

regulations, such as the UK’s newly introduced ‘Drainage and Wastewater Management Planning’, 39 

require more computationally expensive applications of sewer network models, such as optimisation, 40 

real-time control, or climate uncertainty analysis (Water UK, 2019), it is increasingly clear that 41 

alternative approaches are needed to complement traditional detailed sewer network modelling.  42 

Surrogate modelling aims to reduce simulation model run times for computationally expensive 43 

applications (Razavi et al., 2012). The principles of surrogate modelling are to apply two broad 44 

families of approaches that improve speed, but still enable sufficiently accurate approximations of the 45 

model output of interest (e.g., performance metrics). The first is a response surface surrogate, which 46 

uses statistical/machine learning techniques to create a data-driven relationship between inputs and 47 

outputs, for example by complementing evaluations of a water distribution network model with a 48 

trained neural network to aid optimization (Andrade et al., 2016). Second is low-fidelity modelling, 49 

which creates a physically based representation at a reduced complexity, for example by aggregating 50 

in space as a lumped hydrological model would do (Beven, 2012). In this paper, we refer to low-51 

fidelity modelling as ‘reduced complexity’ modelling to avoid the presumption that fidelity may either 52 

be just ‘high’ or ‘low’ (and nowhere in between) and to remove the implication that low-fidelity is 53 

equivalent to low-trustworthiness.  54 

Following the modern planning demands placed on sewer network analysis, surrogate modelling 55 

concepts have recently been applied to sewer network modelling (Thrysøe et al., 2019; Li & Willems, 56 

2020). These existing studies implement a hybrid approach that uses a data-driven analysis of high-57 

fidelity model simulations to define the parameters of a reduced complexity model. We argue that the 58 

requirement for calibration by high-fidelity models limits the applicability of a surrogate approach to 59 

sewer network modelling. This is primarily because the intensive expertise, data and time 60 

requirements for high-fidelity sewer network model creation and simulation is counter to the 61 

exploratory purposes that surrogate models are suited for. Thus, we propose that a more useful and 62 

widely applicable approach for surrogate modelling of sewer networks would be to use an entirely 63 

physically based reduced complexity model.  64 

Any physically based or hybrid approach for surrogate modelling of sewer networks will require a 65 

means to reduce complexity, as mentioned, typically achieved by spatial aggregation. Thrysøe et al. 66 

(2019) achieve this aggregation by manual delineation of sub-areas, referred to as ‘compartments’ of 67 

a sewer network. Although this allows a user to have some degree of control over the complexity of 68 

the surrogate model ultimately created, it is a labour intensive task and will produce different results 69 

depending on the person who is performing it. Instead, Li & Willems (2020) extract sub-graphs to 70 

identify each self-contained area of a network and lump at this scale. Although this approach is 71 
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automated and objective, it produces a model of a single, coarse, resolution. While not applied for 72 

surrogate modelling, Liu et al. (2018) demonstrate that graph partitioning algorithms can be used to 73 

automatically delineate water distribution networks into reduced graphs with a pre-specified 74 

complexity. We expect that these graph partitioning techniques might reasonably be used to 75 

aggregate sewer networks for modelling, rather than just for administrative purposes (as was done in 76 

Liu et al. (2018)). 77 

Ochoa-Rodriguez et al. (2015) have shown that temporal resolution for precipitation can be equally 78 

important in simulating sewer networks as spatial resolution. Given these findings, we expect that 79 

reducing complexity via temporal resolution may also be an effective means to perform surrogate 80 

modelling of sewer networks. High-fidelity sewer network models are typically not well suited to low 81 

temporal resolution due to numerical instabilities that are introduced (Falter et al., 2013). However, 82 

surrogate modelling presents an opportunity to formulate simplified, but more accommodating, 83 

numerical schemes. Ultimately this will facilitate larger timesteps than would be possible with high-84 

fidelity models, enabling investigating the interactions between spatial and temporal resolution and 85 

giving a reduced complexity model user more control of their model complexity to better suit their 86 

needs. 87 

Thus, in this study we propose that, by combining graph partitioning with physically based reduced 88 

complexity modelling, we can create simplified sewer network models of a pre-specified speed and 89 

accuracy. Since none exist, we first present a novel physically based surrogate model for processing 90 

flows in an aggregated sewer system that only requires asset information without the need for 91 

calibration using high-fidelity modelling. We then compare a range of graph partitioning algorithms, 92 

including two novel approaches tailored to sewer networks, to enable spatial aggregation for 93 

surrogate modelling. Finally, we present experiments that investigate how spatial and temporal 94 

resolution of surrogate models interacts with both simulation speed and accuracy, information that is 95 

vital to know in advance of surrogate model applications such as optimisation and uncertainty 96 

analysis. Ultimately, we envisage such an approach to be of great value to those that require rapid 97 

evaluation of sewer network models, while also providing further insight into the recurring questions of 98 

spatial/temporal resolution in the context of environmental modelling. 99 

2 Methods 100 

To facilitate simulations with a speed and complexity that suits the needs of a given user, a modelling 101 

approach that can accommodate spatial and temporal aggregation is needed. The high-fidelity model 102 

against which simulations are compared, InfoWorks, is presented in Section 2.1.1. The novel, 103 

reduced complexity model that can make these accommodations, CityWat-SemiDistributed (CWSD), 104 

is presented in Section 2.1.2 and Appendix A. The graph partitioning algorithms that enable a user to 105 

specify the degree of spatial resolution in CWSD are presented in Section 2.2. We detail the 106 

evaluation of CWSD in Section 2.3. The case study catchment, Cranbrook, UK, is described in 107 

Section 3.1. The specific experiments that bring together CWSD and partitioning are detailed in 108 

Section 3.2. The workflow used in this study is summarised in Figure 1. 109 
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 110 

Figure 1: Illustration of the workflow presented in this study. 111 

2.1 Sewer modelling at different levels of complexity 112 

2.1.1 High-fidelity modelling 113 

A range of high-fidelity models exist for sewer network simulations, for example, InfoWorks ICM 114 

(Innovyze, 2014), SWMM (Rossman, 2010), or MIKE URBAN (DHI, 2014). In this study we use 115 

InfoWorks ICM  since it is widely used in the UK and in research applications (Ochoa-Rodriguez et al., 116 

2015; Gong et al., 2018; Babovic & Mijic, 2019; Muhandes et al., 2021). In InfoWorks ICM, a conduit 117 

is represented as a defined length link in the network between two nodes. The boundary condition 118 

between the link and a node is either of the outfall or head loss type. The gradient of a conduit is 119 

defined by invert levels at each end of the link. The conveyance function is based on the Manning 120 

equation, that uses the hydraulic gradient resulted by the upstream and downstream head-difference 121 

when the network is surcharged or the conduit slope otherwise. InfoWorks ICM has its own 1D St 122 

Venant solvers to undertake hydraulic calculations of a drainage network for transient flow (Innovyze, 123 

2014). For hydrology calculations, InfoWorks ICM uses SWMM5 hydrology and infiltration modules 124 

(Rossman, 2010). 125 

2.1.2 CityWat-SemiDistributed (CWSD) reduced complexity modelling 126 

CWSD is an open source integrated urban water modelling framework and software designed for 127 

easy setup, efficient computation times achieved by spatial aggregation (hence semi-distributed) and 128 

flexibility to accommodate a wide range of system types (Dobson, Jovanovic, et al., 2021). The 129 

Python source code used in this study is provided at (Dobson, Watson-Hill, et al., 2021). The 130 

modelling framework provides a node- and arc-based system representation, where nodes are 131 

various elements of the water system (e.g., treatment plants or aggregations of pipe network) and 132 

arcs are the means that flow information is passed between nodes (e.g., specific pipes or rivers). The 133 

semi-distributed nature of CWSD and its ability to flexibly change how specific subsystems are 134 

represented makes it a uniquely suitable tool to explore reduced complexity modelling in a sewer 135 

network context. In Figure 2 we demonstrate how a sewer network can be split into ‘compartments’ to 136 
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provide a reduced complexity semi-distributed representation. As in Thrysøe et al. (2019), the volume 137 

of water storage available in specific manholes and pipes can be aggregated to provide a 138 

compartment capacity. Thus, each CWSD node in this study is a compartment of semi-distributed 139 

sewer network, while arcs are the pipes between compartments as in the high-fidelity model. 140 

 141 

Figure 2: (Map) An example depicting how the Cranbrook sewer network (Babovic & Mijic, 142 

2019), for our case study can be compartmentalised into a semi-distributed, reduced 143 

complexity, representation. (Schematic) Q indicates a flow (m3/s), S a storage (m3) and Sl a 144 

hydraulic gradient (m/m) of the two compartments, A and B. 145 

In this study, flow information is passed entirely in the form of a push request, that is, a request to 146 

push water from an upstream to a downstream compartment. This form of information passing is a 147 

common integrated modelling technique in the context of urban wastewater modelling, for example as 148 

 
 

  

      

      

      

           

     

  

  



6 
 

in CityDrain3 (Burger et al., 2016). Thus, the simulation takes place by orchestrating a series of push 149 

requests between compartments, as demonstrated in Appendix A, Figure A1. 150 

Previously, CWSD has been demonstrated only for extremely low-resolution urban water 151 

management modelling (i.e., London’s sewer network was aggregated in semi-distributed areas of 152 

around 200 km2). Thus, in this study, we have developed a range of functionalities to enable CWSD 153 

for the finer resolutions required for sewer network simulation, namely, pipe travel times, variable 154 

timestep size, simple hydraulics, and time-area runoff calculations. This more physically based 155 

representation, and the other aggregated compartment-scale parameters needed to implement them, 156 

are detailed in Appendix A.1. We summarise the key hydraulic assumptions below: 157 

• Flow between compartments is governed by Manning’s equation. Where elevation head is 158 

based on the elevation of sending/receiving manholes in a compartment and pressure head is 159 

determined by the current storage and total chamber area of manholes in a compartment. 160 

The area and hydraulic radius terms in Manning’s equation are assumed constant at full-bore. 161 

This will result in a slight underestimation of travel times during less intense events, but we 162 

assess that the negative impact of this is negligible. 163 

• Travel time within a compartment and between compartments is tracked but assumed to 164 

travel at the full-bore velocity of pipes. This will result in slight underestimation of travel times 165 

during less intense events. 166 

• If push requests from previous timesteps arrive at a flooded compartment, they are rejected 167 

and immediately returned to the upstream compartment. This provides a representation of the 168 

backwater process but does not account for hydraulic head generated by flooded water. 169 

• Surface runoff is represented using the time-area method as described in (Butler & Davies, 170 

2004).  171 

We also provide a worked spreadsheet example performing the compartment aggregation process 172 

and hydraulic calculations in Supplemental Material S1 an S2.  173 

2.2 Sewer network aggregation 174 

2.2.1 Application of graph partitioning 175 

As anticipated in the introduction, to perform reduced complexity modelling that can be scaled to large 176 

sewer networks and improve the usability of these approaches, an automated method to delineate 177 

compartments, spatially aggregating them, is necessary. A key innovation in this study is the 178 

application of mathematical graph partitioning techniques to perform this task. The goal of graph 179 

partitioning is to allocate sets of nodes into sub-groups, resulting in a graph with a smaller number of 180 

edges but retaining the overall connectivity of the original network (Buluç et al., 2016). Because there 181 

is a wide range of different available techniques to perform graph partitioning, we compare a selection 182 

from different method families: spatial, spectral, and heuristic methods. It is also common to combine 183 

multiple algorithms to improve the efficiency of partitioning, called a ‘multi-level’ algorithm (Karypis & 184 

Kumar, 1997). We test a selection of these multi-level approaches. We propose two novel multi-level 185 

approaches that are tailored for use in sewer network modelling. Our two proposed methods aim to 186 
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harness the power of one of the most popular algorithms, Louvain (Blondel et al., 2008), but enable a 187 

user to specify the number of partitions that it produces to facilitate more widespread application for 188 

sewer network aggregation. 189 

The partitioning methods used in this study, their family, the source for the algorithm implemented, 190 

and a summary are shown in Table 1. We include a shorthand in the ‘Key’ column that results are 191 

labelled with.  192 

Method Key Family Source (Python 
package/Reference) 

Summary description 

K-Means 
clustering 

km Spatial scikit-learn (Pedregosa 
et al., 2011) 

Allocate nodes to groups, 
iterate to minimise average 
distance between nodes and 
group centre 

Agglomerative 
clustering 

ac Spatial scikit-learn (Pedregosa 
et al., 2011) 

Iteratively merge the two 
closest nodes until desired 
number of groups is met 

Spectral 
clustering 

sc Spectral scikit-learn (Shi & 
Malik, 2000; Pedregosa 
et al., 2011) 

Allocate nodes to groups, 
iterate to minimise the 
eigenvalues of the graph 
Laplacian of groups 

Fluid communities fluid Heuristic networkx (Hagberg et 
al., 2008; Parés et al., 
2018) 

Iteratively propagate groups as 
fluids through the network, a 
node’s membership is based 
on the density of fluids in that 
node 

Louvain louv Heuristic scikit-network (Blondel 
et al., 2008; Bonald et 
al., 2020) 

Iteratively merge two nodes 
that will improve the modularity 
of the network until no more 
merging can improve the 
modularity 

K-means with 
spectral bisection 

km_sc Multi-
level 

Based on (Yan et al., 
2009) 

Pre-aggregate the network 
using K-means, then bisect the 
largest groups using spectral 
until desired number of groups 

Agglomerative 
with spectral 
bisection 

ac_sc Multi-
level 

Based on (Yan et al., 
2009) 

As previous, but using 
agglomerative in the first step 

Louvain with 
spectral reduction 

L_scn Multi-
level 

Novel Iterate steps in Louvain 
partitioning until there are 
more groups than desired, 
then use spectral on the 
already partitioned network to 
produce the desired number 

Optimised 
Louvain 
parameters with 
spectral bisection 

L_L_sc Multi-
level 

Novel Iterate Louvain partitioning 
with a range of tolerance 
parameters until there are 
more groups than desired, 
then bisect the largest groups 
using spectral until desired 
number of groups  

Table 1: Summary of the partitioning methods used in this study. 193 

2.2.2 Preservation of key sewer elements 194 

A common requirement that we anticipate for sewer network aggregation techniques is the ability to 195 

preserve user defined key locations within the partitioned graph. In this study we do this to provide 196 
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common locations for comparison arcs across partitioning methods (Section 2.3) and to ensure 197 

hydraulic structures are represented (Section 3.2). The methods described in Table 1 do not make 198 

provisions for this. A simple technique to overcome this is presented below that is compatible with all 199 

methods in Table 1. 200 

1. Remove the sewer elements that are to be preserved from the network graph. If an arc is to 201 

be preserved, then remove both the up- and downstream nodes. 202 

2. Sub-graphs are created from the new network graph, resulting in multiple graphs that are 203 

separated by the removed nodes.  204 

3. Partitioning algorithms are run separately on each sub-graph. If the number of desired 205 

groups is provided (as is the case for all methods in Table 1 except for Louvain), then these 206 

are distributed in proportion to the number of nodes in each sub-graph. If sub-graphs contain 207 

a small number of nodes, they will still be assigned a minimum of one group, which may 208 

cause the resulting number of groups to be greater than the desired number. 209 

2.3 Model evaluation 210 

Since no observation data exists for our case study network, we compare CWSD model simulations 211 

against the high-fidelity InfoWorks results, as is common practice in sewer network modelling 212 

(Thrysøe et al., 2019). The two types of timeseries data we compare are pipe flows and total 213 

compartment storage. The arcs between compartments are conceptually identical to specific pipes in 214 

the InfoWorks model and so a direct comparison can be made. Because specific sewer elements 215 

(pipes/nodes) are simulated in the InfoWorks model, rather than compartments, we aggregate 216 

InfoWorks in-node, in-pipe and flooded volume simulation data to compartment scale to create a 217 

timeseries of total compartment storage (compartment storage hereafter), which can then be 218 

compared against CWSD simulations. We examine compartment storage rather than only 219 

compartment flooded volume because, conceptually, flooding in a compartment must exceed capacity 220 

at every compartment sewer element to flood rather than an individual one as is the case in reality. 221 

We later provide supporting results (Supplemental Material S3) to show that maximum compartment 222 

storage is closely related to maximum flooded volume, thus justifying that it is still information useful 223 

to decision makers who want to understand flooding impacts. We use the Nash-Sutcliffe Efficiency 224 

(NSE) performance metric to evaluate both flow and storage simulations.  225 

Comparing different partitioning algorithms with different numbers of desired groups is not trivial to do 226 

because there are no common sewer elements for comparison and not all sewer elements are equally 227 

important to simulate. We provide a comparison from a user-perspective; selecting arcs that must be 228 

preserved during partitioning (see Section 2.2.2) or compartments that contain specific nodes and 229 

comparing only these locations. To account for the importance of different sewer elements, we 230 

randomly select a sewer element from each twentieth percentile of flow/storage to preserve. This will 231 

ensure that we can determine how different algorithms and numbers of desired groups reproduce 232 

behaviour in both low and high flow/storage sewer elements. We reproduce all experiments twenty 233 

times, randomly selecting different sewer elements to preserve for comparison and to account for 234 

variability in how difficult specific different sewer elements are to model. In the main text we provide 235 
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results for the experiments that compare compartment storage or flow in arcs in the largest twentieth 236 

percentile, adjudging these to be of most interest to decision makers, and provide the remainder in 237 

Supplemental Material S4. 238 

3 Experimental setup 239 

3.1 Case study catchment 240 

To test the proposed CWSD simulation model and network aggregation techniques, we use the 241 

Cranbrook stormwater drainage network in London, UK. The network depicted in Figure 2 drains 8.5 242 

km2 with over 100 km of pipes, before discharging into the Roding River at two outfall locations. It is 243 

ideal for this experiment because it is large enough that manually delineating compartments would be 244 

undesirable from a user perspective, but small enough that InfoWorks simulations can be run in high 245 

resolution for month-long precipitation timeseries in a feasible amount of time (one or two days) for 246 

the purposes of model comparison. The network also contains a variety of complex hydraulic features 247 

(lakes, weirs, pumps, orifices, headwalls, and culverted watercourses that drain into the stormwater 248 

network) that will test the ability of CWSD to represent more varied systems. We run the experiments 249 

(Section 3.2) for two particularly wet month-long storm timeseries, January 2017 and August 2018. 250 

These storms were produced from a radar composite, described in (Dobson, Jovanovic, et al., 2021). 251 

The Cranbrook stormwater catchment, and its InfoWorks modelled representation, has been 252 

presented and validated in a range of studies (Ochoa-Rodriguez et al., 2015; Babovic & Mijic, 2019; 253 

Muhandes et al., 2021). 254 

3.2 Experiments 255 

Because the application of the CWSD simulation modelling framework is novel in a sewer network 256 

modelling context we first perform a benchmarking experiment to ensure that it can suitably be 257 

applied to test the performance of different partitioning algorithms. To create a benchmark semi-258 

distributed representation of the network we use the Louvain algorithm, Table 1. We select this 259 

algorithm over a manual delineation, as was used in Thrysøe et al. (2019), to ensure the 260 

representation is objective. We select Louvain over other available algorithms because it is one of the 261 

simplest to apply, its ubiquity makes it commonplace in benchmarking experiments, and, unlike the 262 

other methods, it produces a fixed number of groups so cannot be easily manipulated by tuning 263 

parameters. We used a one-minute timestep for CWSD in the benchmarking experiment, in line with 264 

the InfoWorks timestep. 265 

Second, we compare the various partitioning algorithms. Since all algorithms in Table 1, except for 266 

Louvain, require the user to specify the number of groups produced we test a variety of different 267 

specified number of compartments ranging from one to five hundred. As anticipated in Section 2.3, we 268 

randomly preserve sewer elements to ensure like-for-like comparison of the algorithms. To ensure the 269 

results are not biased by the random choice of sewer elements to preserve, we repeat the experiment 270 

twenty times. We used a one-minute timestep for CWSD in the benchmarking experiment, in line with 271 

the InfoWorks timestep. 272 
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Finally, to understand how complexity in space and time interact, we run experiments that compare 273 

how performance changes depending on the desired number of compartments and CWSD timestep 274 

size. Our end-goal in this experiment is for a user to be able to specify their desired model accuracy 275 

and be able to use the most efficient reduced complexity network aggregation to achieve that 276 

accuracy. As well as varying the number of compartments, as in the second experiment, we also vary 277 

the timestep size between thirty seconds and one day. We use the partitioning algorithm that is 278 

adjudged to perform best from the second experiment.  279 

Because previous surrogate sewer network experiments (e.g., Thrysøe et al. (2019)) have highlighted 280 

the importance of ensuring hydraulic structures are not grouped into compartments, we preserve 281 

lakes, weirs and pumps in the partitioning, as described in Section 2.2.2. 282 

To determine whether the modelling approach can be used to simulate individual sewer nodes (i.e., 283 

specific manholes) we also include a supplemental selection of results (S4) where these have been 284 

preserved in the same manner as hydraulic structures.  285 

Finally, to avoid timestep to timestep variations in the flow without any hydrological significance 286 

obscuring the result comparisons, a five-minute rolling average window has been applied along flows 287 

in arcs before plotting or calculating performance measures.  288 

4 Results 289 

4.1 Application of graph partitioning and CWSD to sewer network modelling 290 

As described in Section 3.2, the first experiment is to verify that the proposed CWSD simulation 291 

framework can produce simulation results comparable to the high-fidelity InfoWorks simulations using 292 

the Louvain partitioning algorithm for benchmarking purposes. In Figure 3A, we depict all 293 

compartments and arcs coloured by their Nash-Sutcliffe Efficiency (NSE) value and sized in 294 

proportion to their mean flow or compartment storage. It highlights that larger pipes are accurately 295 

simulated, while smaller pipes are more variable. In Figure 3B-D, we also provide a close-up of key 296 

pipe flows through the network on a single day in the month-long simulation.  297 
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 298 

Figure 3: (A) Aggregated network for the benchmark Louvain partitioning algorithm where 299 

compartments/arcs are coloured by their NSE value and sized proportionately to their storage 300 

or flow (B-D) three sub-sections of flow timeseries along a selection of increasingly large arcs.   301 

In Figure 4A, we provide the same map as in Figure 3A, but with simulated compartment storage 302 

shown in Figures 4B-D. We see generally that compartment storage performance is lower than arc 303 

performance, although still high in many large storage compartments.  304 
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 305 

Figure 4: (A) Aggregated network for the benchmark Louvain partitioning algorithm where 306 

compartments/arcs are coloured by their NSE value and sized proportionately to their storage 307 

or flow (B-D) three timeseries of compartment storage for a selection of compartments.  308 

Figures 3A and 4A highlight that performance appears to be influenced by compartment or pipe size. 309 

Thus, in Figure 5 we compare maximum pipe flow and maximum compartment storage against NSE 310 

performance. We see that, for pipes of low flows (<1 m3/min, shaded red) and compartments of low 311 

storages (<100 m3, shaded red), reasonable performance (NSE>0.5) is rare. For average pipes 312 

(between 1 and 10 m3/min, shaded blue) and compartments (between 100 and 1000 m3, shaded 313 

blue), reasonable performance is common but poor performance (NSE<0) is also present. For large 314 

pipes (>15 m3/min, shaded green) and compartments (>1000 m3, shaded green) reasonable 315 

performance is common and poor performance is rare.  316 
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 317 

Figure 5: (Left) NSE of flow in pipes for the benchmark Louvain partitioning algorithm 318 

simulations (y-axis) against the maximum flow in that pipe for a given simulation (x-axis). 319 

(Right) same as (Left) but for NSE of compartment storage. To improve readability, the scale 320 

of both axes is linear in the range [-1,1] and log elsewhere. 321 

As anticipated in Section 2.3, compartment storage represents the total volume of water in nodes, 322 

pipes and flooded in a compartment, which is not conceptually identical to solely flooded volume that 323 

decision makers are most likely to be interested in. Thus, in Supplemental Material S3, Figure S2 we 324 

compare maximum compartment storage as simulated by CWSD against maximum flooded volume 325 

as simulated by InfoWorks. We see close agreement between the two, justifying the continued 326 

investigation of compartment storage in this study.  327 

4.2 Graph partitioning for reduced complexity models 328 

In this section, we compare the ability of different partitioning techniques in delineating compartments 329 

to provide accurate simulations. As anticipated in Section 2.3, we randomly compare compartments 330 

that contain a specific node and flows in preserved arcs in the network to ensure common points of 331 

comparison can be made across methods. In Figure 6, we show the NSE values in preserved arcs 332 

from the top twentieth percentile pipes (i.e., the pipes with greatest flow). Each panel demonstrates a 333 

different partitioning algorithm. Each point is the NSE performance (y-axis) of a preserved arc for a 334 

given number of specified compartments (x-axis). The x-value of each point is randomly moved within 335 

+/-5% of its actual value to better distinguish the density of points, i.e., random jitter. Of the compared 336 

partitioning methods, Louvain (louv) and the two novel methods, Louvain with spectral reduction 337 

(L_scn) and optimised Louvain with spectral bisection (L_L_sc), produce reasonable (>0.5NSE) 338 

median performance metrics (dashed blue lines) when the total number of compartments is greater 339 

than 100. All partitioning methods produce inferior (<0.5NSE) median performance when the total 340 

number of compartments is less than 100. We see that some preserved arcs have high NSE values 341 

(e.g., the arc highlighted in cyan points) across all simulations, and some have low NSE (e.g., the arc 342 

highlighted in red points). The network surrounding the arc highlighted in both cyan and red is shown 343 

in Supplemental Material S5, Figure S21. It shows that the cyan arc is a shallow gradient pipe at the 344 
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end of a linear stretch of network, while the red arc is a steep gradient pipe among a complex tangle 345 

of network. 346 

 347 

Figure 6: Simulation performance along preserved arcs (points). Interactions between 348 

different clustering methods (panels) and different number of compartments (x-axis) is shown. 349 

Two month-long precipitation timeseries have been used (cross and circles). The median 350 

performance of preserved arcs is plotted (blue dashed lines). The worst performing (red 351 

points) and best performing (cyan points) preserved arcs are highlighted. Random jitter in the 352 

x-axis has been added to better distinguish between points. The y-axis has been limited to [--353 

25, 1] to improve readability, the scale is linear in the range [-1,1] and log elsewhere. 354 

In Figure 7, we show NSE values of compartment storage for compartments that contain a randomly 355 

selected sewer network node from the top twentieth percentile nodes (i.e., nodes with the greatest 356 

storage). Of the compared partitioning methods, Louvain (louv) and the two novel methods, Louvain 357 
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with spectral reduction (L_scn) and optimised Louvain with spectral bisection (L_L_sc), produce 358 

reasonable (>0.5NSE) median performance metrics (dashed blue lines) when the total number of 359 

compartments is less than 200. All partitioning methods produce inferior (<0.5NSE) results when the 360 

total number of compartments is greater than 400. Although NSE performance for compartment 361 

storage is, on average, lower than for arc flows, it is below 0 less frequently than for arcs. We see in 362 

general some compartment storage timeseries are easier/harder to predict across all methods (red 363 

points are generally lower while cyan points are generally higher), however this is not as ubiquitous as 364 

with arcs (i.e., we also see some high NSE values for red points and some low NSE values for cyan 365 

points). In Supplemental Material 5, Figure S22, we see that the preserved red node is near the 366 

culverted watercourses in the catchment, while the area around the preserved cyan node is paved.  367 

 368 

Figure 7: Same as Figure 6, but for compartment storage rather than flow in arcs. 369 

 370 
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4.3 Interactions between number of compartments and timestep size 371 

Following the results that the proposed ‘optimised Louvain with spectral bisection’ partitioning 372 

algorithm provided the best results over a range of different number of compartments, we use it to 373 

investigate interactions with timestep size. These interactions are displayed in Figure 8 for NSE 374 

values in the random sample of preserved arcs from the top twentieth percentile pipes (i.e., the pipes 375 

with greatest flow). We see clearly that performance degrades as both the total number of 376 

compartments decreases and as the timestep increases. It is noteworthy that reasonable 377 

performance (>0.5 NSE) can be attained with a timestep as large as one hour. There is a marked 378 

difference in performance between total number of compartments less than and greater than 100. In 379 

the supplementary material S4 we demonstrate that performance degrades as pipe size decreases 380 

and there is less evidence of clear interactions between timestep and total number of compartments. 381 

In supplemental material S4, Figure S19, we also demonstrate that this figure is not sensitive to 382 

whether individual sewer elements are preserved for comparison or not. 383 

 384 

Figure 8: Simulation performance along preserved arcs (points). Interactions between total 385 

number of clusters (colour) and model timestep (x-axis) is shown. Two month-long 386 

precipitation timeseries have been used (cross and circles). The median performance of 387 

preserved arcs is plotted with dashed lines. Random jitter in the x-axis has been added to 388 

better distinguish between points. The y-axis has been limited to [-1, 1] to improve readability. 389 

In Figure 9, we display the NSE values for compartment storage in the random sample of 390 

compartments selected from the top twentieth percentile nodes (i.e., the nodes with the greatest 391 

storage). Performance degrades quite dramatically once the timestep exceeds one hour, following a 392 

similar trend to Figure 8, albeit with a steeper drop-off in performance. In contrast to Figure 8, the 393 
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interaction with total number of compartments seems to prefer around one hundred compartments, 394 

with performance degrading as the number deviates from this. We see performance peak at 132 total 395 

number of compartments, degrading as the total number increases or decreases. This appears to be 396 

due to some aggregation effect provided by compartmentalising, since it is not seen in the supporting 397 

experiment where individual sewer elements are preserved, supplemental material 4, Figure S20. In 398 

supplementary material S4 we see that node performance degrades as node size decreases; 399 

however, this degradation is to a significantly lesser extent than for the arcs. 400 

 401 

Figure 9: Same as Figure 8, but for compartment storage rather than flow in arcs. 402 

4.4 Computational speed of CWSD 403 

A key goal of this work iss the ability to specify simulation speed, and not just accuracy, as the 404 

previous results focus on. Thus, in Figure 10 we show the simulation times from Figures 8 and 9, 405 

highlighting how they change with both the total number of compartments and the timestep. We see a 406 

deterministic log-log relationship between the three variables. Even the lengthiest simulations, 104 407 

seconds, are an order of magnitude quicker than InfoWorks (circled cross in Figure 10), which takes 408 

around one day to run for a month-long continuous simulation. The simulation time of the InfoWorks 409 

model appears to be in line with deterministic log-log relationship that the CWSD simulation times 410 

follow. 411 
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 412 

Figure 10: (Filled circles) Interaction between number of compartments, timestep size and total 413 

simulation time for the simulations shown in Figures 8 and 9. (Cross circled in black) Total 414 

number of compartments and simulation time for the high-fidelity InfoWorks model. 415 

We also comment here on the speed of pre-processing steps: 416 

• By far the lengthiest step was cleaning and checking the raw network data. The high-fidelity 417 

model was the only record of this data. Exporting this data revealed obvious errors in the 418 

high-fidelity network model (which had to be fixed) and ambiguous notations (which had to 419 

be understood). This process required close coordination with an InfoWorks expert.  420 

• Partitioning can take up to one minute, although typically it takes far less. The partitioning 421 

speed depends on the total number of clusters specified and the choice of algorithm, with the 422 

Louvain algorithm being the quickest (taking 0.01 seconds). 423 

• Aggregating the network information into a compartmentalised model takes around two 424 

minutes. It is not sensitive to number of compartments or timestep size.  425 

5 Discussion 426 

The first aim of this study is to develop a modelling approach to automatically create a reduced 427 

complexity simulation model for hydraulic simulations that is suitable for rapid assessment of sewer 428 

networks without the need for lengthy calibration by a high-fidelity model. In Figures 3 and 4 we show 429 

that graph partitioning can automatically reduce the spatial complexity of a sewer network and that the 430 

improvements to CityWat-SemiDistributed made in this study facilitate reasonable simulation results in 431 

comparison to a high-fidelity model. We expect that further improvements can be made to the 432 

approach. Figures 6 and S21 show that a steep arc in a particularly complex area of network is 433 

consistently challenging. Figures 7 and S22 show that a compartment that contains culverted 434 

watercourses is also difficult to simulate. These findings imply that improvements to the simplified 435 
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physical representation in CityWat-SemiDistributed, presented in Section 2.1.2 and Appendix A, may 436 

be needed in areas with more complex hydraulic behaviours, which will be addressed in future work. 437 

The second aim of this study is to test a range of graph partitioning algorithms for suitability in 438 

reduced complexity sewer network modelling. Figures 6 and 7 show that results are highly dependent 439 

on the algorithm selected and that the novel proposed algorithms in this study perform best. Making 440 

broad comments about families of partitioning algorithms is difficult; approaches within the heuristic 441 

and multi-level families both contain reasonable and poor algorithms. However, exclusively spatial 442 

approaches consistently perform poorly, indicating that a graph partitioning approach must, at a 443 

minimum, consider the connectivity of the network. We demonstrate that a variety of reasonably 444 

performing algorithms can be used to pre-specify nodes and arcs in a network to preserve as an 445 

isolated element. Although this is useful in our study for preserving hydraulic structures and ensuring 446 

that common arcs can be compared across methods, we also expect that this would be useful to 447 

those who have key monitoring points or whose goal is to optimally locate monitoring points to 448 

maximise ‘value-for-information’.  ombined with the dramatic speed gains shown in Figure 10, we 449 

believe the approach presented in this study is ideally suited to a monitoring placement optimisation 450 

application.  451 

The final aim of this study is to investigate the impact of spatial and temporal resolution on model 452 

performance. We first discuss spatial resolution. Figure 5 shows that the model performs best for 453 

larger arcs (pipes) and compartments (aggregated areas of sewer network). This indicates, quite 454 

intuitively, that sewer elements whose behaviour is dependent on a larger area, or a larger collection 455 

of other sewer elements, are those whose behaviour is best captured by reduced complexity 456 

modelling. The seemingly unintuitive result seen in Figure 9, that compartment storage performance 457 

degrades as the total number of compartments increases from 100 to 500, is also explained by this 458 

finding. We can assume that the compartment storage performance improves between 30 and 100 459 

compartments because, as shown in Figure 8, arc performance increases dramatically between 30 460 

and 100 compartments, levelling off after 100. We can verify this by observing Figure S20, an 461 

experiment in which individual manholes were preserved and compared for node storage rather than 462 

entire compartments, where the effect is not seen. This implies that reduced complexity modelling 463 

requires getting the right balance between capturing spatial heterogeneity (i.e., getting good 464 

performance of arcs) and benefitting from the smoothing provided by aggregation (i.e., simulating 465 

components that aggregate behaviour over larger areas).  466 

From a temporal resolution perspective, Figures 8 and 9 demonstrate that the presented approach 467 

can return reasonable performance in arcs and at compartments across a range of timestep sizes, 468 

between 30 seconds and one hour. Salvadore et al., (2015) show that the range of resolutions (both 469 

temporal and spatial) covered by this study are not unprecedented for any individual application. 470 

However, we cannot identify any sewer network simulation approach that can seamlessly navigate 471 

the entire range in a self-contained framework as we do in this study. We believe this flexibility will be 472 

of great utility to users because one may start with a desired simulation time in mind and identify their 473 

options for spatial/temporal resolution accordingly, as we show in Figure 10. We expect that these 474 
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fast and flexible simulation speeds may facilitate new applications for sewer network simulation 475 

models under continuous simulations that span far longer periods than can currently be simulated. 476 

6 Conclusions 477 

Modern applications of sewer network modelling, such as optimisation and climate uncertainty 478 

analysis, require far faster simulation speed than can be provided by the existing suite of high-fidelity 479 

models that are commonly used by water companies. In this study, we demonstrate the combination 480 

of graph partitioning for spatial aggregation and the CityWat-SemiDistributed modelling framework for 481 

hydraulic simulations. This calibration free approach can produce accurate simulations, particularly for 482 

larger pipes in the sewer network, at a fraction (<<1%) of the computational time of a high-fidelity 483 

model. Spatial and temporal resolution in this approach is entirely flexible and can be associated with 484 

a deterministic simulation time. We believe that the techniques presented in this study will open a 485 

wide range of novel applications for sewer modelling that have previously been prohibited by slow 486 

simulations and inflexible modelling approaches. 487 
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Appendix A – CityWat-SemiDistributed (CWSD) sewer modelling 500 

In this appendix we first describe the fundamentals of integrated modelling in CWSD and then how 501 

the CWSD modelling framework has been applied for sewer network modelling. We then describe the 502 

physical processes that have been added and describe how they have been represented for our 503 

semi-distributed methodology. The term ‘sewer junction’ is used to represent all the manholes, 504 

breaks, lakes, and other node elements that make up the sewer network. 505 

A.1 Integrated modelling with CWSD 506 

As described in Section 2.1.2, CWSD is a node- and arc-based integrated modelling framework and 507 

software. Nodes represent physical system components or some semi-distributed aggregation of the 508 

system in question (i.e., a compartment), while arcs represent flows between nodes. Nodes and arcs 509 

are categorised into a variety of types, each type providing generic functionality for the kind of system 510 
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component that it represents. The node and arc types used in this study and their functionality is 511 

described below: 512 

• Arcs track both incoming and outgoing water between two nodes. The arc capacity is 513 

determined using hydraulic gradient (Section A.2) and the travel time is tracked before water 514 

can enter a downstream node (Section A.3). The travel time along an arc is fixed at the 515 

velocity of a pipe’s full-bore flow capacity. 516 

• Sewer nodes represent either individual sewer junctions if they have been preserved for 517 

comparison purposes (as described in Section 2.3) or to maintain hydraulic structures 518 

(Section 3.2), or they represent an aggregation of sewer junctions and pipes within a 519 

compartment.  520 

o These nodes have a storage property that tracks how full they are. Their capacity is 521 

the total available capacity of all sewer junctions and pipes in the compartment that 522 

the node represents.  523 

o The key functionality of these nodes is to receive and discharge water. Received 524 

water is tracked to represent travel time across the compartment (Section A.3) before 525 

being added to the node’s ‘active storage’, which is available for discharge 526 

downstream. A node’s active storage is first discharged to downstream nodes in 527 

proportion to available capacity along outgoing links. After this, if the active storage 528 

still exceeds node capacity, then the excess is discharged to the adjoining land node 529 

as flooded water. A sewer node’s total storage (both active and travelling within 530 

compartment) and its adjoining land node’s flooded volume make up the ‘total 531 

compartment storage’ variable used for head calculations (Section A.2), and to 532 

assess model performance at nodes in Section 4. 533 

• Land nodes represent the sub-catchments that drain into an adjoining sewer node.  534 

o These nodes have a storage property that tracks the flooded volume from spilled 535 

sewer nodes or water that cannot be received by sewer nodes.  536 

o Their key functionality is to read precipitation data and apply the time-area method to 537 

determine runoff (Section A.3).  538 

• Outfall nodes represent the two outfalls of the catchment. They track received water for mass 539 

balance checks. 540 

For a given timestep, first land nodes read precipitation and send runoff to sewer nodes. Secondly, 541 

starting from the most upstream sewer nodes and working downstream, sewer nodes discharge 542 

water. Finally, at the end of every timestep, mass balance checking is performed, both for each node 543 

individually and for the network as a whole. We summarise this process in Figure A1. 544 
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 545 

Figure A1: Schematic highlighting the orchestration of nodes during a timestep of simulation 546 

in this study’s application of  W D.  547 

A.2 Hydraulics for between compartment pipe flow 548 

Implementation of pipe hydraulics in this study was reasonably simple because the pipes between 549 

compartments are conceptually identical to specific pipes from the high-fidelity model. Thus, the 550 

parameters of those pipes (roughness, length, slope, cross-sectional area) remain the same, 551 

regardless of how a compartment is aggregated. These parameters enable Manning’s equation to be 552 

evaluated to derive flow, which determines how much water may travel between two compartments. 553 

Manning’s equation is given by equation 1, 554 

 

𝑄𝑖,𝑗 = 
𝐴𝑝,𝑖,𝑗𝑅𝑖,𝑗

2
3 𝑆𝑙

𝑖,𝑗

1
2

𝑛𝑖,𝑗
 

(1) 

, where Q is the flow, Ap is pipe cross-sectional area, R is the hydraulic radius, Sl is the slope of the 555 

hydraulic gradient, n is the Manning’s roughness coefficient along the pipe i,j flowing between 556 

compartment i and compartment j. To simplify calculations, Ap and R of pipe i,j are assumed constant 557 
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at its full-bore flow, thus implying flows are larger than in practice when pipes are not full. Sl is 558 

calculated using equation 2,  559 

 
𝑆𝑙𝑖,𝑗 = 

𝐻𝑖 −  𝐻𝑗

𝐿𝑖,𝑗
 

(2) 

, where H is water head at a compartment and L is the pipe’s length. While L is simply the length of 560 

the pipe i,j in the high-fidelity model, H is an aggregated value that represents water head at a 561 

compartment scale. It is described in equation 3, 562 

 

𝐻𝑖 = {

𝑧𝑖 , 𝑉𝑖 ≤ 𝑉𝑝,𝑖

𝑧𝑖 +
𝑉𝑖 − 𝑉𝑝,𝑖

𝐴𝑐,𝑖
, 𝑉𝑖 > 𝑉𝑝,𝑖

  

(3) 

, where z is the floor elevation of compartment i, V is the volume of water currently in i, Vp is the total 563 

volume capacity of pipes in the compartment, and Ac is the total chamber area of sewer junctions in a 564 

compartment. Compartments have two possible values for z, an incoming and outgoing value. The 565 

incoming z is the average elevation of sewer junctions that receive water from pipes entering the 566 

compartment, while the outgoing z is the average elevation of sewer junctions from which pipes leave 567 

the compartment. As highlighted in equation 3, volume of water in a compartment that is less than the 568 

total volume of pipes in a compartment is assumed not to generate additional head. 569 

The Cranbrook network used in this study has nine weirs. Among these, there are a variety of weir 570 

types and so we do not reproduce each equation separately here, however the same weir equation 571 

and parameters as in the high-fidelity modelling is used if an arc between compartments is also a 572 

weir. The head calculation for these weir equations is performed the same as in equation (3).  573 

A worked example that demonstrates these equations for a simplified network is presented in 574 

Supplemental Material S1 and S2. 575 

A.3 Travel time with Flow Time Information Packaging (FTIP) 576 

Implementing travel time in network models is not trivial in purpose-built software, and this difficulty is 577 

exacerbated in an integrated modelling framework where nodes and arcs are discrete from each 578 

other, but computational efficiency aims to be preserved. Thus, we introduce a parsimonious 579 

approach that is designed to be quick to simulate, easy to understand, flexible to apply and as 580 

physically based as possible. We term this technique as ‘Flow Time Information Packaging’ (or FTIP). 581 

Using FTIP, every time water is sent somewhere by the model, it is sent in a package (implemented 582 

as a dictionary data structure) containing both the amount of water and an integer tracking remaining 583 

travel time. Every time a simulation completes a timestep the travel time integer is decremented by 584 

one until it reaches zero, at which point the arc attempts to send the FTIP package to the downstream 585 

compartment. If a downstream node returns that water could not be received, then that rejected water 586 

is assumed to have backed up and returns to the upstream node. Although this accounts for 587 

backwater, it prevents flooded sewer nodes from receiving more water. In practice flooded sewer 588 

nodes can still receive water if the hydraulic gradient permits, however we considered that calculating 589 

the head generated by flooded water above a sewer node would overly increase the complexity of the 590 
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model, running counter to its ultimate purpose.  This will cause underestimates of downstream node 591 

flood volumes and overestimates of upstream node flood volumes; however, we consider the effect to 592 

be negligible and will not impact estimates of flood occurrence. 593 

Implementing a typical pipe with FTIP requires translating some physical concepts into more discrete 594 

terms that can be simulated efficiently. We describe these below: 595 

• Since FTIP tracks volume and not flow, for pipe capacity calculations FTIP packages must be 596 

translated into flow terms. For example, a pipe with a capacity of 10 m3/s can accommodate 597 

two FTIP packages with a volume of 5 m3 and travel time of 1s. It also means that pipe 598 

capacity is only applied to FTIP packages that are sent in each timestep. Thus, if a pipe has a 599 

pre-existing FTIP package from a previous timestep, that will not count towards the capacity 600 

calculation of the current timestep. This ensures that flow is accurate in steady state 601 

conditions but may not always be timestep accurate.  602 

• An FTIP pipe may also back up based on a calculation performed on the pipe’s outflow, given 603 

by equation 4, 604 

 

𝑉𝑏,𝑛 =
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(4) 

, where Vb is the volume of backed up water from FTIP package n that is about to be sent, 605 

VFTIP,m,i,j is the volume of a given FTIP package with a travel time of zero in pipe i,j and m is 606 

either an FTIP package that has already been sent in that timestep or the package n, and Qi,j 607 

is the flow capacity of pipe i,j according to equation 1 with units of volume per timestep.  608 

Travel time in compartments is also tracked. A different method is used depending on whether the 609 

flow is arriving from an upstream compartment or for land runoff:  610 

• Flow arriving from upstream compartments is assumed to take the average full-bore travel 611 

time between all the sewer junctions in the given compartment that receive flow from 612 

upstream compartments and all the sewer junctions that send flow to downstream 613 

compartments. 614 

• Flow from runoff is modelled using the time-area method (Butler & Davies, 2004). In pre-615 

processing, when compartment-scale parameters are calculated, a time-area diagram is 616 

calculated for each compartment. This is normalised with total drainable surface area of a 617 

compartment to associate percentages of rainfall with travel times. The time-area method also 618 

assumes full-bore flow travel time calculations. 619 
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