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Different precipitation products are assessed for their skill in capturing orographic precipitation over the western United States

using two popular methods. The first method defines orographic indices using orographic enhancement and moisture content

that represents the amount of moisture advected over sloping terrain. In contrast, the second method classifies precipitation

events into orographic and non-orographic events. NCEP Stage-IV product used as a reference. All of the evaluated products

show more significant errors for the orographic than the non-orographic events. The Global Precipitation Mission (GPM) Dual-

frequency Precipitation Radar (DPR), combined radar and radiometer (COMBINE), Microwave Humidity sounder (MHS), and

GPM Microwave Imager (GMI) severely underestimate the precipitation rates, especially for heavy precipitation (> 4 mm/day),

whereas infrared precipitation of the Integrated Multi-satellite Retrievals for GPM (IMERG-IR) and a reanalysis product

(ERA5) show relatively better estimation. Satellite products tend to show a lower fraction of precipitation occurrence and

amount for orographic than no-orographic classes. It was found that rate BIAS varies with seasons, so in cold seasons satellite

precipitation products tend to underestimate while in warm-season they (except DPR) tend to overestimate precipitation

amount. Most of the satellite products severely underestimate precipitation volume at relatively colder surfaces (< 10 0C) and

lower TPW (<15mm), but ERA5 shows little rate BIAS in such cases. The underestimation tends to be larger for orographic

than non-orographic events. In contrast, ERA5 shows relatively large underestimation at warmer temperatures (>20 0C), where

satellite products tend to overestimate precipitation amounts.
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Abstract:

Different precipitation products are assessed for their skill in capturing oro-
graphic precipitation over the western United States using two popular meth-
ods used to delineate orographic precipitation events. The first method defines
orographic indices using orographic enhancement and moisture content that rep-
resents the amount of moisture advected over sloping terrain, whereas the second
method classifies precipitation events into orographic and non-orographic events
based on the orographic enhancement and moisture flux convergence. The pre-
cipitation products studied here include Dual-frequency Precipitation Radar
(DPR), combined radar and radiometer (COMBINE), The Global Precipitation
Measurement (GPM) microwave Imager (GMI), Microwave Humidity sounder
(MHS), infrared precipitation of the Integrated Multi-satellite Retrievals for
GPM (IMERG-IR), and a reanalysis product (ERA5). NCEP Stage-IV prod-
uct used as a reference. All of the evaluated products show more significant
errors for the orographic than the non-orographic events. DPR, COMBINE,
MHS, and GMI severely underestimates the precipitation rates, especially for
heavy precipitation (> 4 mm/day), whereas IMERG-IR, and ERA5 show rel-
atively better estimation. Satellite products tend to show lower fraction of
precipitation occurrence and amount for orographic than no-orographic classes.
This is more sever for radar only product and less sever for IR estimates. It was
found that rate BIAS varies with seasons, so in cold seasons satellite precipita-
tion products tend to underestimate while in warm season they (except DPR)
tend to overestimate precipitation amount. A fairly clear relationship between
the BIAS and the surface temperatures and total precipitable water (TPW) is
observed. Most of the satellite products severely underestimate precipitation
volume at relatively colder surfaces (< 10 0C) and lower TPW (<15mm), but
ERA5 shows little rate BIAS in such cases. The underestimation tends to be
larger for orographic than non-orographic events. In contrast, ERA5 shows
relatively large underestimation at warmer temperatures (>20 0C), where satel-
lite products tend to overestimate precipitation amount. Overall, none of the
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methods used to identify orographic events is found robust, suggesting that
there is a clear need for determining a more effective method to better delineate
orographic from non-orographic precipitation events.

1. Introduction

Satellite-based precipitation estimates have been widely used in many research
and application areas, including short-term weather and long-term climate pre-
diction (Arkin and Ardanuy 1989; Huffman et al., 1995). Precipitation estimates
from satellite measurements are unique due to their global coverage, including
oceanic and high terrain mountainous regions where ground-based observations
are not always possible (Kidd et al., 2017). It is difficult to get broad spatial
coverage in mountainous areas using rain gauges, and ground-based radar obser-
vation has limitations (Sapiano and Arkin 2009). Despite the great coverage of
satellite products, their precipitation retrieval accuracy in mountain regions is
still a challenge (Shige et al. 2013; Mei et al., 2014). The primary types of sen-
sors used to estimate precipitation from satellite measurements are radar, pas-
sive microwave imager/sounder, and Infrared. The space-borne radar onboard
satellites such as the Tropical Rainfall Measuring Mission (TRMM; Kummerow
et al., 1998) and the Global Precipitation Measurement (GPM; Hou et al., 2014;
Skofronick-Jackson et al., 2018) have shown success in measuring precipitations
globally, but they still suffer from uncertainties especially in mountainous re-
gions (Adhikari et al., 2019). One major source of uncertainty associated with
space-borne radars is the contamination of near-surface reflectivity profiles due
to ground-clutter (Arulraj and Barros 2019, Liao et al., 2014). The Passive
microwave sensors are popular and have been widely used in estimating precip-
itation for decades (Wilheit 1986; Prigent 2010). The benefit of using PMW
sensors compared to radar is their higher sampling rate, although they can mis-
classify rainfall over mountainous regions (Yamamoto and Shige, 2015). For
example, snow and ice-covered surfaces over the mountains could be classified
wrongly as precipitating clouds resulting in an overestimation of precipitation.
The PMW precipitation estimates mainly rely on the cumulative signal from
vertical column of cloud, hydrometeors, and ice particles and their emission or
scattering properties. The heavy rainfall associated with mountainous regions
can be generated from clouds with no or little ice aloft, resulting in underesti-
mation in PMW estimates (Dinku et al. 2010; Houze 2012; Shige et al. 2013).
Studies have shown that satellite-based precipitation products underestimate
precipitation rate over several mountainous regions of the globe such as Japan
(Kubota et al. 2009; Shige et al. 2013), Africa and South America (Dinku et al.
2010), Taiwan (Chen et al. 2013), and Vietnam (Ngo-Duc et al. 2013). They
stated that satellite-based passive microwave retrieval underestimates heavy pre-
cipitation that is associated with shallow orographic systems because the algo-
rithm assumes that only the deep systems, with large scattering signals, are
responsible for heavy precipitation. However, shallow orographic systems can
produce heavy rainfall due to orographic enhancement with no major scattering
signals from ice particles (Takeda and Takase 1980, Sakakibara 1981).
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Another sensor used in precipitation estimation is Infrared (IR), which is used to
estimate precipitation from cloud top temperatures (Arkin and Meisner 1987).
Because intense orographically enhanced precipitation over mountains may be
produced by shallow clouds with little ice aloft, these systems may appear rela-
tively warm in IR images. Therefore, IR-based algorithms may miss or signifi-
cantly underestimate precipitation events over these regions (Hong et al. 2007,
Bitew and Gebremichael 2010). Negri and Alder (1993) demonstrated that the
IR retrieval methods are generally inadequate over the mountainous regions,
especially those associated with shallow orographic rain systems. Therefore, to-
pography can have a massive impact on sensor retrievals, including radar, PMW,
and IR.

Several previous studies made efforts to improve precipitation retrievals over
land, especially over mountainous regions. The correction techniques are nec-
essary because the ground-based radar or rain gauge measurements are limited
and not always possible over mountainous areas. Vicente et al. (2002) and
Scofield and Kuligowski, (2003) have developed an IR based correction tech-
nique, whereas Kwon et al. (2008) proposed topographic correction factors
based on the terrain slope, low-level wind, and moisture, which later imple-
mented in the Goddard Profiling (GPROF) algorithm (Kummerow et al., 2001,
Wang et al., 2009, Kummerow et al., 2015). Shige et al. (2013) classified oro-
graphic and non-orographic precipitation areas using terrain slope, low-level
wind and moisture and developed a correction technique using the dynamic
selection of lookup table (LUTS). The LUTS are used to correct orographic
precipitation retrievals in the Global Satellite Mapping of Precipitation prod-
ucts (GSMaP; Ushio et al., 2009) over the Kii Peninsula of Japan (Shige et al.,
2013), Taiwan (Taniguchi et al., 2013), Indian Subcontinent (Shige et al., 2014),
and North America (Yamamoto and Shige, 2014). The method was further
improved by Yamamoto et al. (2017). Although these correction techniques
are shown helpful to enhance orographic precipitation over various regions men-
tioned above, they have been less successful over the United States and Mexico
(Yamamoto and Shige, 2014).

This study examines six different precipitation products and evaluates their per-
formance in orographic events. The products are precipitation retrieval from:
GPM Dual-Frequency Precipitation Radar (GPM-DPR), GPM Microwave Im-
ager (GMI), Microwave Humidity Sounder (MHS), Infrared (IR), GPM com-
bined radar and microwave imager (GPM-2BCMB), and a reanalysis product
(ERA5). Using Stage-IV precipitation rate as reference over the western US,
Fig 1 shows that while MHS and GMI indicate skill in capturing light precip-
itation (<1 mm/hr) compared to Stage-IV there is severe underestimation for
the heavier precipitation rates (e.g., > 3 mm/hr) (Fig 1b and 1c). DPR (Fig
1a) perform better than MHS and GMI, but still significantly underestimate
intense precipitation rates compared to Stage IV. IMERG-IR show a relatively
better estimation than the other products, as indicated by the rate BIAS score
close to 1 and intense precipitation rates captured by the two products (Fig 1d).
The severe underestimation of heavy precipitation rates by most of the prod-
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ucts might be associated with the orographic precipitation events. Note that
all the products in Fig 1 are averaged in 0.250x0.250 longitudes and latitudes
grid boxes, so the skill scores represent grid to grid comparison rather than a
footprint to grid.

This study aims to evaluate precipitation detection and estimation skill of var-
ious precipitation products by focusing on orographic precipitation. The data
and method used in this study are summarized in Sections 2 and 3, followed by
results in Section 4 and conclusion in Section 5.

2. Data

Two years (2018-2019) of precipitation data sets over the western United States
(300 N-500 N & 1050 W-1350 W) are evaluated with respect to orographic in-
dices in this study. The reference data in this study is the NCEP Stage-IV
precipitation product to evaluate variety of sensors such as radar (e.g., DPR),
passive microwave imager (e.g., GMI), passive microwave sounder (e.g., MHS),
combined PMW and radar (i.e., 2BCMB), IR, and reanalysis (i.e., ERA5) prod-
ucts (Table 1). Each data set is briefly introduced as follows:

2.1 Stage-IV:

The National Center for Environmental Prediction (NCEP) Stage-IV is an
hourly accumulated data with 4 km spatial resolution in the polar stereographic
grid (Lin, 2011). It assimilates both ground-based radar and gauge observations
and is quality controlled by 12 River Forecast Centers. This product agrees
well with the gauge measurements and also performs relatively well for snowfall
(Zhang, 2018; Nelson et al. 2016), so this study utilizes Stage-IV as a reference
product.

2.2 GPM DPR/2BCMB

DPR is on the GPM core satellite, which has a non-sun-synchronous orbit. DPR
operates at Ku (13.5 GHz) and Ka (35.5 GHz) frequencies. The DPR precipi-
tation product incorporates both Ku and Ka-bands and provides precipitation
rate at each footprint with a spatial resolution of about 5 km x 5km. With
the dual-frequency radar, DPR should enable estimating light rain and snow-
fall at minimum rate of 0.2 mm/hr (Hou et al., 2014; Skofronick‐Jackson et
al., 2017; Adhikari et al., 2018). The algorithm theoretical basis is discussed in
Iguchi et al. (2018). The GPM also offers a combined radar-radiometer prod-
uct (hereafter, “COMBINE”) which has a similar resolution to DPR product,
but in addition to the dual-frequency measurement, it incorporates microwave
measurement (Grecu et al. 2016). It is expected that the COMBINE provides
better precipitation estimation than the DPR, although studies have shown
that it can miss large fraction of snowfall and precipitation in high latitudes
(Skofronick‐Jackson et al., 2019; Behrangi et al. 2020). The GPM Combined
Radar-Radiometer Precipitation Algorithm Theoretical Basis Document is dis-
cussed in Olson et al. (2018).

2.3 GPM GMI
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GMI is a passive microwave imager on the GPM core observatory. It is a
multifrequency imager that operates at 13 different frequencies ranging from
10 GHz to 183 GHz (Draper et al. 2015). The microwave radiances at lower
frequency channels (37 GHz or less) are primarily influenced by the emission
signatures from the liquid droplets, whereas the higher frequency channels (89
GHz or higher) are more sensitive to the scattering signatures. The surface
precipitation rate is estimated by the GPROF 2017 algorithm (Kummerow et
al., 2015; Randel et al. 2020), which uses a Bayesian approach. The brightness
temperatures are used to estimates surface precipitation rates from emission or
scattering signatures of hydrometeors. Over land, which is the primary focus
of this study, GPROF relies mainly on the ice- scattering signatures. The GMI
level 2 orbital surface precipitation data is used in this study with approximately
13 km of spatial resolution.

2.4 NOAA 19 MHS

MHS on NOAA-19 satellite is a microwave humidity sounder that operates
at five high-frequency microwave channels ranging from 89 GHz to 190 GHz.
The spatial resolution of MHS is approximately 16 km near nadir and becomes
larger with increasing the scan angle (Mo, 2010). The GPROF 2017 algorithm
is used to estimate surface precipitation which mostly relies on the scattering
signature of ice particles. The depression in the brightness temperatures due to
the ice particles is linked to the precipitation rate. Because of the high-frequency
channels, MHS has shown skill in retrieving snowfall (Bennartz & Bauer, 2003,
Noh & Liu, 2004, Adhikari et al. 2020). MHS is available on several NOAA and
MetOp satellites.

2.5 IMERG-IR

IR precipitation rate was obtained from the Integrated Multi-Satellite Retrievals
for GPM (IMERG; Huffman et al. 2019) precipitation product at 0.1ox0.1o

spatial and 30 minutes temporal resolutions. The IMERG product combines
precipitation estimates from geostationary IR and low-Earth-orbit PMW sen-
sors. IMERG-IR precipitation estimates are based on the Precipitation Estima-
tion from Remotely Sensed Information Using Artificial Neural Networks (PER-
SIANN) Cloud Classification System (PERSIANN-CCS) (Hong et al. 2004)
and is available as part of the IMERG output field (hereafter we refer to it as
IMERG-IR).

2.6 ERA5

ERA5 product is developed by the European Centre for Medium-Range Weather
Forecasts (ECMWF) using 4D-Var data assimilation techniques. ERA5 is a re-
analysis product that provides various meteorological parameters at the surface
and the vertical levels in each hour at 0.25ox0.25o longitude and latitude grid
box (Hersbach et al. 2020). This study utilizes precipitation rate, 2 m (T2M)
temperatures, total precipitable water (TPW), and Specific humidity at surface
level, and U and V component of the wind at vertical pressure levels. The wind
profile data is used to estimate “near-surface” wind components.

5



3. Methods:

This study utilizes 2 years (2018-2019) of precipitation data, from all of the
products introduced in Section 2, over the western US. The reason to choose
this time duration is that during these two years hourly Stage-IV data has little
or no gap, but for other years large missing values over the western U.S. exist.
All the data sets were mapped onto a common 0.25ox0.25o resolution to match
the resolution of ERA5 that is used to calculate orographic indices. Due to the
hourly resolution of Stage IV product, all the data sets are matched within an
hour. Orographic rainfall indices are calculated based on two major methods
described in the literature as follows:

3.1 Method1:

In this method, orographic rainfall index (ORI) is defined by the same approach
used by Nieman et al., (2002, 2009) and Bikos et al. (2014). The ORI is
estimated by utilizing vertically upward motion and total moisture in the given
vertical column, as shown in equation 1 below.

ORI = TPW * V•�H ……………. (1)

Where TPW is the ERA5 total precipitable water (kg m-2), V is the ERA5
near-surface wind (ms-1), and H is the terrain elevation (m). The first expres-
sion in equation 1 (i.e., TPW) ensures that enough moisture content is in the
column and the second expression provides enough upward motion. So, the
ORI represents the amount of moisture advected over the sloping terrain. The
ORI has a unit of kg s-1 m-1, and its values roughly range from -10 to +10. The
positive ORI values indicate the upslope terrain, the negative values indicate
downslope, and the values close to zero indicate relatively plain surfaces. The
interest of this study is on positive values of ORI, which might be associated
with orographic rain. Note that ORI does not predict precipitation; rather, it is
an index that shows the amount of moisture advected over the sloping terrain
(Bikos et al., 2014). The ORI is further subdivided into five categories based on
its value as ORI1: ORI<-5, ORI2: ORI -5 to -0.25, ORI3: ORI -0.25 to 0.25,
ORI4: ORI 0.25 to 5, and ORI5: ORI > 5.

Method 2:

In this method, precipitation events are classified into orographic and non-
orographic events based on conditions used in previous studies such as Shige
et al. 2013, Shige et al. 2015, and Taniguchi et al. 2013. Any precipitation
event is identified as an orographic if there is abundant orographically forced up-
ward motion and moisture flux convergence. The orographically forced upward
motion (w) and moisture flux convergence are estimated as shown in Equations
2 and 3.

w =Dh/Dt = VH . �h …… (2)

Q= −� . VH* q ……. (3)
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where, VH is the horizontal surface wind, q is the water vapor mixing ratio de-
rived from ERA5 data sets, and h is the terrain elevation. Previous studies have
chosen different threshold values of w and Q for different geographic locations
(See Yamamoto and Shige, 2014 for details). In this study, the threshold values
of w and Q are chosen to be 0.1 ms-1 and 0.1x10-6 (s-1), respectively. If any pre-
cipitation event satisfies both the criteria, the event is identified as orographic
events otherwise non-orographic. The justification of these threshold values will
be discussed in the result section.

4. Result:

The orographic precipitation events from both methods are determined, then all
the products are compared with Stage-IV precipitation to explore the detection
and estimation capability of the studied products over the western US.

4.1: Evaluation of precipitation products based on method1:

In this section, the detection and estimation skill of the precipitation products
for orographic events are compared with Stage-IV. Note that method1 defines
orographic precipitation similar to Bikos et al. (2014) method where moisture
content and upward vertical motion is used to determine orographic index, as
shown in equation 1. The orographic index is further subdivided into five cate-
gories, as explained in section 3.1. First, the detection statistics of each product
are calculated in pixel level that are: False Alarm Rate (FAR), Hidke Skill
Score (HSS), Probability of Detection (POD), and occurrence BIAS (here BI-
ASo). HSS provides a more generalized skill score for assessing the accuracy of
the predictions relative to the random chance. In other words, HSS shows the
fraction of correct predictions by excluding correct predictions due to random
chance. The range of the HSS is -∞ to 1. Negative values indicate that the
forecast by chance is better, 0 means no skill, and 1 means a perfect forecast.
The ideal score for BIASo is 1. BIASo is calculated by dividing the number
of estimated precipitation occurrence from each product by the corresponding
value from the reference product (here Stage IV). Recall that orographic cate-
gories ORI1 and ORI5 represent extreme orographic index values for downward
and upward terrain slope, respectively, and ORI3 represents a relatively plain
terrain. The main interest of this study is precipitation events that are associ-
ated with upward terrain slope, which might be represented by ORI4 and ORI5.
MHS shows high FAR for all ORI classes and relatively less for extreme ORIs
(ORI1 and ORI5). The HSS and POD scores for extreme ORIs are relatively
higher than the ORI3 (Table 2). This indicates that MHS can detect precipi-
tation better when events are associated with orography, perhaps because they
are more intense. However, the BIASo score suggests that MHS overestimates
(BIASo = 1.25) Stage-IV for extreme ORI class. Similar statistics are seen
for GMI, except BIASo scores are relatively low, meaning GMI underestimates
precipitation when compared to Stage-IV for all ORI classes, and it underes-
timates more for extreme ORI (BIASo = 0.90 for ORI5). In terms of BIASo,
microwave sounder (MHS) overestimates Stage-IV precipitation events, whereas
microwave imager (GMI) underestimates it. However, both MHS and GMI have
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comparable overall skill based on HSS.

Radar products (i.e., DPR and COMBINE) show similar statistics to the PMW
products (e.g., in terms of FAR, HSS, and POD). However, DPR severely un-
derestimates Stage-IV for all ORI classes, and the underestimation is more for
extreme ORIs (BIASo = 0.69). The COMBINE product also shows underesti-
mation for all ORI classes but relatively less in magnitude for extreme ORI class
(BIASo = 0.75). While spaceborne radar may outperform PMW products in
capturing orographic precipitation (Shige et al. 2013), signal clutter issues near
the surface might result in missing shallow precipitation events. The IMERG-
IR has generally low skill in detecting precipitation regardless of the ORI class,
as can be seen by its significantly lower HSS and higher FAR compared to
the other products. On the other hand, its BIASo score shows underestima-
tion for extreme ORI class and overestimation for the other classes, suggesting
that IMERG-IR is relatively less skillful than other products in detecting pre-
cipitation events in the mountainous regions. ERA5 overestimates Stage-IV
precipitation for all ORI classes as indicated by the higher BIAS value (BIASo
= 1.35). However, it has higher POD, lower FAR, and better overall skill (based
on HSS) than other products for detecting precipitation occurrence.

The precipitation rates from all the products are also evaluated in each ORI class
with Stage-IV. The Correlation coefficient (CC-value), RMSE, and rate BIAS
scores (here, BIASr) are demonstrated in table 3 for all the products. CC values
are fairly comparable across different OIR classes for most products, whereas
RMSE scores are much larger for extreme ORI classes that for relatively plain
classes (Table 3). MHS and GMI BIASr scores are close to 1 and slightly lower
values (0.93 and 0.86) for extreme ORI classes, respectively. This means that
MHS and GMI retrieved precipitation volume is consistent with Stage-IV with
slight underestimation for orographic events. The DPR severely underestimates
precipitation volume for all the ORI classes , especially for extreme ORI classes
(BIASr = 0.59 for ORI1 and BIASr = 0.56 for ORI5). This indicates that GPM
DPR precipitation is heavily affected by orography, and a special attention is
needed to overcome the underestimation over the mountainous regions. Similar
to the DPR, the GPM COMBINE product also sensitive to the orography and
underestimates the total precipitation for all the ORI classes, but the under-
estimation is less when compared to the DPR (BIASr =0.76 for ORI5). Since
COMBINE incorporates both DPR and GMI products in its retrieval algorithm,
it is likely that the GMI would aid COMBINE product to prevent severe under-
estimation as seen by the DPR. IMERG-IR product overestimate Stage-IV for
relatively plain surfaces (e.g., ORI=3), whereas in the extreme ORI class, the
total precipitation from both products is almost close to the reference. While
IMERG-IR shows relatively good BIASr, it has the lowest CC-value among all
other products, suggesting that the relationship between cloud-top brightness
temperature information and precipitation rate is poor across all ORIs. ERA5
overestimates Stage-IV in each ORI class, but shows slightly higher CC-values
and lower RMSE compared to most of the products studied here (Table 3).
However, RMSE of ERA5 is still higher for extreme ORI classes than relatively
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plain surfaces.

Figure 2 shows mean precipitation rates for all the products as a function of
ORI values. Note that each product is separately matched up with Stage-IV, so
each product is evaluated based on its respective matched Stage-IV (Fig 2). For
example, the green dashed and solid lines in figure 2 represent MHS and Stage-IV
that is matched with MHS precipitation rate, respectively. Fig 2a shows mean
precipitation rates for the cold season (October to April) only. It is seen that all
the sensor products except IMERG-IR and ERA5 underestimate precipitation
in each ORI index. The underestimation in PMW and radar estimation might
be associated with the shallow clouds and snow systems that are common in the
western US winter months (Creamean et al., 2013). The IMERG-IR product
seems to have higher skills than the PWM and radar products in the cold
seasons, especially in orographic conditions. During the warm season (May to
September) (Fig 2b), the difference between the sensor product and the reference
is smaller than cold season. IMERG-IR overestimates the Stage-IV, whereas
DPR underestimates it during the warm season. It is also seen from the figure
that the mean precipitation rates are higher for extreme ORIs and lower if the
ORIs are close to 0. To understand ORI dependencies of sensor products, BIASr
is calculated as a function of ORI indices for cold and warm seasons separately
and shown in Fig 3a and 3b, respectively. Note that BIASr is estimated by
dividing total precipitation from the sensor to the matched Stage-IV in each
ORI bin. During the cold season, BIASr scores of IMERG-IR and ERA5 are
close to 1 or higher (e.g., BIASr scores tend to higher than 1 for ORIs between
-5 and 2.5 and less than 1 for extreme ORIs). The rest of the other products
clearly underestimates Stage-IV and show smaller ORI dependency (Fig 3a).
During the warm season, all the sensor products except the DPR and ERA5
overestimates Stage-IV. IMERG-IR has the highest values of BIASr (> =1.2)
for all the ORIs, whereas DPR shows 0.8 or lower BIASr scores. Overall, it can
be seen that the dependency of the BIASr to ORIs is fairly week, but generally a
smaller fraction of precipitation is captured at positive ORIs (upslope) compared
to the central and negative ORIs (downslope).

4.1: Evaluation of precipitation products based on method 2:

The orographic precipitation index using method 1 was useful to compare pre-
cipitation products, but no strong ORI dependency was observed. Here method
2 is used to define orographic events, where any precipitation event is defined as
the orographic precipitation (or “ORO”) if it has enough moisture flux conver-
gence (> 0.1 ms-1) and orographic enhancement (Q>0.1 x 10-6 s-1) otherwise
non-orographic (or “NO-ORO”) as shown in the equation 2 and 3. Choosing
the correct threshold values for moisture flux convergence and orographic en-
hancement is not straightforward and has been defined differently in past studies
(Yamamoto and Shige, 2014). The reason to choose the above-mentioned thresh-
old values is demonstrated in Figure 4 that shows the BIASr as a function of w
and Q for all the precipitation products. BIASr is defined as the ratio of total
precipitation from sensor product to Stage-IV. Fig 4a shows DPR’s BIASr as
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a function of w and Q and black solid cross lines are the threshold lines that
have been chosen in this study. We can see that above the threshold values,
DPR significantly underestimates the Stage-IV (BIASr values up to 0.1). The
BIASr score is close to 1 in the region where there is not enough uplifting and
moisture flux convergence. These thresholds are fairly consistent with the pre-
vious studies (e.g., Shige et al., 2013; Taniguchi et al., 2013; Shige et al., 2014;
Yamamoto and Shige, 2014), thus here we use them for separating orographic
and non-orographic precipitation events. Although BIASes are observed in the
other quadrant, our region of interest is the top-right quadrant (“orographic
quadrant” or “orographic region”), where both orographic uplifting and abun-
dant moistures are present (Fig 4). Similar patterns are observed in the other
products in the orographic region. The MHS and GMI show significant under-
estimation (BIASr < 0.5) in the entire orographic quadrant, whereas slightly
less underestimation is seen in IMERG-IR and ERA5 products.

Fig 5 shows precipitation occurrence BIAS (BIASo) in all of the studied products
as a function of Q and w. DPR and COMBINE heavily underestimate the
precipitation events almost everywhere, but they show slightly better detection
for higher values of moisture flux convergence and orographic enhancement (fig
5a and b). MHS shows BIASo values close to 1, almost everywhere including the
orographic quadrant. Note that the higher BIASo of MHS comes with higher
FAR as can be seen in Table 2, suggesting that the improved precipitation
detection is at the expense of larger false detection. GMI and IMERG-IR tend
to underestimate in all quadrants, but show BIASo values near 1 in regions where
both w and Q are close to 0 (Figs 5d and 5e). ERA5 slightly overestimates in
all quadrants, including the orographic quadrant. However, the overestimation
is more along the region where the orographic enhancement term (Q) is close to
0. Overall, despite that observed for precipitation amount (Fig 4), the second
method does not show a clear difference between orographic and no-orographic
quadrants for precipitation occurrence BIAS.

Because method 2 does the binary classifications of the precipitation events i.e.,
either the precipitation event is an orographic (“ORO”) or a non-orographic
(NO-ORO”), all the precipitation products are classified into these two cate-
gories and compared with their respective Stage-IV match up. The primary
focus of the evaluation is given to the “ORO” class, which is the primary in-
terest of this study. Table 4 lists the detection statistics of the sensors, which
includes FAR, HSS, POD, and BIASo for both ORI classes. The FAR scores
of the ORO class are slightly better (less) than the NO-ORO class for all the
sensor products. A similar pattern is also observed with HSS and POD scores,
where all products have better detection statistics for the ORO class than the
N0-ORO. Although the “ORO” class has better HSS and POD scores, there are
severe underestimations observed in few products. MHS, GMI, DPR, and COM-
BINE show underestimation in both classes, and the underestimation is more in
orographic events. For example, MHS and GMI have BIASo scores of 0.67 and
0.73, which are less when compared to N0-ORO class 0.80 and 0.83, respectively.
DPR and COMBINE also show severe underestimation in the ORO class when
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compared with their respective N0-ORO classes (Table 4). IMERG-IR has a
relatively better BIASo scores compared to other satellite products, but still
underestimates Stage-IV for ORO class as indicated by lower BIASo score 0.75.
A different pattern in the BIASo scores is seen with the ERA5 product, where
ERA5 overestimates both ORO and N0-ORO classes with the BIASo values of
1.19 and 1.25, respectively (Table 4).

The sensor products are further evaluated by plotting precipitation occurrences
in both N0-ORO and ORO classes and compared with the respective Stage-IV
match-up. Fig 6 shows histogram of occurrences that is calculated by dividing
precipitation samples by total samples (normalized), so that each curve adds up
to 1. For ORI0 class, both DPR and COMBINE precipitation occurrences are
close to Stage-IV with slight underestimation for higher precipitation rates (>
1 mm/hr). On the other hand, DPR and COMBINE ORO class shows severe
underestimation when precipitation rates are greater than 1 mm/hr. Interest-
ingly, DPR and COMBINE overestimate Stage-IV for both NO-ORO and ORO
classes when the precipitation rate is 0.3 to 1 mm/hr (Fig 6 a and b). A similar
pattern is observed in MHS and GMI, where the underestimation is observed
in higher precipitation rates (>0.8 mm/hr), and overestimation is seen for the
lower end (< 0.3 m/hr). The occurrence difference is more for ORO class when
compared to NO-ORO for MHS and GMI products (Fig. 6c and d). IMERG-IR
precipitation occurrences for both N0-ORO and ORO are close to their respec-
tive Stage-IV match-up and tend to have higher precipitation occurrence in the
ORO class for extreme precipitation rates (> 9 mm/hr) (Fig 6e). Overall, the
histograms of ORO and NO-ORO are more distinct for Stage-IV than the stud-
ied sensors, suggesting that Stage-IV better captures orographic precipitation
enhancement than sensors. In other words, there is considerably higher occur-
rence of intense precipitation for the ORO class than NO-ORO class for Stage IV
compared to that observed for different sensors. The histograms of precipitation
from GMI (Fig 6d) shows relatively smaller difference between ORO and NO-
ORO compared to the other sensors and ERA5 (Fig 6f), suggesting that GMI
precipitation product has little skill in capturing the orographic precipitation
enhancement.

The precipitation products are further assessed by comparing precipitation rates
in both NO-ORO and ORO classes. Table 5 summarizes the precipitation esti-
mation statistics where CC-value, RMSE, and BIASr scores of both N0-ORO
and ORO classes are presented. All of the satellite products have relatively
low CC-value (~0.3) and show only slightly higher CC for ORI than NO-ORI
classes. The IMERG-IR correlates the least (CC = 0.20) with Stage-IV for the
orographic events, whereas ERA5 correlates the most (CC = 0.54). In terms of
BIASr, MHS, GMI, DPR, and COMBINE underestimate in both ORI classes.
The BIASr score for an orographic event is much less than the non-orographic.
For example, MHS and GMI BIASr for the orographic class are 0.63 and 0.79,
whereas the same for non-orographic events are 0.86 and 0.93, respectively (Ta-
ble 5). The DPR product significantly underestimates orographic precipitation
rates, as indicated by the low value of bias (BIASr=0.49). IMERG-IR and ERA5
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show BIASr>1 for N0-ORO, but for ORO, ERA5 has BIASr=1 and IMEG-IR
slightly underestimates Stage-IV (BIASr = 0.86) for orographic events (Table
5).

Figure 7 shows precipitation amount contribution at each intensity range for
each precipitation product and its corresponding Stage-IV match up. Note that
for each product the contribution is calculated by multiplying samples counts in
each bin by its intensity and dividing precipitation volume in each precipitation
rate bin by the total precipitation volume (normalization). Fig 7a shows DPR
and Stage-IV precipitation contribution for N0-OROand ORO classes. DPR
shows double peaks for orographic events near 0.5 mm/hr and 8 mm/hr bins,
whereas Stage-IV has a single peak near the 3 mm/hr bin. For N0-ORO events,
DPR peaks near 0.5 mm/hr bin whereas Stage-IV peaks at or near 1 mm/hr,
and both contribute approximately 3% to the total precipitation. COMBINE
shows a similar pattern to DPR (Fig 7b). The contribution pattern of the
two PMW products (MHS and GMI) for orographic events are also similar
to each other (but different from DPR and COMBINE products). GMI and
MHS contribute more at lower precipitation rates (< 1 mm/hr) and Stage-IV
contributes more at higher precipitation rates (>1 mm/hr) (Fig 7c, d). In
contrast, IMERG-IR shows higher contribution of intense precipitation than
Stage-IV for both orographic and non-orographic classes (Fig 7e). Overall, based
on Figure 7, Stage–IV shows more contribution from intense precipitation in
ORO class than N0-ORO, but this is not necessarily the case in the satellite
products. This suggests that satellite products generally have difficulties in
capturing the orographic enhancement of precipitation rate.

The precipitation estimation BIAS (BIASr) is further evaluated based on the
ERA5 total precipitable water (“TPW”) and surface 2 m temperatures (“T2M”).
Fig 8 shows BIASr in each T2M and TPW bins for both orographic and non-
orographic precipitation events. Note that the BIASr is estimated by dividing
sensor precipitation volume by Stage-IV precipitation volume, separately for
each bin. For the orographic class, DPR underestimates Stage-IV for most of
the T2M and TPW bins. There is severe underestimation (BIASr < 0.3) for
the relatively colder surface (< 10 0C) and drier environment (TPW < 15 mm)
(Fig 8a) that might be related to shallow cloud systems. For the non-orographic
class, DPR shows a similar pattern of underestimation for colder surfaces but
for the warmer surface (T2M > 20 0C), DPR overestimates Stage-IV (Fig 8b).
COMBINE shows a similar BIASr pattern to DPR (Fig. 8c and 8d). GMI, MHS,
and IMERG-IR also underestimate Stage-IV precipitation when the surface is
colder than 10 0C and overestimates above it. The underestimation tends to be
larger for orographic than non-orographic events. When the surface is warmer,
it is expected to have relatively deeper cloud systems with large vertical ice
column (Rabin et al., 1990). In such cases almost all the sensor products tend
to overestimate Stage-IV precipitation for both orographic and non-orographic
events (Fig. 8e-8j). However, ERA5 stands out among the others with a different
BIASr pattern. For relatively colder surfaces (<20 0C), ERA5 precipitation is
often consistent with Stage-IV as indicated by a BIASr score close to 1. This
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indicates that the ERA5 is best among the others, especially for colder surfaces.
However, for warmer surfaces (e.g., T2M>25 0C) with TPW> 10mm, ERA5
severely underestimates Stage-IV for both orographic and non-orographic events.
This is an opposite pattern than all other sensor products, which calls for further
investigations into the differences between satellite and reanalysis products.

5. Conclusion

Two years (2018-2019) of various precipitation products over the western US
are evaluated using Stage-IV as a reference and through separating orographic
and non-orographic precipitation events. The precipitation products include
variety of sources such as radar, passive microwave imager, passive microwave
sounder, infrared sensors, and reanalysis products. The precipitation products
are categorized and evaluated based on two popular types of orographic precipi-
tation classification schemes. The first method utilizes moisture and orographic
enhancement to estimate orographic indexes, and all the products are assessed
based on the orographic class. In the second method, precipitation products
are classified into orographic and non-orographic based on the orographic en-
hancement and moisture flux convergences and by applying thresholds to them.
Both precipitation occurrence and estimation statistics are evaluated for the
two methods, and major findings are summarized as follows:

Method 1 suggests that the IMERG-IR and ERA5 overestimates, and GMI,
DPR, COMBINE, and MHS underestimate Stage-IV precipitation rates in al-
most all ORI classes, but for the extreme orographic classes the ratio of precip-
itation amount from products over Stage-IV is smaller than that from classes
associated with no or moderate orographic precipitation events. All the products
show more skill in capturing precipitation occurrence (but with higher RMSE)
for extreme orographic classes than no or moderate orographic classes. With
respect to season, all of the products (except IMERG-IR and ERA5) show large
underestimation in cold season. In contrast, for warm season, the products
(except ERA5 and DPR) tend to overestimate precipitation rate, DPR shows
larger underestimation than ERA5. Although the fraction of precipitation cap-
tured by products tend to be smaller at positive ORIs (upslope) than negative
ORIs (downslope), BIASr patterns are not found very much sensitive to the
orographic indexes.

Method 2 shows that all sensor products except ERA5 tend to underestimate the
Stage-IV precipitation occurrence. The underestimation is more on orographic
events than the non-orographic. Among the products, DPR and COMBINE
severely underestimate orographic precipitation occurrence as indicated by the
relatively low BIASo values of 0.57 and 0.61, respectively. The orographic pre-
cipitation events tend to have higher precipitation rates than the non-orographic
events. MHS and GMI orographic-precipitation-occurrence histograms are dif-
ferent from the Stage-IV, where MHS and GMI precipitation events occur less
frequently at higher intensities (>1 mm/hr) and more frequently at lower rates
(< 1mm/hr). DPR and COMBINE orographic precipitation occurrences are
somewhat consistent with Stage-IV. In contrast, IMERG-IR shows higher fre-
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quency of occurrence than Stage-IV at the very intense tail of the histogram.
Overall, the histograms of orographic and non-orographic precipitation occur-
rence and volume are more distinct for Stage-IV than the studied sensors, sug-
gesting that Stage-IV is likely more skillful in capturing orographic precipitation
enhancement than sensor products.

The joint analysis of moisture flux convergence and orographic enhancement
(Fig. 8) shows that satellite products present severe underestimation when the
environment is dry (i.e., TPW is low) and surface temperatures is colder than
about 10 0C. The underestimation tends to be larger for orographic than non-
orographic events. For warmer surfaces and higher TPW, satellite products tend
to overestimate Stage-IV for both orographic and non-orographic events. How-
ever, ERA5 shows an opposite pattern compared to the other product for both
orographic and non-orographic events. ERA5 heavily underestimates Stage-IV
precipitation when the environment is relatively humid (e.g., TPW>10mm) and
warm (e.g., T2M greater than 25 0C but less than about 40 0C).

In sum, all precipitation products show difficulty in detecting and estimating
orographic precipitation events. From the two methods of defining orographic
precipitation the first method showed relatively week dependency between ORI
and orographic precipitation enhancement. The second method showed clearer
signals. Besides improvements in satellite precipitation products for capturing
orographic precipitation enhancement, there seems to be a need for developing
more effective methods to delineate orographic precipitation events. This is
critical not only for evaluation of precipitation products, but also for improving
retrieval algorithms.
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Table 01: List of the data sets used in this study. Two years (2018-2019) of
the dataset over the western US is used in this study. All the data sets are
compared in ERA5 resolution (0.1o* 0.1 o).

Satellite/platform Sensor/Algorithm Variables Used Resolution
NCEP Sage-IV Ground-based multi-sensors and gauges measurements Surface precipitation 4 *4 km, 1 hour
NOAA-19 MHS V05 Surface precipitation 16*16 km near Nadir, orbital
GPM GMI V05 Surface Precipitation 13*13 km, orbital
GPM DPR V06 Near-surface precipitation 5*5 km
GPM COMB V06 Near-surface precipitation 5*5 km
Geostationary IR/ PERSIANN-CCS through IMERG-IR IR precipitation rates 0.1o* 0.1 o, 30 minutes
ERA5 Reanalysis data T2M, TPW, “near-surface” wind, specific humidity 0.25 o *0.25 o, 1 hour
USGS DEM Elevation 4 km

Table 02: Comparison of the products skill scores for precipitation occurrence
as a function of ORI groups based on Method 1. ORI indices are presented in 5
categories as follows: ORI1: ORI < -5, ORI2: -0.25 > ORI > = -5, ORI3: 0.25
> ORI >= -0.25, ORI4: 5 > ORI >= 0.25, ORI5: ORI >5.

@ >p(- 10) * >p(- 10) * >p(- 10) * >p(- 10) * >p(- 10) * >p(- 10) * @
Sensors & ORIs & FAR & HSS & POD & BIASo

MHS & & & & &
& ORI1 & 0.55 & 0.33 & 0.34 & 1.2
& ORI2 & 0.62 & 0.26 & 0.26 & 0.87
& ORI3 & 0.66 & 0.25 & 0.25 & 0.92
& ORI4 & 0.63 & 0.28 & 0.28 & 1.06
& ORI5 & 0.54 & 0.33 & 0.36 & 1.25

GMI & & & & &
& ORI1 & 0.55 & 0.32 & 0.31 & 0.81
& ORI2 & 0.63 & 0.28 & 0.26 & 0.79
& ORI3 & 0.70 & 0.26 & 0.25 & 0.90
& ORI4 & 0.65 & 0.28 & 0.27 & 0.89
& ORI5 & 0.55 & 0.32 & 0.33 & 0.88

DPR & & & & &
& ORI1 & 0.51 & 0.33 & 0.30 & 0.69
& ORI2 & 0.63 & 0.28 & 0.26 & 0.74
& ORI3 & 0.69 & 0.25 & 0.23 & 0.89
& ORI4 & 0.65 & 0.27 & 0.25 & 0.79
& ORI5 & 0.53 & 0.31 & 0.29 & 0.69
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COMB & & & & &
& ORI1 & 0.52 & 0.33 & 0.31 & 0.72
& ORI2 & 0.64 & 0.28 & 0.26 & 0.79
& ORI3 & 0.71 & 0.24 & 0.24 & 0.99
& ORI4 & 0.66 & 0.27 & 0.26 & 0.84
& ORI5 & 0.53 & 0.32 & 0.30 & 0.75
IMERG- IR & & & & &
& ORI1 & 0.73 & 0.19 & 0.22 & 0.88
& ORI2 & 0.82 & 0.16 & 0.18 & 0.99
& ORI3 & 0.86 & 0.14 & 0.18 & 1.24
& ORI4 & 0.82 & 0.16 & 0.19 & 1.05
& ORI5 & 0.71 & 0.20 & 0.23 & 0.91
ERA5 & & & & &
& ORI1 & 0.59 & 0.42 & 0.52 & 1.27
& ORI2 & 0.66 & 0.36 & 0.44 & 1.29
& ORI3 & 0.70 & 0.33 & 0.41 & 1.35
& ORI4 & 0.67 & 0.36 & 0.45 & 1.35
& ORI5 & 0.58 & 0.44 & 0.56 & 1.35

Table 03: Precipitation estimation statistics (using Method 1) of all sen-
sors/products when compared to Stage-IV.

@ >p(- 8) * >p(- 8) * >p(- 8) * >p(- 8) * >p(- 8) * @ Sensors & ORIs &
CC-Value & RMSE (mm/day) & BIASr

MHS & & & &
& ORI1 & 0.35 & 0.67 & 0.97
& ORI2 & 0.32 & 0.32 & 0.97
& ORI3 & 0.32 & 0.22 & 0.99
& ORI4 & 0.33 & 0.32 & 0.89
& ORI5 & 0.35 & 0.70 & 0.93

GMI & & & &
& ORI1 & 0.34 & 0.65 & 0.86
& ORI2 & 0.30 & 0.36 & 0.94
& ORI3 & 0.28 & 0.28 & 1.09
& ORI4 & 0.30 & 0.36 & 0.86
& ORI5 & 0.33 & 0.65 & 0.78

DPR & & & &
& ORI1 & 0.33 & 0.62 & 0.59
& ORI2 & 0.27 & 0.41 & 0.66
& ORI3 & 0.26 & 0.25 & 0.75
& ORI4 & 0.27 & 0.35 & 0.65
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& ORI5 & 0.34 & 0.62 & 0.56

COMB & & & &
& ORI1 & 0.30 & 0.73 & 0.78
& ORI2 & 0.26 & 0.42 & 0.85
& ORI3 & 0.24 & 0.30 & 0.97
& ORI4 & 0.25 & 0.41 & 0.80
& ORI5 & 0.32 & 0.69 & 0.76
IMERG-IR & & & &
& ORI1 & 0.19 & 0.87 & 0.99
& ORI2 & 0.16 & 0.51 & 1.14
& ORI3 & 0.15 & 0.38 & 1.33
& ORI4 & 0.16 & 0.50 & 1.08
& ORI5 & 0.20 & 0.91 & 0.95

ERA5 & & & &
& ORI1 & 0.35 & 0.55 & 1.25
& ORI2 & 0.31 & 0.36 & 1.29
& ORI3 & 0.27 & 0.29 & 1.31
& ORI4 & 0.29 & 0.39 & 1.27
& ORI5 & 0.33 & 0.52 & 1.26

Table 04: Precipitation occurrence statistics of all sensors/products using
method 2. In method 2, precipitation is classified as an orographic if orograph-
ically forced upward motion and moisture flux convergence are above certain
threshold values as indicated in equations 2 and 3.

Sensors ORIs FAR HSS POD BIASo
MHS

ORO 0.43 0.28 0.26 0.67
N0-ORO 0.54 0.25 0.23 0.80

GMI
ORO 0.51 0.32 0.30 0.73
N0-ORO 0.62 0.29 0.28 0.83

DPR
ORO 0.48 0.32 0.27 0.57
N0-ORO 0.61 0.30 0.27 0.72

COMB
ORO 0.50 0.32 0.27 0.61
N0-ORO 0.61 0.30 0.28 0.78

IMERG- IR
ORO 0.71 0.19 0.20 0.75
N0-ORO 0.81 0.16 0.19 0.97

ERA5
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Sensors ORIs FAR HSS POD BIASo
ORO 0.54 0.47 0.56 1.19
N0-ORO 0.65 0.38 0.45 1.25

Table 05: Precipitation estimation statistics (using Method 2) of all sen-
sors/products when compared to Stage-IV.

@ >p(- 8) * >p(- 8) * >p(- 8) * >p(- 8) * >p(- 8) * @ Sensors & ORIs &
CC-Value & RMSE & BIASr
MHS & & & &
& ORO & 0.31 & 0.52 & 0.63
& N0-ORO & 0.30 & 0.26 & 0.86
GMI & & & &
& ORO & 0.36 & 0.57 & 0.79
& N0-ORO & 0.33 & 0.34 & 0.93
DPR & & & &

& ORO &

0.36

& 0.54 & 0.49
& N0-ORO &

0.31

& 0.34 & 0.65
COMB & & & &
& ORO & 0.34 & 0.60 & 0.66
& N0-ORO & 0.29 & 0.39 & 0.85
IMERG- IR & & & &
& ORO & 0.20 & 0.80 & 0.86
& N0-ORO & 0.17 & 0.49 & 1.13
ERA5 & & & &
& ORO & 0.54 & 0.45 & 1.00
& N0-ORO & 0.46 & 0.28 & 1.19
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Fig 01: Scatter density plot of Stage-IV vs. (a) DPR, (b) MHS, (c) GMI, (d)
IMERG-IR over the western USA. The red line in the plot is 1:1 line. Two
years (2018-2019) of data is used to create the density plot where each product
is averaged in 0.250x0.250 longitudes and latitudes.
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Fig 02: Two years (2018-2019) of average precipitation rates as a function of ORI
indexes (based on method 1) for (a) cold season and (b) warm season. Dashed
lines represent sensors precipitation rates, whereas solid lines represent Stage-IV
precipitation rates that are matched with respective sensors as indicated in the
legend.
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Fig 03: BIASr as a function of ORI indices (based on method 1) for (a) cold
season and (b) warm season. The BIASr is defined as the ratio of sensors’ total
precipitation to that of Stage-IV in each ORI indices.
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Fig 04: BIASr as a function of moisture flux convergence (w) and orographic
enhancement (Q) for all the products. Here, BIASr is the ratio of sensors total
precipitation to the Stage-IV total precipitation in each w and Q bin. The hor-
izontal and vertical black lines represent the w and Q threshold values, respec-
tively. If precipitation occurs above these threshold values, then precipitation
is classified as orographic precipitation (Method 2).
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Fig 05: Occurrence BIAS (BIASo) as a function of moisture flux convergence
(w) and orographic enhancement (Q) for all the products. The horizontal and
vertical black lines represent the w and Q threshold values, respectively. If
precipitation occurs above these threshold values, then precipitation is classified
as orographic precipitation (Method 2).

Note: BIAS = (Hits + False Alarms) / (Hits + Misses)
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Fig 06: Occurrence of orographic (red curve) and non-orographic (green curve)
precipitation as defined by the second method. The solid and dashed lines
represent sensors’ and Stage-IV precipitation occurrences that are matched with
each other, respectively. Each curve in the figure is normalized so that each adds
up to 100.
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Fig 07: Precipitation amount contribution from each orographic (red curve)
and non-orographic (green curve) precipitation bins as defined by the second
method. The solid and dashed lines represent sensors’ and Stage-IV precipita-
tion contributions that are matched with each other, respectively. Each curve
in the figure is normalized so that the area below each adds up to 100.
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Fig 08: BIASr as a function of T2M and TPW for each sensor for both oro-
graphic and non-orographic events based on 2nd method. BIASr is calculated
by dividing sensor precipitation amount by Stage-IV precipitation amount be-
tween each TPW and T2M bins by respective sensors.
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