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Abstract

Traditional post-processing methods have relied on point-based applications that are unable to capture complex spatial pre-

cipitation error patterns. With novel ML methods using convolution to more effectively identify and reduce spatial biases,

we propose a modified U-Net convolutional neural network (CNN) to post-process daily accumulated precipitation over the

US west coast. For training, we leverage 34 years of deterministic Western Weather Research and Forecasting (West-WRF)

reforecasts. On an unseen 4-year data set, the trained CNN yields a 12.9-15.9% reduction in root mean-square error (RMSE)

over West-WRF for lead times of 1-4 days. Compared to an adapted Model Output Statistics baseline, the CNN reduced

RMSE by 7.4-8.9% for all events. Effectively, the CNN adds more than a day of predictive skill when compared to West-WRF.

The CNN outperforms the other methods also for the prediction of extreme events, highlighting a promising path forward for

improving precipitation forecasts.
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Key Points:8

• We adapted a U-Net convolutional neural network (CNN) architecture as a post-9
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Abstract13

Traditional post-processing methods have relied on point-based applications that14

are unable to capture complex spatial precipitation error patterns. With novel ML meth-15

ods using convolution to more effectively identify and reduce spatial biases, we propose16

a modified U-Net convolutional neural network (CNN) to post-process daily accumulated17

precipitation over the US west coast. For training, we leverage 34 years of determinis-18

tic Western Weather Research and Forecasting (West-WRF) reforecasts.19

On an unseen 4-year data set, the trained CNN yields a 12.9-15.9% reduction in20

root mean-square error (RMSE) over West-WRF for lead times of 1-4 days. Compared21

to an adapted Model Output Statistics baseline, the CNN reduced RMSE by 7.4-8.9%22

for all events. Effectively, the CNN adds more than a day of predictive skill when com-23

pared to West-WRF. The CNN outperforms the other methods also for the prediction24

of extreme events, highlighting a promising path forward for improving precipitation fore-25

casts.26

Plain Language Summary27

Machine learning methods are used for accurate large-scale prediction by learning28

patterns from a vast amount of data. We demonstrate the utility of a computer vision-29

based machine learning technique for improving precipitation forecasts. Extreme pre-30

cipitation events and atmospheric rivers, which contain narrow bands of water vapor trans-31

port, can cause millions in damages. We show that there is a significant increase in pre-32

dictive accuracy for daily accumulated precipitation using these machine learning meth-33

ods, which could result in significant societal benefits.34

1 Introduction35

The precipitation associated with atmospheric rivers (ARs), ”a long, narrow, and36

transient corridor of strong horizontal water vapor transport” (AMS, 2019), replenishes37

the water supply but can also result in flooding over the western United States. ARs cause38

median economic losses in the tens to hundreds of millions of dollars for AR4 and AR539

ARs based on the AR scale developed by (Ralph et al., 2019). Further, ARs have been40

identified as the primary source of hydrologic flooding in the western United States (Corringham41

et al., 2019). Accurate and reliable predictions of precipitation can help in minimizing42

losses attributable to ARs or other weather phenomena (e.g., cut-off lows, narrow cold-43

frontal rainbands, etc.) and in better managing the water supply in the western United44

States (ODonnell et al., 2020).45

Numerical weather prediction (NWP) are based on dynamical models that are built46

on current state-of-the-science knowledge of key atmospheric physics and numerical pro-47

cedure. However, NWP accuracy is affected by initial condition errors, numerical approx-48

imations, and incomplete understanding and representation of all the relevant physical49

processes (Delle Monache et al., 2013; Vannitsem & Ghil, 2017; Collins & Allen, 2002;50

Nicolis & Nicolis, 2007).51

NWP post-processing methods are designed to correct for the aforementioned de-52

ficiencies by learning the characteristics of NWP errors from a historical data set to then53

try to anticipate today forecast biases. These include downscaling methods, Kalman fil-54

ters, model output statistics (MOS), and machine learning methods such as neural net-55

work models, decision trees, and multilinear regression models (Louka et al., 2008; Glahn56

& Lowry, 1972). Historically, post-processing methods, including machine learning meth-57

ods, have operated on a point-by-point basis (Rasp & Lerch, 2018). Recently, convolu-58

tional neural networks (CNNs) have been proposed to correct satellite retrievals (Tao59

et al., 2016). CNNs have been shown to be a powerful regression tool in the domains of60
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image analysis (Krizhevsky et al., 2012). For NWP, recent work by W. Chapman et al.61

(2019) has highlighted the efficacy of a CNN as a NWP post-processing method for the62

prediction of integrated vapor transport (IVT). It was shown that the CNN-based pre-63

diction resulted in 9-17% improvements in RMSE as compared to other methods (W. Chap-64

man et al., 2019).65

Traditional point-by-point approaches have been shown to be effective in improv-66

ing the raw estimates of dynamical models (Glahn & Lowry, 1972), and are particularly67

valuable for certain applications, e.g., renewable energy (Alessandrini et al., 2015; Cer-68

vone et al., 2017). However, since spatial interdependence is ignored, at times non-physical69

fields with statistical anomalies are produced (Vannitsem & Ghil, 2017). Further, the70

predominantly “no rain” data points in the precipitation field poses an issue for stan-71

dard machine learning methods which rely on balanced classes of data. To mitigate these72

issues, in this study we explore the potential of a recently developed machine learning73

method to post-process accumulated precipitation forecasts: a U-Net CNNs architecture74

(Ronneberger et al., 2015). U-Net CNNs are a form of artificial neural network , which75

have been used for both classification and regression tasks primarily focused on spatial76

data in the field of biomedical imaging. As such, this CNN leverages spatial interdepen-77

dence by construction. Further, we propose and test a dual ML model structure to rec-78

tify the class imbalance in the sparse precipitation data.79

In Section 2 we introduce the data used in this study. Section 3 describes the method-80

ology, including evaluation strategy and skill scores. The results are presented in section81

4. Conclusions are provided in section 5, where the potential of U-Net CNN as a tool82

for weather forecasting and future research is discussed.83

2 Data and Methodology84

2.1 Observational Data85

The observed precipitation data used in this study is the Parameter-elevation Re-86

lationships on Independent Slopes Model (PRISM) dataset (PRISM Climate Group, 2004),87

which is constructed using data from the Cooperative Observer Program (COOP) and88

Snowpack Telemetry (SNOTEL) networks, and a variety of smaller networks (Daly et89

al., 2008). PRISM provides estimates of accumulated 24 hour precipitation data over the90

last 40 years over the contiguous United States (CONUS) at a spatial resolution of 4 km.91

Here we focus on the western United States region comprising California and Nevada.92

The PRISM dataset was chosen as ground truth in this study due to its accuracy,93

comparable spatial resolution to the model reforecast data, and length of record. PRISM94

uses a comprehensive linear precipitation–elevation correction scheme that applies weights95

based on location to nearby stations, proximity to coast, topographic facets, boundary96

layer conditions, surrounding terrain height, and other terrain features (Daly et al., 2008).97

PRISM has been shown to perform well in challenging complex terrain settings when tested98

against independent station data (Daly et al., 2017). It has also been shown to produce99

reliably similar estimates of precipitation extremes when compared to other national in-100

situ based gridded datasets, while performing notably better than various reanalysis prod-101

ucts (Gibson et al., 2019).102

2.2 Model Reforecast Data103

The NWP reforecast data which is being post-processed, was developed at the Cen-104

ter for Western Weather and Water Extremes. As input to the U-Net CNN, we use weather105

forecasts over a 3-km domain (Figure 1) of 34 water years (1985 to 2019) of the West-106

ern Weather Research and Forecasting (West-WRF) regional model (Martin et al., 2019)107

covering the western United States, California and Nevada. The forecasts are driven by108
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initial and boundary conditions from the Global Forecasting System. The West-WRF109

regional model has shown forecast skill with a low intensity error for IVT and reduced110

dry and wet biases for precipitation over lead times from 1 to 7 days (see Steinhoff et111

al. (2020) for additional details on the reforecast).112

To align the forecast spatially with the observation set, we regrid the forecasts with113

a nearest-neighbor approach to a 4-km resolution, to retain existing precipitation pat-114

terns and preserve global precipitation means. For temporal alignment with the obser-115

vations, and given that the forecast are initialized daily at 0000 UTC, we calculate the116

accumulated daily precipitation offset by 12 hours to account for model spin-up. In other117

words, data from 12-h to 36-h after initialization of each West-WRF forecast is labelled118

as Day 1 forecast and is aligned with PRISM ground truth data.119

2.3 Machine Learning Approach120

The proposed CNN for forecast post-processing uses the U-Net architecture as a121

baseline, named after its distinctive U-shape model diagram (Ronneberger et al., 2015).122

Historically, this type of CNN has been used for biomedical image segmentation, but its123

application with weather forecasts is promising given its strength in rectifying spatial124

biases through image segmentation (W. Chapman et al., 2019). The model architecture125

consists of two phases. In the first phase, the model performs data compression through126

repeated convolutional layers to learn spatial features. This is followed by an expand-127

ing phase in which the output image is reconstructed using the learned features. We mod-128

ified the U-Net architecture as introduced by Ronneberger et al. (2015) in several ways129

as detailed below to adapt it to the task of improving the skill of precipitation forecasts.130

The model along with these modifications is referred to as the modified U-Net CNN from131

here onwards.132

West-WRF model output variables are used as predictors in the CNN. In partic-133

ular, to generate Day 1 predictions, the normalized 24-h accumulated precipitation, and134

the 6, 12 and 18-h forecasts of 5-m specific humidity and 2-m temperature since fore-135

cast initialization are used. Similarly, for greater lead times, we use the same predictors136

offset by the lead times. These predictors are used because they provide significant in-137

sight into the ground truth precipitation (Richardson, 1922). It was determined through138

validation that as the number of input parameters was increased beyond these predic-139

tors and time granularity (e.g., hourly instead of 6 hourly), the efficiency and accuracy140

of the model decreased (Anelli et al., 2019).141

The loss function used for the modified U-Net CNN is an asymmetric adaptation142

of the mean-square error that penalizes underprediction more than overprediction. It was143

observed through preliminary tests that the U-Net CNN tended to systematically un-144

derpredict extreme precipitation events, hence we chose to correct this bias as follows.145

We assign a hyperparameter ws > 1 that multiplicatively weights underpredicted val-146

ues as described in Equation S2 in the supplemental information. The value of ws is de-147

termined by minimizing loss on the validation data set, which is consistent with the pro-148

cedure to determine all hyperparameters.149

To combat a tendency for neural networks to predict small non-zero values of pre-150

cipitation for every grid cell due to millions of additions in its numerical computations151

(for example, a ”zero” value might be predicted as 0.001), we leverage binary masking,152

during model training, for precipitation prediction (Hayatbini et al., 2019). Binary mask-153

ing is a classification technique that generates a rain vs. no rain map for all grid points154

given the same input as the main post-processing framework. We use the same model155

architecture for training this binary mask predictor as the main post-processing model156

except the predictions (the numerical precipitation value) are replaced by indicator func-157

tions of the precipitation (i.e., rain vs. no rain). We train this completely separately from158

the main post-processing model. In other words, instead of predicting the amount of pre-159
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cipitation, we predict the probability of non-zero precipitation at that grid point. Then,160

we use masking to remove any values in the main numerical precipitation prediction that161

were predicted as likely having zero rain with over 50% probability by our binary mask.162

The loss function used in this case is the cross-entropy loss, a standard loss used in this163

kind of classification problems (Hayatbini et al., 2019). Figure S1 summarizes the afore-164

mentioned structure, located in the supplemental information.165

Further, we propose a dual ML model solution to class imbalance between the oc-166

currence of extreme and moderate precipitation events. We will refer to this as the dual167

model approach. For extreme events, traditional machine learning-based baselines such168

as MOS tend to underestimate the upper tail of the distribution and overestimate the169

moderate case due to the relatively low probability of extreme values in the distribution.170

To address this issue, we create separate U-Net CNN models for the more extreme events171

as classified by mean forecast accumulated precipitation above 2.5 mm. This corresponds172

with roughly all events below the 20th percentile total accumulated precipitation, which173

was determined through validation as an effective separation to mitigate the class im-174

balance issue. For the remaining events, we train a separate U-Net model to preserve175

predictive capability for the moderate case. Through this, we accomplish a tailored model176

for both extreme and moderate precipitation. While there exist deep learning techniques177

that resolve class imbalances in a more formal way such as data augmentation, they rely178

on mutating the data (e.g., stretching or cropping), which may be less desirable for post-179

processing problems with a numerical output (Perez & Wang, 2017). This is because these180

techniques produce an augmented input, but the numerical output (ground truth) then181

needs to be augmented too. Hence, we don’t perform this and instead assume that gen-182

eral mean and total precipitation over a region is roughly consistent in distribution over183

water years.184

Parameter tuning for the learning rate, the number of filters per layer, and loss func-185

tion weights is accomplished through validation. The optimal hyperparameters were close186

to their default values as provided in Keras, the used machine learning library (Chollet187

et al., 2015). The values and more detailed information regarding hyperparameter tun-188

ing are provided in the supplementary information.189

2.4 Testing and Evaluation190

The CNN is evaluated over a chosen test set of 4 water years, which were selected191

based on categorical El Niño/Southern Oscillation years. We use one El Niño year (1997),192

one La Niña year (2011), and two ENSO neutral years: one historically wet and one dry193

year (years 2016 and 2013, respectively). ENSO years have been shown to dramatically194

effect West Coast precipitation regimes through large scale pressure patterns which sig-195

nificantly alter precipitation predictability (W. E. Chapman et al., 2021; Kumar & Ho-196

erling, 1998). We also select particularly wet (2016/2017) and dry (2013/2014) years in197

which ENSO is in a neutral state, representing California drought conditions and a sur-198

plus of precipitation, respectively, without tropical SST forcing. We choose these years199

in order to test the skill of our methods in varied climate regimes and on a variety of pre-200

cipitation events. The rest serves as the training set. We use a testing process that most201

closely mimics a production system in which we train one CNN model over all possible202

years except a singular testing year and a validation year (the latter used to tune the203

hyperparameters); this is done for all years, so we train 4 dual ML models in total (8 in204

total), each of which is not trained on their corresponding test year. We refer to this as205

”one-shot” training.206

Traditional machine learning and dynamical post-processing frameworks were com-207

pared to the proposed U-Net CNN to assure its predictive accuracy and reliability over208

the chosen test set. Further, they offered a baseline for the CNN’s forecasting skill. A209

prediction based on climatology was used to ensure that the CNN is consistent and re-210
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liable. It was constructed by averaging 30 days worth of observation data prior to any211

particular testing day over all years preceding it. The second comparison was with the212

West-WRF dynamical model, which is used as the input to the machine learning method.213

As such, any rectification of spatial or temporal biases over the West-WRF model would214

be directly reflected in the CNN’s accuracy and errors. Further, we implemented a MOS215

based on a L1-regularized multilinear regression (Tibshirani, 1996). The MOS presents216

a more traditional ML framework that can be used as a baseline to the CNN. Similar217

to many other ML frameworks, the MOS leverages point-based learning as opposed to218

the strategy adopted in a CNN. Note that the multilinear regression is configured to use219

the same predictors (precipitation, humidity, temperature) as the CNN and uses the same220

“one-shot” training for consistency.221

We evaluated the model using the following metrics: root-mean square error (RMSE),222

mean absolute error (MAE), model BIAS (BIAS), critical success index (CSI), and Pear-223

son correlation (PC). These metrics provide a comprehensive aggregated point-by-point224

analysis of the CNN’s performance with regards to the numerical error and the categor-225

ical accuracy. The mathematical equations for each are shown in Equation S3.226

Similarly to Sperati et al. (2017), to verify the spatial consistency of the predic-227

tion generated by each of the methods, we also compare the pairwise correlation between228

all pairs of grid points for the predictions with the observations. When the pairwise cor-229

relation between a chosen model’s grid points (e.g., the CNN) more closely matches the230

pairwise correlation for the ground truth grid points, it indicates a greater degree of cor-231

respondence in terms of spatial relationships in the ground truth.232

3 Results233

The U-Net CNN post-processed forecasts are compared against several methods.234

Figure 1 shows an example of a 96 h forecast of an extreme event that occurred on Febru-235

ary 10, 2014 in the test set. The multilinear regression post-processing and West-WRF236

model overpredict over the highlighted heavy precipitation areas. Comparatively, the CNN237

qualitatively more closely resembles the observation patterns of the event as estimated238

by PRISM, especially within the heavy precipitation regions. For this case, it produces239

the lowest RMSE with respect to the PRISM ground-truth field, improving upon West-240

WRF by 33.9% and MOS by 8.1%. This is an example of CNN’s ability to correct for241

spatial biases in the forecasts.242

3.1 Discussion of Evaluation Metrics243

The models are compared with respect to all the error metrics defined in Section244

2.4: RMSE, MAE, PC, and CSI. All of the shown metrics and improvements were boot-245

strap sampled and produced with a 95% confidence interval to indicate if the results are246

statistically significant.247

The CNN’s overall RMSE aggregated over the 4 lead times (1-4 days) consistently248

outperformed climatology by 34.1-37.0%, West-WRF by 12.9-15.9%, and MOS by 7.4-249

8.9%. Similarly, the CNN outperformed both West-WRF and MOS for all 4 lead times250

with respect to Pearson correlation (PC) by 2.7-3.4% and 3.3-4.2%, respectively. Over251

the same period, the CNN improved upon West-WRF’s CSI by 0.6-1.5%, with greater252

improvements ranging from 2.7% to 5.6% for lead times of 24 to 48 h. Note that we do253

not provide a complete set of improvement statistics for CLIM apart from RMSE since254

it is consistently 40-50% improved upon with regard to every metric.255

Further, we analyze the performance of the models on the top 10% most heavy pre-256

cipitation events. The CNN’s overall RMSE/MAE over these events was reduced 19.8-257

21.0/17.7-18.3% and 8.8-9.7/5.4-6.2% compared to West-WRF and MOS respectively258
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RMSE: 16.01mm (+55.09%)(c) West-WRF (d) CNN

(a) PRISM (b) MOS
RMSE: 7.8mm

RMSE: 7.2mmRMSE: 10.9mm

Figure 1. The 24-h accumulated precipitation on February 10, 2014 (test set) for (a) PRISM,

(b) MOS, (c) West-WRF, and (d) CNN. The RMSE for each method with respect to the PRISM

observation (a) is (b) 7.8 mm, (c) 10.9 mm, and (d) 7.2 mm. The highlighted region in red show-

cases an area of strong overprediction in West-WRF.

over all lead times of 1-4 days. Further, the CNN’s PC over these events was improved259

by 4.9-5.5% and 4.2-4.7% compared to West-WRF and MOS.260

Since the latter two metrics, PC and CSI, showcase the spatial and categorical ac-261

curacy of the methods, and RMSE summarizes the numerical accuracy, the CNN clearly262

outperformed the other post-processing and dynamical methods over all lead times with263

respect to spatial, categorical, and numerical accuracy aggregated over heavy precipi-264

tation and all events. These improvements are all shown to be statistically significant265

over a 95% confidence interval. The complete comparison for each error metric over each266

model is included in the supplemental information for all lead times.267

These improvements are qualitatively consistent or better over similar dynamical268

baselines as cited in recent literature regarding machine learning-based post-processing269

methods. In Roulin and Vannitsem (2012), probabilistic techniques such as logistic re-270

gression are used to improve precipitation forecasts. Over the forecasting period, the MSE271

throughout the forecasting period is 5-15% better than the baseline dynamical method,272
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which is consistent with the multilinear regression model presented in this study that273

is shown to be 28-31% inferior to the CNN in terms of MSE.274

3.2 Temporal Evaluation of Models275

We show some of the error metrics (RMSE, CRMSE, BIAS, PC) for each post-processing276

and dynamical method as a function of the lead time in Figure 2. This allows a more277

thorough examination of the propagation of error through increasing lead times.278

Specifically, the RMSE is decomposed into bias, which reflect systematic errors, and279

CRMSE, which includes random errors and conditional biases, as indicated in Equation280

S1. Throughout the 4 lead times, the CNN consistently has the lowest CRMSE, as well281

as the highest Pearson correlation. In fact, the CNN is consistently able to add a day282

worth of predictive skill when compared to West-WRF (i.e. CNN error on day 4 is less283

than West-WRF error on day 3) in terms of RMSE, CRMSE, and PC. The BIAS fluc-284

tuates for each post-processing and forecasting method, but it is significantly lower than285

the CRMSE and contributes only marginally to the RMSE. This means that the CNN286

is able to improve the predictive ability of the dynamical model while minimally increas-287

ing the systematic errors (when compared to total RMSE).288

(a) RMSE (b) CRMSE

(d) PC(c) BIAS

West-WRF
MOS

CNN
West-WRF
MOS

CNN

West-WRF
MOS

CNN
West-WRF
MOS

CNN

Figure 2. Pearson’s correlation, CRMSE, RMSE, and BIAS for each model as a function of

model lead time in days.
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Further, we evaluate the rate of growth of the error metrics to evaluate the CNN’s289

capabilities of producing longer-term forecasts and the scaling of the error as a function290

of lead time. A slower rate of growth of all error metrics would indicate a method that291

tracks better as a function of lead time. The average rate of growth for RMSE is signif-292

icantly higher for West-WRF between days 2-4 as compared to CNN, with a reduction293

of 17.9% from day 3 to 4. Similarly, the average rate of decay for PC is reduced by 16.6%294

for the CNN as compared to West-WRF over days 2-4. Effectively, the CNN add more295

than one day of predictive skills to West-WRF, as for example is indicated by the CNN’s296

RMSE at day 4, which is between the RMSE of West-WRF at days 2 and 3.297

3.3 Spatial Evaluation of Models298

The spatial patterns of improvement in error metrics as compared to West-WRF,299

aggregated over lead times of Day 1 to Day 4, is shown in Figure 3. The improvement300

in RMSE and MAE are consistently above 10%, with significant improvements of around301

30-40% in the Sierra Nevada region. Similarly, the CNN improves upon West-WRF’s Pear-302

son correlation coefficient 5% or more, with significant improvements of 10-15% in south-303

ern California. The sharp decrease in correlation in the northern region and through-304

out the California Channel Islands is likely attributed to the CNN’s documented weak-305

nesses to domain boundaries due to spatial padding for convolution (Alsallakh et al., 2020).306

The CNN’s improvements in CSI are largely mixed, with coastal California showing around307

10% improvement over West-WRF. In southern California and Nevada, the West-WRF308

model outperforms the CNN by 15%. However, it is important to note that regions in309

which the CNN more significantly underperforms (the highlighted blue regions) account310

for only 9.2% of the total precipitation in the region (i.e., they are dry areas).311

The spatial consistency of the generated precipitation field is also examined using312

a pairwise correlation plot (Sperati et al., 2017). This is an important aspect of the fore-313

cast evaluation because it explores the ability of the CNN to capture the spatial distri-314

bution of observed precipitation.315

The pairwise correlation plot is shown in Figure 4 for both the CNN and West-WRF316

methods. With a perfect forecasting or post-processing method, we expect the correla-317

tion between each of the grid cells to match with the observation set, as shown by the318

1:1 line in orange. The actual distribution of pairwise correlations between the CNN and319

West-WRF with respect to the PRISM is shown as a density plot. Qualitatively, it is320

noted that the CNN maintains the spatial attributes of the PRISM observations just as321

well as West-WRF by the fact that the spread is just as concentrated along 1:1 line. The322

higher coefficient of determination (R2) of the CNN pairwise correlation plot indicates323

that the dispersion around the identity is lower than that of the West-WRF pairwise cor-324

relation plot. This indicates the CNN’s superior spatial consistency with the PRISM ground325

truth as compared to West-WRF. Note that this analysis does not factor in the obser-326

vational error.327

4 Conclusions328

The U-Net Convolutional Neural Network (CNN) architecture originally proposed329

by Ronneberger et al. (2015) and adapted in this study for precipitation prediction pro-330

vides a computationally efficient and consistently accurate post-processing framework331

over different types of water years that outperforms competing machine learning and dy-332

namical models. It provides superior spatial consistency and numerical accuracy over333

all lead times as summarized by the 12.9-15.9% improvement in root-mean-square er-334

ror (RMSE) over the Western Weather Research and Forecasting model and 7.4-8.9%335

improvement over Model Output Statistics. It also displays a reduce rate of error growth336

such as RMSE and Pearson’s correlation as lead times increase, which effectively results337

in more than a day of additional predictive skill with respect to a dynamical model. Ad-338
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(a) RMSE (b) MAE

(c) PC (d) CSI

Figure 3. The CNN’s improvement/degradation in RMSE, MAE, PC and CSI as compared

to the West-WRF regional model aggregated over all lead times (1-4 days). Highlighted region

shows an area of severe reduction in CSI for the CNN, see discussion in text.

ditionally, the CNN outperforms the other methods for the prediction of the top 10%339

precipitation events. This demonstrates a consistent and reliable post-processing frame-340

work that improves upon spatial and temporal biases over dynamical models and other341

post-processing methods over the western US. Future work includes examining the tem-342

poral association between day-to-day forecasts using recurrent neural networks or trans-343

formers along with an encoding convolutional neural network. The Convolutional Long344

Short-Term Memory layer developed by Shi et al. (2015) provides a promising avenue345

to explore this further. Additional methods to rectify the class imbalance can be explored,346

such as data augmentation.347
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