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Andrew James Charlton-Perez1, Jochen Bröcker1, Alexey Yurievich Karpechko2, Simon
Haydn Lee1, Michael Sigmond3, and Isla Ruth Simpson4

1University of Reading
2Finnish Meteorological Institute
3Environment and Climate Change Canada
4National Center for Atmospheric Research (UCAR)

November 23, 2022

Abstract

Many recent studies have confirmed that variability in the stratosphere is a significant source of surface sub-seasonal prediction

skill during northern hemisphere winter. It may be beneficial, therefore, to think about times in which there might be windows-

of-opportunity for skilful sub-seasonal predictions based on the initial or predicted state of the stratosphere. In this study, we

propose a simple, minimal model that can be used to understand the impact of the stratosphere on tropospheric predictability.

Our model purposefully excludes state dependent predictability in either the stratosphere or troposphere or in the coupling

between the two. Model parameters are set up to broadly represent current sub-seasonal prediction systems by comparison

with four dynamical models from the sub-seasonal to seasonal prediction project database. The model can reproduce the

increases in correlation skill in sub-sets of forecasts for weak and strong stratospheric states over neutral states despite the lack

of dependence of coupling or predictability on the stratospheric state. We demonstrate why different forecast skill diagnostics

can give a very different impression of the relative skill in the three sub-sets. Forecasts with large stratospheric signals and low

amounts of noise are demonstrated to also be windows-of-opportunity for skilful tropospheric forecasts, but we show that these

windows can be obscured by the presence of unrelated tropospheric signals.
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Key Points:10

• We propose a model that demonstrates how forecast skill present in the lowermost11

stratosphere contributes to tropospheric forecast skill.12

• The model can explain the greater correlation skill in the troposphere for forecasts13

during weak or strong vortex events.14

• The model shows how tropospheric skill arising from the stratosphere can some-15

times be confounded by uncorrelated tropospheric signals.16
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Abstract17

Many recent studies have confirmed that variability in the stratosphere is a significant18

source of surface sub-seasonal prediction skill during northern hemisphere winter. It may19

be beneficial, therefore, to think about times in which there might be windows-of-opportunity20

for skilful sub-seasonal predictions based on the initial or predicted state of the strato-21

sphere. In this study, we propose a simple, minimal model that can be used to under-22

stand the impact of the stratosphere on tropospheric predictability. Our model purpose-23

fully excludes state dependent predictability in either the stratosphere or troposphere24

or in the coupling between the two. Model parameters are set up to broadly represent25

current sub-seasonal prediction systems by comparison with four dynamical models from26

the sub-seasonal to seasonal prediction project database. The model can reproduce the27

increases in correlation skill in sub-sets of forecasts for weak and strong stratospheric states28

over neutral states despite the lack of dependence of coupling or predictability on the29

stratospheric state. We demonstrate why different forecast skill diagnostics can give a30

very different impression of the relative skill in the three sub-sets. Forecasts with large31

stratospheric signals and low amounts of noise are demonstrated to also be windows-of-32

opportunity for skilful tropospheric forecasts, but we show that these windows can be33

obscured by the presence of unrelated tropospheric signals.34

Plain Language Summary35

For successful forecasts of surface winter conditions between two weeks and one sea-36

son ahead, the stratosphere has been shown to be a key source of information. Despite37

many studies examining how well the stratosphere can be predicted in computer-based38

forecasting systems, there remains a lack of understanding of which surface forecasts the39

stratosphere is most important for. This study is an attempt to step back from exam-40

ining the role of the stratosphere in any particular forecasting system and instead to de-41

termine a simple framework that can be used to understand when and how the strato-42

sphere is important. Using our framework we can construct a series of simple experiments43

that help to understand how important the stratosphere is in the longer range forecast-44

ing problem. Our experiments show that forecasts made during periods in which the Arc-45

tic stratosphere is unusually cold or warm have greater skill, but this does not depend46

on how unusually cold or warm the stratosphere is. The results are particularly impor-47

tant for thinking about the times in which longer range forecasts might be more skilful48
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than on average, so called windows-of-opportunity, and how these depend on the strato-49

sphere.50

1 Introduction and Motivation51

On sub-seasonal and seasonal timescales, coupling between the stratosphere and52

troposphere is a significant part of the available tropospheric forecast skill (e.g. Domeisen,53

Butler, et al., 2020; Scaife et al., 2016). The contrasting impact of stratospheric variabil-54

ity during recent winter seasons (Knight et al., 2021) has, however, brought into sharp55

relief the lack of a full quantitative understanding of the stratospheric contribution to56

tropospheric prediction skill. The Sudden Stratospheric Warming (SSW) which occurred57

in February 2018 has been clearly linked to enhanced sub-seasonal predictive skill of cold58

conditions in Europe during late-winter and spring (Karpechko et al., 2018; Kautz et al.,59

2020). In contrast, the SSW which occurred in January 2019 is not thought to have had60

a major surface impact or have contributed to enhanced skill (Rao et al., 2020). Early61

examination of the January 2021 SSW (Lee, 2021) suggest this event was strongly cou-62

pled to the surface Northern Annual Mode (NAM). Some authors have also proposed63

links to climate impacts in both Texas and Greece (Wright et al., 2021). The exception-64

ally strong and predictable polar vortex during the 2019/20 season also seems to have65

enhanced tropospheric seasonal forecast skill during late winter and spring (Lee et al.,66

2020).67

Explanations for these differences often focus on several different aspects of the stratosphere-68

troposphere coupling. On the one hand, there is evidence that not all SSWs produce the69

necessary lower stratospheric signals associated with strong coupling to the surface (Karpechko70

et al., 2017). Related work notes a difference in the tropospheric response to the mor-71

phology of SSW, vortex displacement or vortex split, with enhanced coupling following72

splitting events (White et al., 2020). Other recent work suggests tropospheric drivers of73

sub-seasonal skill, unconnected to the stratosphere, significantly influence the sign and74

predictability of the tropospheric response (e.g. Afargan-Gerstman & Domeisen, 2020;75

Knight et al., 2021). It has also been proposed that coupling between the stratosphere76

and troposphere is strongly dependent on the tropospheric state at the time of the strato-77

spheric perturbation (Charlton-Perez et al., 2018; Maycock et al., 2020; Domeisen, Grams,78

& Papritz, 2020). These ideas relate, more generally, to the concept of intermittent ‘windows-79

of-opportunity’ for sub-seasonal prediction (Mariotti et al., 2020).80
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In order to critically assess and quantify the importance of these ideas, it would81

be helpful to have a simple ‘toy’ or ‘null’ model of how predictability in the stratosphere82

and troposphere is connected. By this, we mean a simple stochastic model that captures83

the relationships between the predictable signal in the stratosphere and troposphere with84

as few parameters as possible. This step is important, because it provides a quantita-85

tive lens through which to examine explanations of why some stratospheric perturba-86

tions appear to have a larger impact on tropospheric predictability than others. Put an-87

other way, are the differences in the impact on tropospheric skill of recent SSW and strong88

vortex events just an effect of random variability in stratosphere-troposphere coupling89

or do they reflect more complex dynamics? To the best of our knowledge, no such null90

model exists. When considering tropospheric predictability more generally, the simple91

models of, for example, Weigel et al. (2008) and Siegert et al. (2016) have been widely92

used for similar purposes. We choose to call this model a ‘minimal’ model since it con-93

tains what we believe is the simplest description of the coupled distribution of forecasts94

and observations in the stratosphere and troposphere.95

Having proposed a minimal model of the stratospheric contribution to tropospheric96

predictability, in the second half of the paper we perform a number of simple thought97

experiments to show the extent to which many of the characteristic properties of stratosphere-98

troposphere coupling can be reproduced by this simple model. Given the limited size of99

hindcast datasets that can be exploited to understand the properties of stratosphere-troposphere100

coupling, we also hope that this minimal model can be used to test and refine diagnos-101

tic tools for examining coupling in operational prediction systems.102

2 Model Design103

We start from the signal-noise model for ensemble forecasts developed by Charlton-104

Perez et al. (2019) from Siegert et al. (2016):105

Y (t) = µy + βyS(t) + εO(t) (1)106

Xk(t) = µx + βxS(t) + ηPk(t) for k = 1, . . . ,K (2)107
108

In this model, Y (t) is the observed time series of the parameter of interest for fore-109

casts made at different times, t. Xk(t) are the matching ensemble forecasts; S(t), O(t), P1(t), . . . , PK(t)110
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are independent standard normal random variables that are also independent over time111

(i.e. for different t); µy and µx are the climatological means. Key to the model is the shared112

“signal” term that is identical in the forecasts and observations, S(t). The noise terms,113

O(t), P1, . . . , PK(t) are uncorrelated with S(t) and with each other. The two parame-114

ters βy and βx scale the signal term, allowing for under or over confidence in the fore-115

casts. The ε and η terms similarly scale the noise components. This model can be fur-116

ther simplified by considering the case where the forecast and observations are normalised117

climate indices (e.g. the North Atlantic Oscillation index, NAO) with mean of zero and118

variance of 1. In this case µy and µx are zero and can be removed.119

If the variance of Y (t) and Xk(t) are known to be 1, then the amplitude of the sig-120

nal and noise terms are related (since the variance of the sum of uncorrelated variables121

is the sum of the variances of each variable):122

β2
y = 1− ε2, (3)123

β2
x = 1− η2. (4)124

125

To extend this model to consider coupling between the stratosphere and troposphere126

we adopt a series of principles and assumptions:127

• The stratospheric observations and forecasts should have identical structure to the128

model above.129

• The predictable signal in the troposphere should have two uncorrelated compo-130

nents: a predictable signal linked linearly to the stratospheric state and one which131

captures skill from purely tropospheric processes, such as the Madden-Julian Os-132

cillation (MJO) or from other Earth System processes like sea-ice, sea-surface tem-133

perature or soil moisture.134

• Coupling between the stratosphere and troposphere in the model forecasts is linked135

to the full stratospheric state in each ensemble member, not solely the predictable136

component.137

• The tropospheric and stratospheric variables should represent normalised climate138

indices. We consider these to be the NAM index in the lower stratosphere (for ex-139

ample 100 hPa) where forecast skill is high (Son et al., 2020) and the NAO index,140

but any normalised climate index would be equally appropriate.141
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By adopting these design choices, the model does not seek to explicitly consider142

upward coupling i.e. the role of the tropospheric state in determining the predictable sig-143

nal in the stratosphere. Anomalous stratospheric states have been shown to be a strong144

function of the integrated lower stratospheric meridional heatflux (Polvani & Waugh, 2004;145

Hinssen & Ambaum, 2010). The model does not seek to capture this process. Since on146

sub-seasonal and seasonal timescales, the lower stratosphere is the most predictable part147

of the extra-tropical atmosphere and predicting the tropospheric state is the ultimate148

goal of any forecasting system it is natural to design the model in this way.149

The proposed model is then as follows:150

YS(t) = βyS(t) + εO(t), (5)151

XSk(t) = βxS(t) + ηPk(t) for k = 1, . . . ,K, (6)152

YT (t) = CyYS(t) + αyT (t) + λQ(t), (7)153

XTk(t) = CxXSk(t) + αxT (t) + ξRk(t) for k = 1, . . . ,K, (8)154
155

where an added subscript S means stratosphere and T means troposphere. The predictable156

signal in the troposphere, which is common to the forecasts and observations but uncor-157

related with the stratospheric signal S(t) is denoted T (t). αy and αx are the amplitude158

of T (t) in the observations and model respectively. Q(t), R1(t), . . . , RK(t) Q(t) are the159

noise terms in the troposphere. They are uncorrelated with each other and with the noise160

terms in the stratosphere. λ and ξ are the amplitude of the tropospheric noise terms.161

By substitution, the expressions for the tropospheric observations and forecast can162

then be expanded as:163

YT (t) = CyβyS(t) + CyεO(t) + αyT (t) + λQ(t),164

XTk(t) = CxβxS(t) + CxηPk(t) + αxT (t) + ξRk(t) for k = 1, . . . ,K.165
166

The variance, covariance and correlation structure of the model, along with expres-167

sion for the signal-to-noise ratio, are shown in the Supporting Information. Since the fore-168

casts and observations are normalised, with variance of one, the correlation and covari-169

ance between individual ensemble members and the observations are equal.170
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ρ(XSk, YS) = βxβy (9)

ρ(YS , YT ) = Cy (10)

ρ(XSk, XTk) = Cx (11)

ρ(XTk, YT ) = CyβyCxβx + αyαx (12)

For the stratosphere, the Pearson’s correlation, ρ, between each ensemble member171

and the observations (Eq. 9) is simply the product of the two signal amplitudes, βyβx.172

The correlation between the stratospheric and tropospheric index in the observations (Eq.173

10) is Cy, and for each ensemble member (Eq. 11) is Cx. The correlation between each174

ensemble member and the observations in the troposphere (Eq. 12) has a component which175

depends on both the strength of the coupling between the model and observations and176

the size of the stratospheric signal (CyβyCxβx) and a component that depends on the177

size of the tropospheric signal (αyαx).178

3 Model Parameters179

To complete the minimal model, we need to set values of the parameters in Eqs.180

5-8. As in Siegert et al. (2016), a Bayesian approach could be used to fit the model to181

a set of model hindcasts to determine these parameters. In this study, since the aim is182

to describe and analyse the simple model we do not take this approach but it is a clear183

extension.184

Instead, as a simple starting point, we can examine the correlation structure of four185

sets of example hindcasts available from the sub-seasonal to seasonal project database186

(S2S, Vitart et al. (2017)). As a representative stratospheric index we chose the NAM187

at 100 hPa derived using the zonal mean principal component method of Baldwin & Thomp-188

son (2009). As a representative tropospheric index we chose the NAO, here defined as189

the mean sea-level pressure difference between a 2.5◦x2.5◦ grid box centered at 65N and190

20W and one centered at 37.5N and 25W, i.e. over Iceland and the Azores respectively.191

In both cases, these indices are chosen to be illustrative only and different choices would192

result in slightly different numerical values for the calculations. All hindcasts in the database193

intialised between November and February for the particular model version in question194

are considered. No attempt is made to standardize the period over which the forecasts195
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are made. For the NCEP CFS model, a lagged ensemble is created by combining fore-196

casts intialised over three consecutive days. The lead time dependent bias is removed,197

prior to analysis. For the week 3 forecast, Table 1 shows the correlation structure.198

Table 1. Week 3 correlation structure. Here, Week 3 means the average of days 14-20 of the

forecast, and correlations are calculated by first taking the mean value of the index over these

days. ρ(XSk, XTk), ρ(XSk, YS) and ρ(XTk, YT ) are the ensemble mean of the correlation in each

individual ensemble member. N is the number of forecast initialisations considered, K is the

number of ensemble members.

Center N, K ρ(YS , YT ) ρ(XSk, XTk) ρ(XSk, YS) ρ(XTk, YT ) ρ(XS , YS) ρ(XT , YT )

(model version)

ECMWF 700, 11 0.44 0.46 0.63 0.24 0.77 0.43

(cy45r1)

UKMO 384, 7 0.43 0.44 0.67 0.24 0.75 0.36

(GloSea5)

NCEP 467, 12 0.45 0.41 0.61 0.26 0.73 0.44

(CFS v2)

Meteo-France 352, 15 0.43 0.49 0.60 0.26 0.72 0.42

(cnrm-cm 6.0)

Broadly, the correlation structure in all four models is similar for these climate in-199

dices and this lead time:200

• The correlation between the observed NAM and an individual ensemble member,201

ρ(XSk, YS), is approximately 0.6.202

• The correlation between the stratosphere and troposphere in the observations, ρ(YS , YT ),203

is approximately 0.45.204

• The correlation between the stratosphere and troposphere in the models, ρ(XTk, YT ),205

is also approximately 0.45.206

• The correlation between the observed NAO and an individual ensemble member,207

ρ(XTk, YT ), is approximately 0.25.208
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Using these four representative correlations, we can derive example parameters for209

the minimal model. For the remainder of the manuscript, all calculations and estimates210

assume these values, and no further reference to the four sets of sub-seasonal forecasts211

is made. We first assume that the amplitude of the signal in the observations and model212

is the same in the stratosphere (βy = βx, a perfect model assumption which is relaxed213

later). We can use the representative correlation ρ(XSk, YS) = 0.6 above to calculate214

values for the stratospheric parameters from Eq. 9 and Eq. 3 and 4. In this case, βy =215

βx = 0.77, ε = η = 0.63. This is equivalent to an identical signal-to-noise ratio in the216

model and observations of SNRSy = SNRSx = 1.22 (see the Supporting Informa-217

tion). Note that we have assumed positive values for βy and βx, although they could pro-218

duce the same positive correlation if both values were negative.219

If we assume that the model has these parameter values, we can calculate a rep-220

resentative correlation between the ensemble mean forecast and the observations by as-221

suming a value for the ensemble size, K (for details of the calculation of the ensemble222

mean correlation see the Supporting Information). For an example ensemble size of 51223

members (which corresponds to the size of the operational ECMWF ensemble forecast),224

the correlation between the ensemble mean forecast and observations (ρ(XS , YS)) is 0.77.225

Making a further assumption that the amplitude of the uncoupled part of the tro-226

pospheric signal is the same in the model and observations (i.e. that αy and αx are the227

same) and using Eq. 12, we can derive the following parameters for the tropospheric part228

of the minimal model. The size of the tropospheric signal, αy = αx =0.36 and the resid-229

ual noise terms λ = ξ = 0.82. These values give an overall signal-to-noise ratio in the230

troposphere, SNRTy = SNRTx = 0.58 and for an assumed ensemble size of 51 mem-231

bers the correlation between the ensemble mean forecast and observations (ρ(XT , YT ))232

is 0.49.233

In the next sections, these model parameters are further perturbed to explore the234

importance of the stratosphere-troposphere coupling for sub-seasonal predictability. Later235

in the paper, the minimal model with the same parameters is used to generate synthetic236

forecast sets with 1 million forecast initialisations.237
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4 Thought Experiment 1: Impact of Stratospheric Skill Improvement238

and Increased Ensemble Size239

A common question posed about the importance of the stratosphere for sub-seasonal240

prediction is understanding the trade off between spending additional computational re-241

sources to improve stratospheric skill (for example by increasing the complexity of the242

gravity wave drag parameterization or enhancing model vertical resolution) versus us-243

ing the same resources to increase the ensemble size. While it is difficult to quantify the244

impact of any given model improvement on forecast skill, the minimal model does give245

some insight into this question. Assuming that improving skill in the model stratosphere246

does not affect tropospheric predictability from other sources (i.e. the α terms remain247

constant) or the coupling between the stratosphere and troposphere (i.e. the C terms248

remain constant), the impact of increased stratospheric skill (δρ) is proportional to ρ(XSk, YS)249

multiplied by CxCy = 0.452 = 0.20 for parameters representative of the four sub-seasonal250

forecast models above. So,251

δρ(XTk, YT ) ∝ 0.2δρ(XSk, YS)

The model can be used to anticipate the impact of this increased skill on the en-252

semble mean correlation skill as shown in the supporting material. Assuming all other253

parameters are fixed, for an ensemble size of 51 members, modifying ρ(XSk, YS) between254

0 (no skill) and 1 (perfect skill) results in ρ(XT , YT ) increasing from 0.35 to 0.56. Fur-255

ther calculations of the impact of changes in stratospheric skill are shown in Fig. 1(left256

panel), with the case with 51 ensemble members shown in the solid line. The close to257

linear increase of ρ(XT , YT ) for the range of values around 0.6 ρ(XSk, YS) typical of most258

S2S modeling systems does not depend strongly on the size of the model ensemble (see259

for example the dashed and dotted lines showing the cases with 101 and 11 ensemble mem-260

bers respectively). The contrasting impact of increasing ensemble size on ρ(XT , YT ) is261

shown in Fig. 1 (right panel). The impact of the increasing ensemble size is relatively262

large as the ensemble size increases between 11 and 50 members but begins to saturate263

for much larger sizes. This effect is also not strongly dependent on the skill of the strato-264

spheric forecast, with a similar dependence for ρ(XT , YT ) when ρ(XSk, YS) is equal to265

0.4 (dotted line) or 0.8 (dashed line). Note that the quantification here is only relevant266

for forecasting systems with similar signal-to-noise properties as the minimal model in267
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this configuration. Further experiments could use the same framework to explore how268

to target model investment in under or over confident forecasting systems, which we will269

consider next.270

Figure 1. Impact of improving model skill in the stratosphere and increasing ensemble size

on tropospheric ensemble mean skill. Left panel shows the resulting tropospheric ensemble mean

skill plotted against the imposed correlation between an individual ensemble member and the

observations in the stratosphere for an ensemble with 11 ensemble members (dotted line), 51

ensemble members (solid line) and 101 ensemble members (dashed line). Right panel shows the

impact of changing the ensemble size (K) on tropospheric ensemble mean skill where correlation

between an individual ensemble member and the observations in the stratosphere (ρ(XSk, YS))

is 0.4 (dotted line), 0.6 (solid line) and 0.8 (dashed line). All other parameters follow the base

model.

5 Thought Experiment 2: Impact of Stratospheric Under or Over Con-271

fidence272

Given that most forecasting systems are not explicitly designed to perturb the strato-273

sphere (or target error growth there) then one could imagine a case whereby the strato-274

spheric forecast is over confident. Equally there has been much discussion in the liter-275

ature of under confidence of forecast systems on seasonal and longer timescales, partic-276

ularly in the North Atlantic and for the NAO (Eade et al., 2014). By varying the model277

parameters from the base case above, the impact of ensemble over or under confidence278
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in the stratosphere on the tropospheric forecast can be explored. In the base case above,279

we assume that the size of the signal in the model stratosphere is equal to that of the280

observations, i.e. βx = βy = βS =
√
ρ(XSk, YS .281

We can relax this assumption, without changing ρ(XSk, YS) by introducing a pa-282

rameter, c, which represents the fractional change in the size of βS for the base case above283

i.e. βy = cβS and βx = 1
cβS .284

There is a limited range over which the amplitude of the signal term can vary, be-285

tween the case where all of the variance in the model or observations is accounted for286

by the signal term and the case where none of the variance is accounted for by the sig-287

nal term. One limit of the range is where var(YS) = β2
Sy, so βSy = 1, c = 1/βS and288

βSx = β2
S . For the correlation values assumed in the toy model, this means where c =289

1.3 and βSx = 0.6. In this limit SNRSy = ∞ and SNRSx = 1. The other limit is290

where var(XS) = β2
Sx so βSx = 1, c = 1/βS and βSy = β2

S . This means where c =291

0.77, βSy = 0.6 and SNRSy = 1 and SNRSx = ∞. At this limit, the correlation of292

the ensemble mean is the same as the correlation between the individual ensemble mem-293

bers and the observations since there is no noise in the model forecasts.294

The impact of model under or overconfidence on the skill of tropospheric forecasts,295

for an ensemble size of 51 members, is shown in Fig. 2. As might be expected, the tro-296

pospheric signal-to-noise ratio somewhat follows the signal-to-noise ratio in the strato-297

sphere. Where the model is under confident in the stratosphere (blue part of the lines)298

it is also under confident (although to a lesser degree) in the troposphere. The relative299

size of the different terms mean that for the range in the centre of the plot, the impact300

in the troposphere is modest. The right panel demonstrates the impact of stratospheric301

under or over confidence on the correlation skill of the tropospheric ensemble mean. Com-302

pared to the case in which the amplitude of the stratospheric signal-to-noise ratio is cor-303

rect in the model (black dot), ρ(XT , YT ) is reduced for an ensemble with an over con-304

fident stratosphere and increased for an under confident stratosphere.305

Due to the fact that:

ρ(XT , YT ) =
CxCyβxβy + αxαy√
1− K−1

K (ξ2 + C2
xη

2)
,

and since in this experiment, all parameters apart from η, βx and βy are fixed and the306

product βxβy is fixed, this dependence is related to the value of η. In the over confident307
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case, η is small, increasing the denominator and therefore decreasing the correlation in308

the expression above. In the limiting case, where stratospheric forecasts have no noise309

(but there is still an unpredictable, noise component in the observations), η = 0 and310

ρ(XT , YT ) = ρ(XTk,YT )√
1−K−1

K (ξ2)
= 0.41.311

Figure 2. Impact of stratospheric signal-to-noise ratio biases on the tropospheric forecast

(for an ensemble size of 51 members). In all plots, blue lines show cases where the model is un-

der confident and red lines where the model is over confident. The black dot shows the base

solution where the size of the signal in model and observations is equal. Left panel shows the

possible range of signal-to-noise ratio for the model (x-axis) and observations (y-axis) when the

stratospheric model skill is fixed as the same value as the base model. Middle panel shows the

same quantities in the troposphere. The right panel shows the tropospheric ensemble mean skill

plotted against the signal-to-noise ratio in the model stratosphere.

6 Thought Experiment 3: Nudging the Stratosphere312

An increasingly common method used to interrogate the stratosphere-troposphere313

coupling in models is to add artificial physics to the model to nudge the state in the model314

stratosphere towards the observed state (e.g. Douville, 2009; Hitchcock & Simpson, 2014).315

The minimal model can be used to think about what these experiments might reveal.316

Take a hypothetical case where the nudging is perfect. In this case, XSk = YS and so317

ρ(XSk, YS) = 1. The only way this can be achieved in the minimal model is if βx, βy = 1318

and ε, η = 0. This then implies that ρ(XTk, YT ) = CxCy + αxαy.319
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It follows that for the same set of parameters used in Thought Experiment 1, ρ(XTk, YT ) =320

0.33 and ρ(XT , YT ) = 0.56 with 51 ensemble members, for the experiments with strato-321

spheric nudging. In other words, the minimal model predicts a maximum increase of around322

0.1 in correlation skill for the week 3 sub-seasonal forecast for a set of forecasts with strong323

stratospheric nudging, compared to free running control experiments.324

7 Synthetic experiment 1: Skill for Weak, Neutral and Strong vortex325

cases in the Stratosphere326

A common method to explore the impact of the stratosphere on prediction skill is327

to separate forecasts into categories where the initial stratospheric state has a weak, strong328

or neutral vortex (as in Sigmond et al., 2013; Tripathi et al., 2015; Domeisen, Butler, et329

al., 2020). One approach to quantify the differences in skill between the forecasts is to330

use the correlation skill score:331

CSS =
1
M

∑M
m=1 Y ·X√

1
M

∑M
m=1 Y

2 · 1
M

∑M
m=1X

2
.

In this and subsequent expressions, M indicates the number of forecast initialisa-332

tions in each subset. An alternative is to measure the correlation between the observa-333

tions and ensemble mean forecasts within each sub-selected ensemble, which we call here334

the sub-set correlation (SSC)335

SSC =
1
M

∑
m = 1

M (Y − [Y ]) · (X − [X])√
1
M

∑M
m=1(Y − [Y ])2 · 1

M

∑M
m=1(X − [X])2

Here, [Y ], [X] are, respectively, the mean of the observations and ensemble-mean336

forecasts within each sub-set. A further measure used to quantify the differences in skill337

of the different sub-sets of forecasts (Domeisen, Butler, et al., 2020) is the Root Mean338

Square Error.339

RMSE =

√√√√ 1

M

M∑
m=1

(Y −X)2

To simulate these calculations, and explore their relationship with the predictable340

signal, we can sub-set synthetic forecasts by the observed stratosphere (Ys). In the stud-341

ies referenced above, sub-setting is normally performed on the observed state at the start342
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of the forecast. Since the minimal model does not simulate the time development of the343

forecast, this experiment assumes that the state during week 3 is well correlated with344

the initial state, which is a reasonable assumption for most forecasts in the stratosphere,345

given the long autocorrelation timescale in the lower stratosphere. As an illustrative ex-346

ample, we define weak and strong cases as being below the 20th percentile or above the347

80th percentile of the index, and generate one million synthetic forecasts using simple348

random draws for the signal and noise terms in Eq. 5-8.349

Figure 3. Upper row shows diagnostics for the stratospheric forecast and lower row shows

diagnostics for the tropospheric forecasts. Leftmost column shows the CSS for the three ob-

served sub-sets (with weak, neutral and strong conditions in the stratosphere). Second column

shows the SSC and the middle column shows the RMSE. Final two columns show Kernel Density

Estimates (KDE) of the signal and noise terms for the three sub-sets. In the troposphere, the

signal term includes signal from intrinsic tropospheric processes and due to coupling with the

stratosphere.

The minimal model reproduces the behaviour seen in real forecast ensembles. The350

CSS for the weak and strong sub-sets is significantly larger than the neutral sub-set in351

both the stratosphere and troposphere. Note also that the CSS and SSC are equal in the352

neutral sub-set but that the CSS is substantially higher than the SSC in the weak and353

strong subsets. This difference doesn’t reflect greater correlation within each sub-set. Rather354

it represents a shift of the PDF of the signal term. Since the signal term is common to355

the observations and forecasts, this results in a larger CSS for the weak and strong cases.356

Put another way, the larger CSS in the weak and strong sub-sets reflects their larger signal-357

to-noise ratio. We reanalysed the results presented in Sigmond et al. (2013), who focused358

on CSS, using both the CSS and SSC. For the two cases, seasonal forecasts initialised359
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during SSW events and a control case with no SSWs, CSS is 0.55 for the SSW case and360

-0.01 for the control case. SSC is 0.23 for the SSW case and -0.02 for the control case.361

In contrast, the RMSE in the weak and strong sub-sets is much larger than the neu-362

tral sub-set for the stratospheric forecasts. The difference in RMSE between weak/strong363

and neutral sub-sets is replicated in the troposphere, although the relative size of the dif-364

ference between the sub-sets is smaller. Since the signal term is common to the obser-365

vations and forecasts, the RMSE for the stratosphere depends only on the properties of366

the noise terms, εO(t) and η
K

∑K
k=1 Pk(t). Sub-setting the forecasts by the size of YS means367

that the distribution of εO(t) is biased towards negative or positive values in the weak368

or strong sub-sets (see Supporting Information). There is no corresponding bias in
∑K
k=1 Pk(t).369

As the RMSE is a property of the distribution of YS−XS and the distribution is dom-370

inated by the distribution of εO(t) this leads to the difference in RMSE demonstrated371

in Fig. 3.372

Another approach to assess skill in different states is to make the sub-sets on the373

basis of the ensemble mean forecast rather than the observed state (Fig. 4). Sub-setting374

on this basis, produces a very similar result to the one in Fig. 3 for CSS and SSC, but375

with a clean separation of the three states by the size of the signal term through the ef-376

fective elimination of the noise term when taking the ensemble average. Since there is377

no bias in εO(t) in the three sub-sets introduced by this method, the RMSE is identi-378

cal for the three sub-sets and very close to ε.379

When analysing real hindcast data, there are arguments for using either of these380

methods to compare skill in different sub-sets. When comparing forecasts sub-set based381

on the initial state in the stratosphere, this analysis shows that caution is needed when382

interpreting simple measures of forecast skill. The arguments presented in this section383

are not unique to coupling between the stratosphere and troposphere. Our model could384

also be applied to other cases in which a predictable component is weakly coupled to the385

extra-tropical troposphere. Examples might include coupling of the MJO and El Niño386

Southern Oscillation to the North Atlantic.387

8 Synthetic Experiment 2: Windows of Opportunity388

There has been a lot of recent interest in understanding when there might be ‘win-389

dows of opportunity’ (Mariotti et al., 2020) for sub-seasonal forecasts that are more skil-390
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Figure 4. As Fig. 3 but for sub-setting based on the forecast ensemble mean state in the

stratosphere

ful than on average based on the presence of a particular dynamical forcing. The min-391

imal model can be used to explore to what extent the stratospheric signal can provide392

windows of opportunity when this stratosphere-troposphere coupling is linear and inde-393

pendent of the tropospheric state.394

There is no widely agreed diagnostic of a window of opportunity, here a simple di-395

agnostic from Ziehmann (2001) is used. First observations and forecasts are assigned to396

categorical bins (in this case based on terciles of the observed tropospheric state). The397

forecast ‘state’ for each forecast is the modal category (i.e. the one with most forecasts,398

with random assignment for rare bimodal cases). A forecast is counted as successful when399

the forecast and observed states are the same, with skill measured simply as the frac-400

tion of forecasts for which this is true. Windows of opportunity can be explored by sub-401

setting the forecasts based on the occupation frequency of the modal category. A more402

confident forecast is one in which the number of forecasts in the modal category is large,403

a less confident forecast where the number of forecasts in the modal category is small.404

The left panel of Fig. 5 shows the results of this calculation. The dashed black line shows405

the average fraction of successful forecasts. The green solid line shows the success rate406

of forecasts with high confidence, as a function of the percentile of the number of mem-407

bers in the modal category used to define the ‘high confidence’ sub-set. Forecasts with408

high confidence are much more likely to be successful than an average forecast. Conversely,409

forecasts with low confidence, shown in the brown line, are much less likely to be suc-410

cessful. In other words, the forecast spread, as quantified here by the number of mem-411

bers in the modal category, is a good predictor of forecast windows of opportunity.412
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Figure 5. Left panel shows the fraction of successful forecasts classified as highly (green) or

poorly (brown) predictable. Results are presented as a function of the percentile used to define

each class. For example, the value plotted at 10% on the green line is for all forecasts with modal

occupation frequency greater than the highest 10% of forecasts and the value plotted at 10% on

the brown line is for all forecasts with modal occupation frequency smaller than the lowest 10%

of forecasts. The dashed lines show the same calculation, but with forecasts sub-set based on the

modal category of the stratospheric forecast. Middle panel shows 2D histograms of YT and XT

for the two sub-sets based on the tropospheric forecasts for the 20% case (dots in the left panel).

Dashed black lines show the values of the observed state that define the weak, neutral and strong

forecast categories. Right panel shows histograms of the part of the tropospheric signal due to

the stratosphere (on the x-axis) and intrinsic to the troposphere (on the y-axis)
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How much are the windows of opportunity due to the signal present in the strato-413

sphere? One way to quantify this effect is to repeat the calculation but sub-set the fore-414

casts based on the size of the modal category in the stratospheric forecast. This is shown415

in the dashed line in the left panel of Fig. 5. While not as good a predictor of skill as416

the size of the modal category of the tropospheric forecast, this diagnostic can also be417

used to identify windows of opportunity. The set of forecasts in the high and low con-418

fidence sub-sets for the case shown by the dots in the left panel of Fig. 5 are shown in419

the middle panel. Forecasts with high confidence (green) are those in which the ensem-420

ble mean is generally large and positive or negative. Since the signal and noise terms are421

uncorrelated by construction, when the signal term is large, the likelihood of more mem-422

bers of the ensemble being in the same category as the ensemble mean forecast and the423

observations is increased. Confident forecasts generally have a large signal resulting from424

the stratosphere with a large tropospheric signal of the same sign, as shown in the right425

panel of Fig. 5. Forecasts with low confidence include both those with little signal from426

either process, and cases where there is an opposing signal from the stratosphere and tro-427

posphere (brown points). Forecasts in which there is a large stratospheric signal are there-428

fore windows of opportunity for skilful tropospheric sub-seasonal predictions. Sometimes,429

as seen for example in the contrasting forecasts of the 2018 and 2019 SSW events, op-430

posing stratospheric and tropospheric signals might mask this predictability.431

9 Conclusions432

In this study, we have attempted to define and investigate a minimal model which433

describes how skilful forecasts in the stratosphere contribute to forecast skill in the tro-434

posphere. The model is developed from the earlier toy model of Siegert et al. (2016). The435

key addition to the model to allow the link between the stratosphere and troposphere436

to be examined is a term coupling the observed and forecast indices in the troposphere437

with those in the stratosphere. This coupling is independent of the state in the strato-438

sphere or troposphere (i.e. it doesn’t depend on the value of Ys or XSk), and should be439

thought of as the simplest possible representation of stratosphere-troposphere coupling.440

There is no reason to think that this model rules out the need for more complex expla-441

nations of the contribution of the stratosphere to tropospheric forecast skill, but it should442

be regarded as a minimum standard that more complex explanations should be judged443

against.444
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The model reproduces a number of features of the observed properties of real sub-445

seasonal and seasonal prediction systems, particularly when considering sub-sets of fore-446

casts during weak, neutral and strong lower stratospheric NAM states. The increased447

CSS for these sub-sets reflects the greater signal-to-noise ratio in these cases. By con-448

struction, and as demonstrated by the calculations of SSC, correlation between forecast449

and observed states is identical within each sub-set. The analysis of the minimal model450

also demonstrates that care should be taken when constructing sub-sets of forecasts. Choos-451

ing to sub-set based on the observed stratospheric state can lead to biases in the RMSE452

because this method inherently chooses cases with larger average magnitude noise. An453

alternative approach for analysis of sub-seasonal forecasts could be to sub-set based on454

the ensemble mean forecast in the stratosphere since this better isolates cases with a large455

predictable signal.456

In a similar vein, windows-of-opportunity for skilful tropospheric forecasts can be457

identified by considering the spread of forecasts in the stratosphere. Results from the458

simple model suggest that focusing detailed dynamical analysis on stratospheric forecasts459

with high confidence could be a way to identify windows-of-opportunity for skilful sub-460

seasonal and seasonal forecasts. Often, confidence in stratospheric forecasts is largest once461

the signal of vortex disturbances is present in the upper and middle stratosphere. For462

the parameter choices used in this study, the similar size of the tropospheric signal de-463

rived from coupling to the stratosphere and from other unrelated tropospheric processes464

mean that there can often be confounding between the two signals. If this model is a good465

representation of real forecasting systems, this means that on the sub-seasonal timescale,466

the development of methods to disaggregate these signals could be an important fore-467

cast post-processing tool.468

In the future, we aim to use Bayesian methods to fit this model to sub-seasonal and469

seasonal hindcast datasets in order to compare and contrast different prediction systems.470

There are many other ways in which a minimal model like this one can be used to gen-471

erate large synthetic combined forecast and observation datasets to, for example, develop472

new diagnostics of stratosphere-troposphere coupling.473
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1. Model properties

The variances and covariances in the model are:

var(YS) = β2
y + ε2,

var(XSk) = β2
x + η2,

var(YT ) = C2
yβ

2
y + C2

yε
2 + α2

y + λ2 = C2
y + α2

y + λ2,

var(XTk) = C2
xβ

2
x + C2

xη
2 + α2

x + ξ2 = C2
x + α2

x + ξ2,

cov(XSk, YS) = βxβy,

cov(YS, YT ) = Cy,

cov(XSk, XTk) = Cx,

cov(XTk, YT ) = CyβyCxβx + αyαx.

Taking the ensemble mean of the forecasts reduces the variance of all noise terms by a

factor of 1/K:

var(XS) = β2
x +

1

K
η2 = 1− K − 1

K
η2,

var(XT ) = C2
xβ

2
x + α2

x +
1

K

(
ξ2 + C2

xη
2
)

= 1− K − 1

K

(
ξ2 + C2

xη
2
)
.
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Here the first equality in each line follows from he structure of the null model (Eqs.5-8 in

the paper), while the second equality follows from the convention that XSk and XTk have

unit variance.

There are ten equations in total for the ten unknown parameters of the null model.

In principle, by estimating the variances and covariances of the various time series and

inverting these equations, estimates for the parameters can be obtained. By dividing

XSk, XTk, YS, YT with their respective variances, we can assume that these time series

have variance (and hence also standard deviation) equal to one, and we will do so from

now on. Thereby, correlations between these time series are equal to the corresponding

covariances. We emphasise however that the variance of the ensemble means X̄S, ȲS are

not equal to one.

The signal to noise ratios in the stratosphere and the troposphere are:

SNRSy =
βS
ε
,

SNRSx =
βT
η
,

SNRTy =

√
C2
yβ

2
y + α2

y√
C2
yε

2 + λ2
,

SNRTx =

√
C2
xβ

2
x + α2

x√
C2
xη

2 + ξ2
.
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The correlation between the ensemble mean forecast and observations can then be found

for the stratosphere as:

ρ(XS, YS) =
cov(XS, YS)√

var(XS) ·
√

var(YS)
=

cov(XS, YS)√
var(XS) · 1

,

=
βxβy√

1− K−1
K
η2
.

And for the troposphere as:

ρ(XT , YT ) =
cov(XT , YT )√

var(XT ) ·
√

var(YT )
=

cov(XT , YT )√
var(XT ) · 1

,

=
CxCyβxβy + αxαy√
1− K−1

K
(ξ2 + C2

xη
2)
.

2. Impact of increases in skill in the Stratosphere

To estimate changes to ρ(XT , YT ) with increasing stratospheric skill, we also need to

estimate changes to the amount of noise in the stratospheric and tropospheric time series.

ρ(XT , YT ) =
CxCyβxβy + αxαy√
1− K−1

K
(ξ2 + C2

xη
2)
,

=
CxCyβxβy + αxαy√

1− K−1
K

(1− (C2
xβ

2
x + α2

x))
.

Using values from Table 1 in the paper. At the lower limit, where there is no skill in the

stratosphere (βx = 0), and K=51:
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ρ(XT , YT ) =
αxαy√

1− K−1
K

(1− α2
x)
,

= 0.34.

At the upper limit, where the stratosphere is perfectly predictable (βx = 1), and K=51:

ρ(XT , YT ) =
CxCy + αxαy√

1− K−1
K

(1− (C2
x + α2

x))
,

= 0.56.

We stress that a smaller βx automatically implies a larger η because of our convention

that β2
x + η2 = 1.

3. Impact of increased ensemble size

Estimating the impact of increasing the size of the forecast ensemble on the skill of the

ensemble mean is more straightforward to quantify, assuming the parameters of the model

are fixed. Making use of increased computational resources by running a larger ensemble

is an alternative strategy for improving skill in the sub-seasonal range.

As above, in this case:

ρ(XT , YT ) =
CxCyβxβy + αxαy√
1− K−1

K
(ξ2 + C2

xη
2)
,

=
0.25√

1− K−1
K
· 0.75

.

4. Derivation of RMSE

Starting with the stratospheric case. Given S(t) is common between forecasts and obser-

vations, when βx = βy, the error of each forecast is:
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E(t) = YS(t)−XS(t),

= εO(t)− ηP (t).

Since both εO(t) and ηP (t) are normal distributions with mean zero and variance ε and

η
K

respectively:

E(t) ∼ N (0, ε2 +
η2

K
).

For an unbiased error distribution, the RMSE is simply its standard deviation, in the case

of the stratospheric forecast, RMSES =
√
ε2 + η2

K
.

For the tropospheric forecast, the expression is slightly more complex since it involves

both the intrinsic tropospheric error term and the error term resulting from coupling with

the stratospheric error. In this case:

RMSET =

√
c2y · ε2 + c2x ·

η2

K
+ λ2 +

ξ2

K
.

When calculating the RMSE of the weak, neutral and strong subsets, we can first examine

the distribution of the εO(t) and ηP (t) terms in the two subsets. For the case in which

the sub-sets are constructed from the observed stratospheric index, YS, these distributions

are shown in Fig. S1. Clearly, for the weak and strong sub-sets, the distribution of εO(t)

is biased toward the sign of the threshold used for sub-setting. The distribution of E is

nearly identical to the distribution of εO(t) since here an ensemble size of 51 members is

used.
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In the case where the distribution of E is biased, RMSE =
√

Bias2 + Variance2. For the

three sub-sets, the Variance term is identical (as above) but since the bias in the weak

and strong sub-sets is larger, this results in a larger RMSE.

When sub-sets are constructed using the size of the forecast ensemble mean in the strato-

sphere, XS, there is no bias in the size of εO(t) and instead a small bias in ηP (t). Since,

for a large ensemble size, the typical size of ηP (t) is much less than εO(t) the effect of

this bias on the RMSE is not detectable above the sampling noise.
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Figure S1. Kernal Density Estimate (KDE) of εO(t) (top left), ηP (t) (top right) and E

(bottom right) for the weak(red), neutral(gray) and strong(blue) sub-sets, where YS is the sub-

setting variable. A scatter plot of YS vs. XS for the three sub-sets is shown in the bottom

left.
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Figure S2. KDE estimate of εO(t) (top left), ηP (t) (top right) and E (bottom right) for

the weak(red), neutral(gray) and strong(blue) sub-sets, where XS is the sub-setting variable. A

scatter plot of YS vs. XS for the three sub-sets is shown in the bottom left.
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